spacer
spacer

PDBsum entry 2hqh

Go to PDB code: 
protein metals Protein-protein interface(s) links
Structural protein, protein binding PDB id
2hqh

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
72 a.a. *
22 a.a. *
Metals
_ZN ×4
Waters ×500
* Residue conservation analysis
PDB id:
2hqh
Name: Structural protein, protein binding
Title: Crystal structure of p150glued and clip-170
Structure: Dynactin-1. Chain: a, b, c, d. Fragment: cap-gly domain, residues 15-107. Synonym: 150 kda dynein-associated polypeptide, dp-150, dap-150, p150-glued, p135. Engineered: yes. Restin. Chain: e, f, g, h. Fragment: second zinc finger domain, residues 1405-1427.
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: dctn1. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008. Gene: rsn, cyln1.
Resolution:
1.80Å     R-factor:   0.194     R-free:   0.216
Authors: I.Hayashi,M.Ikura
Key ref:
I.Hayashi et al. (2007). CLIP170 autoinhibition mimics intermolecular interactions with p150Glued or EB1. Nat Struct Biol, 14, 980-981. PubMed id: 17828275 DOI: 10.1038/nsmb1299
Date:
18-Jul-06     Release date:   21-Aug-07    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q14203  (DCTN1_HUMAN) -  Dynactin subunit 1 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1278 a.a.
72 a.a.
Protein chains
Pfam   ArchSchema ?
P30622  (CLIP1_HUMAN) -  CAP-Gly domain-containing linker protein 1 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1438 a.a.
22 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chains A, B, C, D, E, F, G, H: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1038/nsmb1299 Nat Struct Biol 14:980-981 (2007)
PubMed id: 17828275  
 
 
CLIP170 autoinhibition mimics intermolecular interactions with p150Glued or EB1.
I.Hayashi, M.J.Plevin, M.Ikura.
 
  ABSTRACT  
 
CLIP170 and p150(Glued) localize to the plus ends of growing microtubules. Using crystallography and NMR, we show that autoinhibitory interactions within CLIP170 use the same binding determinants as CLIP170's intermolecular interactions with p150(Glued). These interactions have both similar and distinct features when compared with the p150(Glued)-EB1 complex. Our data thus demonstrate that regulation of microtubule dynamics by plus end-tracking proteins (+TIPs) occurs through direct competition between homologous binding interfaces.
 
  Selected figure(s)  
 
Figure 1.
(a) Surface representation of p150n with C traces of ClipZn2 (pink) and p150n (green). Key interacting side chains are shown as sticks (green atoms are sulfur). Blue, GKNDG motif; orange, conserved hydrophobic residues (Phe52, Trp57 and Phe88; Supplementary Fig. 3 online). Red circled region is expanded in b. (b) Close-up views of interface between ClipZn2 and p150n. Middle panel has same orientation as in a. Residues discussed in the text are labeled. Orange sphere, water molecule mediating the Arg90-Asn1422 interaction. (c) Pull-down assays of wild-type and mutant ClipZn12 and p150n. p150n proteins were incubated with glutathione S-transferase (GST)-fused ClipZn12 proteins. Left lane contains wild-type p150n, for reference. Mock pull-down is shown as a control (see Supplementary Table 2).
Figure 2.
(a) NMR chemical shift perturbations induced by binding of ClipZn12, mapped onto the surface of ClipCG1 (left; PDB 2CP7) and ClipCG2 (right; PDB 2CP6). The two panels show equivalent views. Purple residues are missing from the HSQC spectra owing to chemical exchanges. See Supplementary Figure 2. (b) Sequence alignments of ClipCG domains. ClipCG1 and ClipCG2 of human, Xenopus laevis and zebrafish CLIP170, human CLIP115 and Drosophila CLIP190 are shown. The single ClipCG domains of p150n, fission yeast Tip1p and budding yeast Bik1 are also shown. Green highlight, GKNDG motif; blue, its invariant lysine residue; red, arginine residues conserved in ClipCG1 (and p150n); orange, lysine and histidine conserved in ClipCG2. (c,d) In vitro assays of wild-type or mutant ClipCG1 and ClipCG2 binding to ClipZn12 (c; see Supplementary Table 2) or MTs (d). ClipCG1, ClipCG2 and mutants were detected by Coomassie staining after SDS-PAGE. Input lanes show wild-type ClipCG domains, for reference. All the mutations abrogate binding to ClipZn12 or MTs.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (2007, 14, 980-981) copyright 2007.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
19758557 A.J.Lomakin, I.Semenova, I.Zaliapin, P.Kraikivski, E.Nadezhdina, B.M.Slepchenko, A.Akhmanova, and V.Rodionov (2009).
CLIP-170-dependent capture of membrane organelles by microtubules initiates minus-end directed transport.
  Dev Cell, 17, 323-333.  
19506225 C.Vilariño-Güell, C.Wider, A.I.Soto-Ortolaza, S.A.Cobb, J.M.Kachergus, B.H.Keeling, J.C.Dachsel, M.M.Hulihan, D.W.Dickson, Z.K.Wszolek, R.J.Uitti, N.R.Graff-Radford, B.F.Boeve, K.A.Josephs, B.Miller, K.B.Boylan, K.Gwinn, C.H.Adler, J.O.Aasly, F.Hentati, A.Destée, A.Krygowska-Wajs, M.C.Chartier-Harlin, O.A.Ross, R.Rademakers, and M.J.Farrer (2009).
Characterization of DCTN1 genetic variability in neurodegeneration.
  Neurology, 72, 2024-2028.  
19935668 J.R.Kardon, and R.D.Vale (2009).
Regulators of the cytoplasmic dynein motor.
  Nat Rev Mol Cell Biol, 10, 854-865.  
19074770 K.K.Gupta, B.A.Paulson, E.S.Folker, B.Charlebois, A.J.Hunt, and H.V.Goodson (2009).
Minimal Plus-end Tracking Unit of the Cytoplasmic Linker Protein CLIP-170.
  J Biol Chem, 284, 6735-6742.  
18322465 A.Akhmanova, and M.O.Steinmetz (2008).
Tracking the ends: a dynamic protein network controls the fate of microtubule tips.
  Nat Rev Mol Cell Biol, 9, 309-322.  
18226514 J.W.Hammond, D.Cai, and K.J.Verhey (2008).
Tubulin modifications and their cellular functions.
  Curr Opin Cell Biol, 20, 71-76.  
18835717 M.O.Steinmetz, and A.Akhmanova (2008).
Capturing protein tails by CAP-Gly domains.
  Trends Biochem Sci, 33, 535-545.  
19103809 P.Bieling, S.Kandels-Lewis, I.A.Telley, J.van Dijk, C.Janke, and T.Surrey (2008).
CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites.
  J Cell Biol, 183, 1223-1233.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time.

 

spacer

spacer