spacer
spacer

PDBsum entry 2iy0

Go to PDB code: 
protein Protein-protein interface(s) links
Hydrolase/hydrolase activator PDB id
2iy0

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
226 a.a. *
76 a.a. *
156 a.a. *
Waters ×6
* Residue conservation analysis
PDB id:
2iy0
Name: Hydrolase/hydrolase activator
Title: Senp1 (mutant) sumo1 rangap
Structure: Sentrin-specific protease 1. Chain: a. Fragment: c-terminal fragment, residues 419-643. Synonym: senp1, sentrin/sumo-specific protease senp1. Engineered: yes. Mutation: yes. Small ubiquitin-related modifier 1. Chain: b. Synonym: sumo-1, ubiquitin-like protein smt3c, smt3 homolog 3,
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562. Expression_system_taxid: 562
Biol. unit: Trimer (from PDB file)
Resolution:
2.77Å     R-factor:   0.230     R-free:   0.279
Authors: L.Shen,C.Dong,J.H.Naismith
Key ref:
L.Shen et al. (2006). SUMO protease SENP1 induces isomerization of the scissile peptide bond. Nat Struct Mol Biol, 13, 1069-1077. PubMed id: 17099698 DOI: 10.1038/nsmb1172
Date:
11-Jul-06     Release date:   07-Aug-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q9P0U3  (SENP1_HUMAN) -  Sentrin-specific protease 1 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
644 a.a.
226 a.a.*
Protein chain
Pfam   ArchSchema ?
P63165  (SUMO1_HUMAN) -  Small ubiquitin-related modifier 1 from Homo sapiens
Seq:
Struc:
101 a.a.
76 a.a.
Protein chain
Pfam   ArchSchema ?
P46060  (RAGP1_HUMAN) -  Ran GTPase-activating protein 1 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
587 a.a.
156 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: Chain A: E.C.3.4.22.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1038/nsmb1172 Nat Struct Mol Biol 13:1069-1077 (2006)
PubMed id: 17099698  
 
 
SUMO protease SENP1 induces isomerization of the scissile peptide bond.
L.Shen, M.H.Tatham, C.Dong, A.Zagórska, J.H.Naismith, R.T.Hay.
 
  ABSTRACT  
 
Small ubiquitin-like modifier (SUMO)-specific protease SENP1 processes SUMO-1, SUMO-2 and SUMO-3 to mature forms and deconjugates them from modified proteins. To establish the proteolytic mechanism, we determined structures of catalytically inactive SENP1 bound to SUMO-1-modified RanGAP1 and to unprocessed SUMO-1. In each case, the scissile peptide bond is kinked at a right angle to the C-terminal tail of SUMO-1 and has the cis configuration of the amide nitrogens. SENP1 preferentially processes SUMO-1 over SUMO-2, but binding thermodynamics of full-length SUMO-1 and SUMO-2 to SENP1 and K(m) values for processing are very similar. However, k(cat) values differ by 50-fold. Thus, discrimination between unprocessed SUMO-1 and SUMO-2 by SENP1 is based on a catalytic step rather than substrate binding and is likely to reflect differences in the ability of SENP1 to correctly orientate the scissile bonds in SUMO-1 and SUMO-2.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. Structure of full-length SUMO-1 bound to SENP1 C603A. (a) SENP1(C603A)–SUMO-1-FL complex. Cyan, SENP1; purple, SUMO-1-FL. SENP1 is effectively identical to earlier descriptions. (b) Superposition of SENP1(C603A)–RanGAP1–SUMO-1 complex with SENP1(C603A)–SUMO-1-FL complex. In the superposed RanGAP1–SUMO-1 complex, RanGAP1 is in red, SENP1 is in dark blue and SUMO-1 is in turquoise. Isopeptide bond is depicted as in Figure 1a. (c) Detail of the complex in a, with SENP1 in dark blue and carbons of SUMO-1-FL in pink. Residues mentioned in the text are indicated. Dotted line denotes hydrogen bond. (d) The same cis arrangement of nitrogens is seen in the SENP1(C603A)–SUMO-1-FL processing complex and in the SENP1(C603A)–RanGAP1–SUMO-1 deconjugating complex (colored as in b and c).
Figure 4.
Figure 4. Thermodynamics of substrate and product binding by SENP1 C603A. ITC was used to study the thermodynamic changes effected by binding of SENP1 to SUMO-1-FL, SUMO-2-FL, RanGAP1–SUMO-1, SUMO-1-GG, SUMO-2-GG or RanGAP1 (as indicated). Experiments were repeated on three separate occasions with very similar results. Thermodynamic parameters are indicated in Table 1.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Mol Biol (2006, 13, 1069-1077) copyright 2006.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
  21518833 L.D.Plant, E.J.Dowdell, I.S.Dementieva, J.D.Marks, and S.A.Goldstein (2011).
SUMO modification of cell surface Kv2.1 potassium channels regulates the activity of rat hippocampal neurons.
  J Gen Physiol, 137, 441-454.  
21518904 R.N.Gilbreth, K.Truong, I.Madu, A.Koide, J.B.Wojcik, N.S.Li, J.A.Piccirilli, Y.Chen, and S.Koide (2011).
Isoform-specific monobody inhibitors of small ubiquitin-related modifiers engineered using structure-guided library design.
  Proc Natl Acad Sci U S A, 108, 7751-7756.
PDB code: 3qht
  20087442 E.Van Damme, K.Laukens, T.H.Dang, and X.Van Ostade (2010).
A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics.
  Int J Biol Sci, 6, 51-67.  
20498050 L.D.Plant, I.S.Dementieva, A.Kollewe, S.Olikara, J.D.Marks, and S.A.Goldstein (2010).
One SUMO is sufficient to silence the dimeric potassium channel K2P1.
  Proc Natl Acad Sci U S A, 107, 10743-10748.  
20590526 N.Kolli, J.Mikolajczyk, M.Drag, D.Mukhopadhyay, N.Moffatt, M.Dasso, G.Salvesen, and K.D.Wilkinson (2010).
Distribution and paralogue specificity of mammalian deSUMOylating enzymes.
  Biochem J, 430, 335-344.  
19107421 D.Reverter, and C.D.Lima (2009).
Preparation of SUMO proteases and kinetic analysis using endogenous substrates.
  Methods Mol Biol, 497, 225-239.  
19008217 E.T.Yeh (2009).
SUMOylation and De-SUMOylation: Wrestling with Life's Processes.
  J Biol Chem, 284, 8223-8227.  
19322194 K.Satoo, N.N.Noda, H.Kumeta, Y.Fujioka, N.Mizushima, Y.Ohsumi, and F.Inagaki (2009).
The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy.
  EMBO J, 28, 1341-1350.
PDB codes: 2z0d 2z0e 2zzp
19392659 L.N.Shen, M.C.Geoffroy, E.G.Jaffray, and R.T.Hay (2009).
Characterization of SENP7, a SUMO-2/3-specific isopeptidase.
  Biochem J, 421, 223-230.  
19923268 Y.Wang, and M.Dasso (2009).
SUMOylation and deSUMOylation at a glance.
  J Cell Sci, 122, 4249-4252.  
19186998 Z.Xu, H.Y.Chan, W.L.Lam, K.H.Lam, L.S.Lam, T.B.Ng, and S.W.Au (2009).
SUMO proteases: redox regulation and biological consequences.
  Antioxid Redox Signal, 11, 1453-1484.  
18321862 B.H.Ha, H.C.Ahn, S.H.Kang, K.Tanaka, C.H.Chung, and E.E.Kim (2008).
Structural basis for Ufm1 processing by UfSP1.
  J Biol Chem, 283, 14893-14900.
PDB code: 2z84
18799455 C.D.Lima, and D.Reverter (2008).
Structure of the Human SENP7 Catalytic Domain and Poly-SUMO Deconjugation Activities for SENP6 and SENP7.
  J Biol Chem, 283, 32045-32055.
PDB code: 3eay
18666185 M.Drag, and G.S.Salvesen (2008).
DeSUMOylating enzymes--SENPs.
  IUBMB Life, 60, 734-742.  
18408734 M.H.Tatham, M.C.Geoffroy, L.Shen, A.Plechanovova, N.Hattersley, E.G.Jaffray, J.J.Palvimo, and R.T.Hay (2008).
RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation.
  Nat Cell Biol, 10, 538-546.  
17919899 A.D.Capili, and C.D.Lima (2007).
Taking it step by step: mechanistic insights from structural studies of ubiquitin/ubiquitin-like protein modification pathways.
  Curr Opin Struct Biol, 17, 726-735.  
17499995 D.Mukhopadhyay, and M.Dasso (2007).
Modification in reverse: the SUMO proteases.
  Trends Biochem Sci, 32, 286-295.  
17146457 D.T.Huang, and B.A.Schulman (2006).
Breaking up with a kinky SUMO.
  Nat Struct Mol Biol, 13, 1045-1047.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer