spacer
spacer

PDBsum entry 2j0l

Go to PDB code: 
protein ligands metals links
Transferase PDB id
2j0l

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
276 a.a. *
Ligands
SO4
ANP
Metals
_MG
Waters ×97
* Residue conservation analysis
PDB id:
2j0l
Name: Transferase
Title: Crystal structure of a the active conformation of the kinase domain of focal adhesion kinase with a phosphorylated activation loop.
Structure: Focal adhesion kinase 1. Chain: a. Fragment: kinase domain, residues 411-686. Synonym: fadk 1, pp125fak. Engineered: yes. Other_details: phosphorylated activation loop (y576, y577)
Source: Gallus gallus. Chicken. Organism_taxid: 9031. Expressed in: trichoplusia ni. Expression_system_taxid: 7111. Expression_system_cell_line: high five.
Resolution:
2.30Å     R-factor:   0.217     R-free:   0.263
Authors: D.Lietha,X.Cai,Y.Li,M.D.Schaller,M.J.Eck
Key ref:
D.Lietha et al. (2007). Structural basis for the autoinhibition of focal adhesion kinase. Cell, 129, 1177-1187. PubMed id: 17574028 DOI: 10.1016/j.cell.2007.05.041
Date:
03-Aug-06     Release date:   26-Jun-07    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q00944  (FAK1_CHICK) -  Focal adhesion kinase 1 from Gallus gallus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1053 a.a.
276 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.2.7.10.2  - non-specific protein-tyrosine kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-tyrosyl-[protein] + ATP = O-phospho-L-tyrosyl-[protein] + ADP + H+
L-tyrosyl-[protein]
+ ATP
= O-phospho-L-tyrosyl-[protein]
Bound ligand (Het Group name = ANP)
matches with 81.25% similarity
+ ADP
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1016/j.cell.2007.05.041 Cell 129:1177-1187 (2007)
PubMed id: 17574028  
 
 
Structural basis for the autoinhibition of focal adhesion kinase.
D.Lietha, X.Cai, D.F.Ceccarelli, Y.Li, M.D.Schaller, M.J.Eck.
 
  ABSTRACT  
 
Appropriate tyrosine kinase signaling depends on coordinated sequential coupling of protein-protein interactions with catalytic activation. Focal adhesion kinase (FAK) integrates signals from integrin and growth factor receptors to regulate cellular responses including cell adhesion, migration, and survival. Here, we describe crystal structures representing both autoinhibited and active states of FAK. The inactive structure reveals a mechanism of inhibition in which the N-terminal FERM domain directly binds the kinase domain, blocking access to the catalytic cleft and protecting the FAK activation loop from Src phosphorylation. Additionally, the FERM domain sequesters the Tyr397 autophosphorylation and Src recruitment site, which lies in the linker connecting the FERM and kinase domains. The active phosphorylated FAK kinase adopts a conformation that is immune to FERM inhibition. Our biochemical and structural analysis shows how the architecture of autoinhibited FAK orchestrates an activation sequence of FERM domain displacement, linker autophosphorylation, Src recruitment, and full catalytic activation.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Structure of Autoinhibited FAK
(A) Domain structure of FAK. Key tyrosine phosphorylation sites are indicated.
(B) Overall structure of autoinhibited FAK including the FERM, linker, and kinase regions. In the autoinhibited state, the FERM domain (blue ribbon representation) binds the kinase domain (red), primarily through an interaction between the FERM F2 lobe and the kinase C-lobe. A section of the linker that contains the autophosphorylation site Tyr397 (yellow) is located between the FERM F1 lobe and the kinase N-lobe. The FERM domain also blocks access to the active-site cleft and to the kinase activation loop (A-loop, green). Disordered segments are indicated as dashed lines. The staurosporine analog AFN941 is bound to the active site of the kinase and is shown in stick representation.
(C) Sequence alignment of the FERM, linker, and kinase regions of avian FAK (cFAK1), human FAK (hFAK1), and human Pyk2 (hPyk2). cFAK1 shares 94% sequence identity with hFAK1, and hFAK1 shares 43% with hPyk2. Secondary structure elements are indicated, and the sequence is shaded to correspond to the colors in (B). Residues involved in the FERM F2 lobe/kinase C-lobe interaction are indicated by an asterisk, and regulatory tyrosines are colored magenta.
Figure 2.
Figure 2. Structure of the Active Kinase Domain of FAK
(A) The structure of the FAK kinase domain phosphorylated by Src is shown in ribbon representation (green) with the activation loop in blue. The side chains of phosphotyrosines 576 and 577 and AMP-PNP, which is bound to the active site, are shown in stick representation. A Mg^2+ ion at the active site is shown as a yellow sphere.
(B) Close-up view of the activation loop with the side chains of pY576, pY577, R569, and R545 and the main chains of A579 and S580 shown in stick representation. A network of hydrogen bonds (orange dashed lines) involving the phosphate group of pY577 stabilizes the conformation of the activation loop.
(C) Superposition of active and inactive FAK kinases. The autoinhibited structure is shown with the FERM domain as a surface representation (light blue), and the linker and kinase domains are shown in a ribbon representation colored yellow and red, respectively. The structure of the active kinase domain (green ribbon and blue activation loop) is superimposed based on the kinase C-lobes. The side chain of pY576 and the main chain carbonyl of A579 in the active kinase (both residues are shown in space filling representations) clash with the FERM domain in the autoinhibited structure.
 
  The above figures are reprinted by permission from Cell Press: Cell (2007, 129, 1177-1187) copyright 2007.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
  21350583 H.J.Kung (2011).
Targeting Tyrosine Kinases and Autophagy in Prostate Cancer.
  Horm Cancer, 2, 38-46.  
21220115 P.J.Lupardus, G.Skiniotis, A.J.Rice, C.Thomas, S.Fischer, T.Walz, and K.C.Garcia (2011).
Structural snapshots of full-length Jak1, a transmembrane gp130/IL-6/IL-6Rα cytokine receptor complex, and the receptor-Jak1 holocomplex.
  Structure, 19, 45-55.  
20802513 T.H.Chen, P.C.Chan, C.L.Chen, and H.C.Chen (2011).
Phosphorylation of focal adhesion kinase on tyrosine 194 by Met leads to its activation through relief of autoinhibition.
  Oncogene, 30, 153-166.  
21394897 W.F.Zambuzzi, C.V.Ferreira, J.M.Granjeiro, and H.Aoyama (2011).
Biological behavior of pre-osteoblasts on natural hydroxyapatite: a study of signaling molecules from attachment to differentiation.
  J Biomed Mater Res A, 97, 193-200.  
20626003 Y.L.Hsu, L.Y.Wu, M.F.Hou, E.M.Tsai, J.N.Lee, H.L.Liang, Y.J.Jong, C.H.Hung, and P.L.Kuo (2011).
Glabridin, an isoflavan from licorice root, inhibits migration, invasion and angiogenesis of MDA-MB-231 human breast adenocarcinoma cells by inhibiting focal adhesion kinase/Rho signaling pathway.
  Mol Nutr Food Res, 55, 318-327.  
20581846 A.V.Karginov, F.Ding, P.Kota, N.V.Dokholyan, and K.M.Hahn (2010).
Engineered allosteric activation of kinases in living cells.
  Nat Biotechnol, 28, 743-747.  
20001213 C.A.Lipinski, and J.C.Loftus (2010).
Targeting Pyk2 for therapeutic intervention.
  Expert Opin Ther Targets, 14, 95.  
20005866 C.B.McDonald, K.L.Seldeen, B.J.Deegan, V.Bhat, and A.Farooq (2010).
Assembly of the Sos1-Grb2-Gab1 ternary signaling complex is under allosteric control.
  Arch Biochem Biophys, 494, 216-225.  
20071509 J.A.Bartos, J.D.Ulrich, H.Li, M.A.Beazely, Y.Chen, J.F.Macdonald, and J.W.Hell (2010).
Postsynaptic clustering and activation of Pyk2 by PSD-95.
  J Neurosci, 30, 449-463.  
  20101634 J.L.Guan (2010).
Integrin signaling through FAK in the regulation of mammary stem cells and breast cancer.
  IUBMB Life, 62, 268-276.  
20729930 J.T.Parsons, A.R.Horwitz, and M.A.Schwartz (2010).
Cell adhesion: integrating cytoskeletal dynamics and cellular tension.
  Nat Rev Mol Cell Biol, 11, 633-643.  
  21429240 J.Vomaske, S.Varnum, R.Melnychuk, P.Smith, L.Pasa-Tolic, J.I.Shutthanandan, and D.N.Streblow (2010).
HCMV pUS28 initiates pro-migratory signaling via activation of Pyk2 kinase.
  Herpesviridae, 1, 2.  
20652056 J.Zhong, A.Paul, S.J.Kellie, and G.M.O'Neill (2010).
Mesenchymal migration as a therapeutic target in glioblastoma.
  J Oncol, 2010, 430142.  
19929856 L.Zhao, Y.Ma, J.Seemann, and L.J.Huang (2010).
A regulating role of the JAK2 FERM domain in hyperactivation of JAK2(V617F).
  Biochem J, 426, 91-98.  
20966971 M.C.Frame, H.Patel, B.Serrels, D.Lietha, and M.J.Eck (2010).
The FERM domain: organizing the structure and function of FAK.
  Nat Rev Mol Cell Biol, 11, 802-814.  
20336234 O.A.Gani, and R.A.Engh (2010).
Protein kinase inhibition of clinically important staurosporine analogues.
  Nat Prod Rep, 27, 489-498.  
19880522 S.T.Lim, N.L.Miller, J.O.Nam, X.L.Chen, Y.Lim, and D.D.Schlaepfer (2010).
Pyk2 inhibition of p53 as an adaptive and intrinsic mechanism facilitating cell proliferation and survival.
  J Biol Chem, 285, 1743-1753.  
20110370 V.Prieto-Echagüe, A.Gucwa, B.P.Craddock, D.A.Brown, and W.T.Miller (2010).
Cancer-associated mutations activate the nonreceptor tyrosine kinase Ack1.
  J Biol Chem, 285, 10605-10615.  
19570669 A.P.Gilmore, T.W.Owens, F.M.Foster, and J.Lindsay (2009).
How adhesion signals reach a mitochondrial conclusion--ECM regulation of apoptosis.
  Curr Opin Cell Biol, 21, 654-661.  
19525103 A.Tomar, and D.D.Schlaepfer (2009).
Focal adhesion kinase: switching between GAPs and GEFs in the regulation of cell motility.
  Curr Opin Cell Biol, 21, 676-683.  
19201755 A.Y.Park, T.L.Shen, S.Chien, and J.L.Guan (2009).
Role of focal adhesion kinase Ser-732 phosphorylation in centrosome function during mitosis.
  J Biol Chem, 284, 9418-9425.  
19805512 C.Brignatz, M.P.Paronetto, S.Opi, M.Cappellari, S.Audebert, V.Feuillet, G.Bismuth, S.Roche, S.T.Arold, C.Sette, and Y.Collette (2009).
Alternative splicing modulates autoinhibition and SH3 accessibility in the Src kinase Fyn.
  Mol Cell Biol, 29, 6438-6448.  
19118207 D.S.Harburger, and D.A.Calderwood (2009).
Integrin signalling at a glance.
  J Cell Sci, 122, 159-163.  
19664602 D.Zheng, E.Kurenova, D.Ucar, V.Golubovskaya, A.Magis, D.Ostrov, W.G.Cance, and S.N.Hochwald (2009).
Targeting of the protein interaction site between FAK and IGF-1R.
  Biochem Biophys Res Commun, 388, 301-305.  
19354260 E.Ciccimaro, S.K.Hanks, K.H.Yu, and I.A.Blair (2009).
Absolute quantification of phosphorylation on the kinase activation loop of cellular focal adhesion kinase by stable isotope dilution liquid chromatography/mass spectrometry.
  Anal Chem, 81, 3304-3313.  
19047047 J.Chen, Y.Lu, S.Meng, M.H.Han, C.Lin, and X.Wang (2009).
alpha- and gamma-Protocadherins negatively regulate PYK2.
  J Biol Chem, 284, 2880-2890.  
19169797 J.Zhao, and J.L.Guan (2009).
Signal transduction by focal adhesion kinase in cancer.
  Cancer Metastasis Rev, 28, 35-49.  
19805360 K.S.Grossmann, H.Wende, F.E.Paul, C.Cheret, A.N.Garratt, S.Zurborg, K.Feinberg, D.Besser, H.Schulz, E.Peles, M.Selbach, W.Birchmeier, and C.Birchmeier (2009).
The tyrosine phosphatase Shp2 (PTPN11) directs Neuregulin-1/ErbB signaling throughout Schwann cell development.
  Proc Natl Acad Sci U S A, 106, 16704-16709.  
19956600 M.Malakhova, I.Kurinov, K.Liu, D.Zheng, I.D'Angelo, J.H.Shim, V.Steinman, A.M.Bode, and Z.Dong (2009).
Structural diversity of the active N-terminal kinase domain of p90 ribosomal S6 kinase 2.
  PLoS One, 4, e8044.
PDB code: 3g51
18853468 S.Siamakpour-Reihani, H.J.Argiros, L.J.Wilmeth, L.L.Haas, T.A.Peterson, D.L.Johnson, C.B.Shuster, and B.A.Lyons (2009).
The cell migration protein Grb7 associates with transcriptional regulator FHL2 in a Grb7 phosphorylation-dependent manner.
  J Mol Recognit, 22, 9.  
18584337 V.Shani, Y.Bromberg, O.Sperling, and E.Zoref-Shani (2009).
Involvement of Src Tyrosine Kinases (SFKs) and of Focal Adhesion Kinase (FAK) in the Injurious Mechanism in Rat Primary Neuronal Cultures Exposed to Chemical Ischemia.
  J Mol Neurosci, 37, 50-59.  
19492042 Y.Shan, L.Yu, Y.Li, Y.Pan, Q.Zhang, F.Wang, J.Chen, and X.Zhu (2009).
Nudel and FAK as antagonizing strength modulators of nascent adhesions through paxillin.
  PLoS Biol, 7, e1000116.  
20011623 Y.Wang, L.Flores, S.Lu, H.Miao, Y.S.Li, and S.Chien (2009).
Shear Stress Regulates the Flk-1/Cbl/PI3K/NF-κB Pathway Via Actin and Tyrosine Kinases.
  Cell Mol Bioeng, 2, 341-350.  
18198129 A.L.Berrier, C.W.Jones, and S.E.LaFlamme (2008).
Tac-beta1 inhibits FAK activation and Src signaling.
  Biochem Biophys Res Commun, 368, 62-67.  
19030106 D.Lietha, and M.J.Eck (2008).
Crystal structures of the FAK kinase in complex with TAE226 and related bis-anilino pyrimidine inhibitors reveal a helical DFG conformation.
  PLoS ONE, 3, e3800.
PDB codes: 2jkk 2jkm 2jko 2jkq
18614051 E.Goksoy, Y.Q.Ma, X.Wang, X.Kong, D.Perera, E.F.Plow, and J.Qin (2008).
Structural basis for the autoinhibition of talin in regulating integrin activation.
  Mol Cell, 31, 124-133.  
18297732 E.J.Cram, K.M.Fontanez, and J.E.Schwarzbauer (2008).
Functional characterization of KIN-32, the Caenorhabditis elegans homolog of focal adhesion kinase.
  Dev Dyn, 237, 837-846.  
19060208 H.Chen, C.F.Xu, J.Ma, A.V.Eliseenkova, W.Li, P.M.Pollock, N.Pitteloud, W.T.Miller, T.A.Neubert, and M.Mohammadi (2008).
A crystallographic snapshot of tyrosine trans-phosphorylation in action.
  Proc Natl Acad Sci U S A, 105, 19660-19665.
PDB code: 3cly
18160720 M.Funakoshi-Tago, S.Pelletier, H.Moritake, E.Parganas, and J.N.Ihle (2008).
Jak2 FERM domain interaction with the erythropoietin receptor regulates Jak2 kinase activity.
  Mol Cell Biol, 28, 1792-1801.  
17928235 R.W.Tilghman, and J.T.Parsons (2008).
Focal adhesion kinase as a regulator of cell tension in the progression of cancer.
  Semin Cancer Biol, 18, 45-52.  
  18677107 S.T.Lim, D.Mikolon, D.G.Stupack, and D.D.Schlaepfer (2008).
FERM control of FAK function: implications for cancer therapy.
  Cell Cycle, 7, 2306-2314.  
18206965 S.T.Lim, X.L.Chen, Y.Lim, D.A.Hanson, T.T.Vo, K.Howerton, N.Larocque, S.J.Fisher, D.D.Schlaepfer, and D.Ilic (2008).
Nuclear FAK promotes cell proliferation and survival through FERM-enhanced p53 degradation.
  Mol Cell, 29, 9.  
18189271 T.K.Lundgren, A.Stenqvist, R.P.Scott, T.Pawson, and P.Ernfors (2008).
Cell migration by a FRS2-adaptor dependent membrane relocation of ret receptors.
  J Cell Biochem, 104, 879-894.  
18549812 V.Ossovskaya, S.T.Lim, N.Ota, D.D.Schlaepfer, and D.Ilic (2008).
FAK nuclear export signal sequences.
  FEBS Lett, 582, 2402-2406.  
17967873 X.Cai, D.Lietha, D.F.Ceccarelli, A.V.Karginov, Z.Rajfur, K.Jacobson, K.M.Hahn, M.J.Eck, and M.D.Schaller (2008).
Spatial and temporal regulation of focal adhesion kinase activity in living cells.
  Mol Cell Biol, 28, 201-214.  
17721515 B.Serrels, A.Serrels, V.G.Brunton, M.Holt, G.W.McLean, C.H.Gray, G.E.Jones, and M.C.Frame (2007).
Focal adhesion kinase controls actin assembly via a FERM-mediated interaction with the Arp2/3 complex.
  Nat Cell Biol, 9, 1046-1056.  
17786953 E.Rozengurt (2007).
Mitogenic signaling pathways induced by G protein-coupled receptors.
  J Cell Physiol, 213, 589-602.  
18075577 J.Kuriyan, and D.Eisenberg (2007).
The origin of protein interactions and allostery in colocalization.
  Nature, 450, 983-990.  
17928215 M.A.Arnaout, S.L.Goodman, and J.P.Xiong (2007).
Structure and mechanics of integrin-based cell adhesion.
  Curr Opin Cell Biol, 19, 495-507.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer