 |
PDBsum entry 2g6q
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Gene regulation, apoptosis
|
PDB id
|
|
|
|
2g6q
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nature
442:100-103
(2006)
|
|
PubMed id:
|
|
|
|
|
| |
|
Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2.
|
|
P.V.Peña,
F.Davrazou,
X.Shi,
K.L.Walter,
V.V.Verkhusha,
O.Gozani,
R.Zhao,
T.G.Kutateladze.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Covalent modifications of histone tails have a key role in regulating chromatin
structure and controlling transcriptional activity. In eukaryotes, histone H3
trimethylated at lysine 4 (H3K4me3) is associated with active chromatin and gene
expression. We recently found that plant homeodomain (PHD) finger of tumour
suppressor ING2 (inhibitor of growth 2) binds H3K4me3 and represents a new
family of modules that target this epigenetic mark. The molecular mechanism of
H3K4me3 recognition, however, remains unknown. Here we report a 2.0 A resolution
structure of the mouse ING2 PHD finger in complex with a histone H3 peptide
trimethylated at lysine 4. The H3K4me3 tail is bound in an extended conformation
in a deep and extensive binding site consisting of elements that are conserved
among the ING family of proteins. The trimethylammonium group of Lys 4 is
recognized by the aromatic side chains of Y215 and W238 residues, whereas the
intermolecular hydrogen-bonding and complementary surface interactions,
involving Ala 1, Arg 2, Thr 3 and Thr 6 of the peptide, account for the PHD
finger's high specificity and affinity. Substitution of the binding site
residues disrupts H3K4me3 interaction in vitro and impairs the ability of ING2
to induce apoptosis in vivo. Strong binding of other ING and YNG PHD fingers
suggests that the recognition of H3K4me3 histone code is a general feature of
the ING/YNG proteins. Elucidation of the mechanisms underlying this novel
function of PHD fingers provides a basis for deciphering the role of the ING
family of tumour suppressors in chromatin regulation and signalling.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Figure 1: Structure of ING2 PHD finger in complex with a histone
H3 peptide trimethylated at Lys 4. a, The PHD finger is shown
as a solid surface with the binding site residues coloured and
labelled. The Lys 4 and Arg 2 binding grooves are in brown and
yellow, respectively. The histone peptide is shown as a
ball-and-stick model with C, O and N atoms coloured green, red
and blue, respectively. b, Ribbon diagram of the structure.
Dashed lines represent intermolecular hydrogen bonds.
|
 |
Figure 2.
Figure 2: ING2 PHD finger recognizes H3K4me3. a, Six
superimposed ^1H,^15N heteronuclear single quantum coherence
(HSQC) spectra of PHD (0.2 mM) collected during titration of
H3K4me3 peptide are colour-coded according to the ligand
concentration (inset). b, The histogram displays normalized
^1H,^15N chemical shift changes observed in the corresponding
(a) spectra of the PHD finger. The normalized^27 chemical shift
change was calculated using the equation [(  H)^2
+ (  N/5)^2]^0.5,
where is
the chemical shift in parts per million (p.p.m.). Coloured bars
indicate significant change being greater than average plus
one-half standard deviation.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nature
(2006,
442,
100-103)
copyright 2006.
|
|
| |
Figures were
selected
by the author.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
C.A.Musselman,
M.E.Lalonde,
J.Côté,
and
T.G.Kutateladze
(2012).
Perceiving the epigenetic landscape through histone readers.
|
| |
Nat Struct Mol Biol,
19,
1218-1227.
|
 |
|
|
|
|
 |
C.Ballaré,
M.Lange,
A.Lapinaite,
G.M.Martin,
L.Morey,
G.Pascual,
R.Liefke,
B.Simon,
Y.Shi,
O.Gozani,
T.Carlomagno,
S.A.Benitah,
and
L.Di Croce
(2012).
Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity.
|
| |
Nat Struct Mol Biol,
19,
1257-1265.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.H.Aguissa-Touré,
R.P.Wong,
and
G.Li
(2011).
The ING family tumor suppressors: from structure to function.
|
| |
Cell Mol Life Sci,
68,
45-54.
|
 |
|
|
|
|
 |
K.E.Gardner,
C.D.Allis,
and
B.D.Strahl
(2011).
OPERating ON Chromatin, a Colorful Language where Context Matters.
|
| |
J Mol Biol,
409,
36-46.
|
 |
|
|
|
|
 |
K.Matsubara,
U.Yamanouchi,
Y.Nonoue,
K.Sugimoto,
Z.X.Wang,
Y.Minobe,
and
M.Yano
(2011).
Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering.
|
| |
Plant J,
66,
603-612.
|
 |
|
|
|
|
 |
M.Abad,
A.Moreno,
A.Palacios,
M.Narita,
F.Blanco,
G.Moreno-Bueno,
M.Narita,
and
I.Palmero
(2011).
The tumor suppressor ING1 contributes to epigenetic control of cellular senescence.
|
| |
Aging Cell,
10,
158-171.
|
 |
|
|
|
|
 |
P.Voigt,
and
D.Reinberg
(2011).
Histone tails: ideal motifs for probing epigenetics through chemical biology approaches.
|
| |
Chembiochem,
12,
236-252.
|
 |
|
|
|
|
 |
R.A.Varier,
and
H.T.Timmers
(2011).
Histone lysine methylation and demethylation pathways in cancer.
|
| |
Biochim Biophys Acta,
1815,
75-89.
|
 |
|
|
|
|
 |
S.Iwase,
B.Xiang,
S.Ghosh,
T.Ren,
P.W.Lewis,
J.C.Cochrane,
C.D.Allis,
D.J.Picketts,
D.J.Patel,
H.Li,
and
Y.Shi
(2011).
ATRX ADD domain links an atypical histone methylation recognition mechanism to human mental-retardation syndrome.
|
| |
Nat Struct Mol Biol,
18,
769-776.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.J.Dangaria,
Y.Ito,
X.Luan,
and
T.G.Diekwisch
(2011).
Differentiation of neural-crest-derived intermediate pluripotent progenitors into committed periodontal populations involves unique molecular signature changes, cohort shifts, and epigenetic modifications.
|
| |
Stem Cells Dev,
20,
39-52.
|
 |
|
|
|
|
 |
S.S.Oliver,
and
J.M.Denu
(2011).
Dynamic interplay between histone H3 modifications and protein interpreters: emerging evidence for a "histone language".
|
| |
Chembiochem,
12,
299-307.
|
 |
|
|
|
|
 |
V.Hoppmann,
T.Thorstensen,
P.E.Kristiansen,
S.V.Veiseth,
M.A.Rahman,
K.Finne,
R.B.Aalen,
and
R.Aasland
(2011).
The CW domain, a new histone recognition module in chromatin proteins.
|
| |
EMBO J,
30,
1939-1952.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
X.Li,
K.Kikuchi,
and
Y.Takano
(2011).
ING Genes Work as Tumor Suppressor Genes in the Carcinogenesis of Head and Neck Squamous Cell Carcinoma.
|
| |
J Oncol,
2011,
963614.
|
 |
|
|
|
|
 |
A.L.Garske,
S.S.Oliver,
E.K.Wagner,
C.A.Musselman,
G.LeRoy,
B.A.Garcia,
T.G.Kutateladze,
and
J.M.Denu
(2010).
Combinatorial profiling of chromatin binding modules reveals multisite discrimination.
|
| |
Nat Chem Biol,
6,
283-290.
|
 |
|
|
|
|
 |
B.Piche,
and
G.Li
(2010).
Inhibitor of growth tumor suppressors in cancer progression.
|
| |
Cell Mol Life Sci,
67,
1987-1999.
|
 |
|
|
|
|
 |
C.M.Tate,
J.H.Lee,
and
D.G.Skalnik
(2010).
CXXC finger protein 1 restricts the Setd1A histone H3K4 methyltransferase complex to euchromatin.
|
| |
FEBS J,
277,
210-223.
|
 |
|
|
|
|
 |
E.Smith,
and
A.Shilatifard
(2010).
The chromatin signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes.
|
| |
Mol Cell,
40,
689-701.
|
 |
|
|
|
|
 |
F.He,
T.Umehara,
K.Saito,
T.Harada,
S.Watanabe,
T.Yabuki,
T.Kigawa,
M.Takahashi,
K.Kuwasako,
K.Tsuda,
T.Matsuda,
M.Aoki,
E.Seki,
N.Kobayashi,
P.Güntert,
S.Yokoyama,
and
Y.Muto
(2010).
Structural insight into the zinc finger CW domain as a histone modification reader.
|
| |
Structure,
18,
1127-1139.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
F.Pontvianne,
T.Blevins,
and
C.S.Pikaard
(2010).
Arabidopsis Histone Lysine Methyltransferases.
|
| |
Adv Bot Res,
53,
1.
|
 |
|
|
|
|
 |
H.Hou,
Y.Wang,
S.P.Kallgren,
J.Thompson,
J.R.Yates,
and
S.Jia
(2010).
Histone variant H2A.Z regulates centromere silencing and chromosome segregation in fission yeast.
|
| |
J Biol Chem,
285,
1909-1918.
|
 |
|
|
|
|
 |
I.Pot,
Y.Ikeuchi,
A.Bonni,
and
S.Bonni
(2010).
SnoN: bridging neurobiology and cancer biology.
|
| |
Curr Mol Med,
10,
667-673.
|
 |
|
|
|
|
 |
J.E.Fish,
M.S.Yan,
C.C.Matouk,
R.St Bernard,
J.J.Ho,
J.J.Ho,
A.Gavryushova,
D.Srivastava,
and
P.A.Marsden
(2010).
Hypoxic repression of endothelial nitric-oxide synthase transcription is coupled with eviction of promoter histones.
|
| |
J Biol Chem,
285,
810-826.
|
 |
|
|
|
|
 |
J.Q.Chen,
Y.Li,
X.Pan,
B.K.Lei,
C.Chang,
Z.X.Liu,
and
H.Lu
(2010).
The fission yeast inhibitor of growth (ING) protein Png1p functions in response to DNA damage.
|
| |
J Biol Chem,
285,
15786-15793.
|
 |
|
|
|
|
 |
J.R.Horton,
A.K.Upadhyay,
H.H.Qi,
X.Zhang,
Y.Shi,
and
X.Cheng
(2010).
Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases.
|
| |
Nat Struct Mol Biol,
17,
38-43.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.L.Yap,
and
M.M.Zhou
(2010).
Keeping it in the family: diverse histone recognition by conserved structural folds.
|
| |
Crit Rev Biochem Mol Biol,
45,
488-505.
|
 |
|
|
|
|
 |
K.Nimura,
K.Ura,
and
Y.Kaneda
(2010).
Histone methyltransferases: regulation of transcription and contribution to human disease.
|
| |
J Mol Med,
88,
1213-1220.
|
 |
|
|
|
|
 |
L.Li,
C.Greer,
R.N.Eisenman,
and
J.Secombe
(2010).
Essential functions of the histone demethylase lid.
|
| |
PLoS Genet,
6,
e1001221.
|
 |
|
|
|
|
 |
L.Zeng,
Q.Zhang,
S.Li,
A.N.Plotnikov,
M.J.Walsh,
and
M.M.Zhou
(2010).
Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b.
|
| |
Nature,
466,
258-262.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Dalvai,
and
K.Bystricky
(2010).
The role of histone modifications and variants in regulating gene expression in breast cancer.
|
| |
J Mammary Gland Biol Neoplasia,
15,
19-33.
|
 |
|
|
|
|
 |
M.Saito,
K.Kumamoto,
A.I.Robles,
I.Horikawa,
B.Furusato,
S.Okamura,
A.Goto,
T.Yamashita,
M.Nagashima,
T.L.Lee,
V.J.Baxendale,
O.M.Rennert,
S.Takenoshita,
J.Yokota,
I.A.Sesterhenn,
G.E.Trivers,
S.P.Hussain,
and
C.C.Harris
(2010).
Targeted disruption of Ing2 results in defective spermatogenesis and development of soft-tissue sarcomas.
|
| |
PLoS One,
5,
e15541.
|
 |
|
|
|
|
 |
N.Rahman,
G.Stewart,
and
G.Jones
(2010).
A role for the atopy-associated gene PHF11 in T-cell activation and viability.
|
| |
Immunol Cell Biol,
88,
817-824.
|
 |
|
|
|
|
 |
P.Chi,
C.D.Allis,
and
G.G.Wang
(2010).
Covalent histone modifications--miswritten, misinterpreted and mis-erased in human cancers.
|
| |
Nat Rev Cancer,
10,
457-469.
|
 |
|
|
|
|
 |
S.Desiderio
(2010).
Temporal and spatial regulatory functions of the V(D)J recombinase.
|
| |
Semin Immunol,
22,
362-369.
|
 |
|
|
|
|
 |
S.Park,
U.Osmers,
G.Raman,
R.H.Schwantes,
M.O.Diaz,
and
J.H.Bushweller
(2010).
The PHD3 domain of MLL acts as a CYP33-regulated switch between MLL-mediated activation and repression .
|
| |
Biochemistry,
49,
6576-6586.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.C.Miller,
T.J.Rutherford,
C.M.Johnson,
M.Fiedler,
and
M.Bienz
(2010).
Allosteric remodelling of the histone H3 binding pocket in the Pygo2 PHD finger triggered by its binding to the B9L/BCL9 co-factor.
|
| |
J Mol Biol,
401,
969-984.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
W.Feng,
M.Yonezawa,
J.Ye,
T.Jenuwein,
and
I.Grummt
(2010).
PHF8 activates transcription of rRNA genes through H3K4me3 binding and H3K9me1/2 demethylation.
|
| |
Nat Struct Mol Biol,
17,
445-450.
|
 |
|
|
|
|
 |
W.W.Tsai,
Z.Wang,
T.T.Yiu,
K.C.Akdemir,
W.Xia,
S.Winter,
C.Y.Tsai,
X.Shi,
D.Schwarzer,
W.Plunkett,
B.Aronow,
O.Gozani,
W.Fischle,
M.C.Hung,
D.J.Patel,
and
M.C.Barton
(2010).
TRIM24 links a non-canonical histone signature to breast cancer.
|
| |
Nature,
468,
927-932.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Yang,
L.Hu,
P.Wang,
H.Hou,
Y.Lin,
Y.Liu,
Z.Li,
R.Gong,
X.Feng,
L.Zhou,
W.Zhang,
Y.Dong,
H.Yang,
H.Lin,
Y.Wang,
C.D.Chen,
and
Y.Xu
(2010).
Structural insights into a dual-specificity histone demethylase ceKDM7A from Caenorhabditis elegans.
|
| |
Cell Res,
20,
886-898.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.G.Muntean,
and
J.L.Hess
(2009).
Epigenetic dysregulation in cancer.
|
| |
Am J Pathol,
175,
1353-1361.
|
 |
|
|
|
|
 |
A.H.Coles,
and
S.N.Jones
(2009).
The ING gene family in the regulation of cell growth and tumorigenesis.
|
| |
J Cell Physiol,
218,
45-57.
|
 |
|
|
|
|
 |
B.Gu,
P.Sun,
Y.Yuan,
R.C.Moraes,
A.Li,
A.Teng,
A.Agrawal,
C.Rhéaume,
V.Bilanchone,
J.M.Veltmaat,
K.Takemaru,
S.Millar,
E.Y.Lee,
M.T.Lewis,
B.Li,
and
X.Dai
(2009).
Pygo2 expands mammary progenitor cells by facilitating histone H3 K4 methylation.
|
| |
J Cell Biol,
185,
811-826.
|
 |
|
|
|
|
 |
C.A.Musselman,
R.E.Mansfield,
A.L.Garske,
F.Davrazou,
A.H.Kwan,
S.S.Oliver,
H.O'Leary,
J.M.Denu,
J.P.Mackay,
and
T.G.Kutateladze
(2009).
Binding of the CHD4 PHD2 finger to histone H3 is modulated by covalent modifications.
|
| |
Biochem J,
423,
179-187.
|
 |
|
|
|
|
 |
C.A.Musselman,
and
T.G.Kutateladze
(2009).
PHD fingers: epigenetic effectors and potential drug targets.
|
| |
Mol Interv,
9,
314-323.
|
 |
|
|
|
|
 |
C.L.Thomas,
D.Schmidt,
E.M.Bayer,
R.Dreos,
and
A.J.Maule
(2009).
Arabidopsis plant homeodomain finger proteins operate downstream of auxin accumulation in specifying the vasculature and primary root meristem.
|
| |
Plant J,
59,
426-436.
|
 |
|
|
|
|
 |
C.M.Tate,
J.H.Lee,
and
D.G.Skalnik
(2009).
CXXC finger protein 1 contains redundant functional domains that support embryonic stem cell cytosine methylation, histone methylation, and differentiation.
|
| |
Mol Cell Biol,
29,
3817-3831.
|
 |
|
|
|
|
 |
D.J.Bua,
A.J.Kuo,
P.Cheung,
C.L.Liu,
V.Migliori,
A.Espejo,
F.Casadio,
C.Bassi,
B.Amati,
M.T.Bedford,
E.Guccione,
and
O.Gozani
(2009).
Epigenome microarray platform for proteome-wide dissection of chromatin-signaling networks.
|
| |
PLoS One,
4,
e6789.
|
 |
|
|
|
|
 |
E.I.Campos,
and
D.Reinberg
(2009).
Histones: annotating chromatin.
|
| |
Annu Rev Genet,
43,
559-599.
|
 |
|
|
|
|
 |
F.Chignola,
M.Gaetani,
A.Rebane,
T.Org,
L.Mollica,
C.Zucchelli,
A.Spitaleri,
V.Mannella,
P.Peterson,
and
G.Musco
(2009).
The solution structure of the first PHD finger of autoimmune regulator in complex with non-modified histone H3 tail reveals the antagonistic role of H3R2 methylation.
|
| |
Nucleic Acids Res,
37,
2951-2961.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.G.Wang,
J.Song,
Z.Wang,
H.L.Dormann,
F.Casadio,
H.Li,
J.L.Luo,
D.J.Patel,
and
C.D.Allis
(2009).
Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger.
|
| |
Nature,
459,
847-851.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.Sun,
S.Jin,
and
R.Baskaran
(2009).
MMR/c-Abl-dependent activation of ING2/p73alpha signaling regulates the cell death response to N-methyl-N'-nitro-N-nitrosoguanidine.
|
| |
Exp Cell Res,
315,
3163-3175.
|
 |
|
|
|
|
 |
I.Prieto,
A.Kouznetsova,
A.Fütterer,
V.Trachana,
E.Leonardo,
A.Alonso Guerrero,
M.Cano Gamero,
C.Pacios-Bras,
H.Leh,
M.Buckle,
M.Garcia-Gallo,
L.Kremer,
A.Serrano,
F.Roncal,
J.P.Albar,
J.L.Barbero,
C.Martínez-A,
and
K.H.van Wely
(2009).
Synaptonemal complex assembly and H3K4Me3 demethylation determine DIDO3 localization in meiosis.
|
| |
Chromosoma,
118,
617-632.
|
 |
|
|
|
|
 |
J.Luo,
S.Shah,
K.Riabowol,
and
P.E.Mains
(2009).
The Caenorhabditis elegans ing-3 gene regulates ionizing radiation-induced germ-cell apoptosis in a p53-associated pathway.
|
| |
Genetics,
181,
473-482.
|
 |
|
|
|
|
 |
K.Kumamoto,
K.Fujita,
R.Kurotani,
M.Saito,
M.Unoki,
N.Hagiwara,
H.Shiga,
E.D.Bowman,
N.Yanaihara,
S.Okamura,
M.Nagashima,
K.Miyamoto,
S.Takenoshita,
J.Yokota,
and
C.C.Harris
(2009).
ING2 is upregulated in colon cancer and increases invasion by enhanced MMP13 expression.
|
| |
Int J Cancer,
125,
1306-1315.
|
 |
|
|
|
|
 |
K.S.Champagne,
and
T.G.Kutateladze
(2009).
Structural insight into histone recognition by the ING PHD fingers.
|
| |
Curr Drug Targets,
10,
432-441.
|
 |
|
|
|
|
 |
M.A.Adams-Cioaba,
and
J.Min
(2009).
Structure and function of histone methylation binding proteins.
|
| |
Biochem Cell Biol,
87,
93.
|
 |
|
|
|
|
 |
M.A.Su,
and
M.S.Anderson
(2009).
Monogenic autoimmune diseases: insights into self-tolerance.
|
| |
Pediatr Res,
65,
20R-25R.
|
 |
|
|
|
|
 |
M.Hirst,
and
M.A.Marra
(2009).
Epigenetics and human disease.
|
| |
Int J Biochem Cell Biol,
41,
136-146.
|
 |
|
|
|
|
 |
M.Pinskaya,
S.Gourvennec,
and
A.Morillon
(2009).
H3 lysine 4 di- and tri-methylation deposited by cryptic transcription attenuates promoter activation.
|
| |
EMBO J,
28,
1697-1707.
|
 |
|
|
|
|
 |
M.Unoki,
K.Kumamoto,
and
C.C.Harris
(2009).
ING proteins as potential anticancer drug targets.
|
| |
Curr Drug Targets,
10,
442-454.
|
 |
|
|
|
|
 |
M.Unoki,
K.Kumamoto,
S.Takenoshita,
and
C.C.Harris
(2009).
Reviewing the current classification of inhibitor of growth family proteins.
|
| |
Cancer Sci,
100,
1173-1179.
|
 |
|
|
|
|
 |
M.de la Paz Sanchez,
and
C.Gutierrez
(2009).
Arabidopsis ORC1 is a PHD-containing H3K4me3 effector that regulates transcription.
|
| |
Proc Natl Acad Sci U S A,
106,
2065-2070.
|
 |
|
|
|
|
 |
N.Saksouk,
N.Avvakumov,
K.S.Champagne,
T.Hung,
Y.Doyon,
C.Cayrou,
E.Paquet,
M.Ullah,
A.J.Landry,
V.Côté,
X.J.Yang,
O.Gozani,
T.G.Kutateladze,
and
J.Côté
(2009).
HBO1 HAT complexes target chromatin throughout gene coding regions via multiple PHD finger interactions with histone H3 tail.
|
| |
Mol Cell,
33,
257-265.
|
 |
|
|
|
|
 |
P.Han,
and
Y.X.Zhu
(2009).
BARD1 may be renamed ROW1 because it functions mainly as a REPRESSOR OF WUSCHEL1.
|
| |
Plant Signal Behav,
4,
52-54.
|
 |
|
|
|
|
 |
P.J.Farnham
(2009).
Insights from genomic profiling of transcription factors.
|
| |
Nat Rev Genet,
10,
605-616.
|
 |
|
|
|
|
 |
P.V.Peña,
C.A.Musselman,
A.J.Kuo,
O.Gozani,
and
T.G.Kutateladze
(2009).
NMR assignments and histone specificity of the ING2 PHD finger.
|
| |
Magn Reson Chem,
47,
352-358.
|
 |
|
|
|
|
 |
P.Wang,
C.Lin,
E.R.Smith,
H.Guo,
B.W.Sanderson,
M.Wu,
M.Gogol,
T.Alexander,
C.Seidel,
L.M.Wiedemann,
K.Ge,
R.Krumlauf,
and
A.Shilatifard
(2009).
Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II.
|
| |
Mol Cell Biol,
29,
6074-6085.
|
 |
|
|
|
|
 |
Q.Zhao,
G.Rank,
Y.T.Tan,
H.Li,
R.L.Moritz,
R.J.Simpson,
L.Cerruti,
D.J.Curtis,
D.J.Patel,
C.D.Allis,
J.M.Cunningham,
and
S.M.Jane
(2009).
PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing.
|
| |
Nat Struct Mol Biol,
16,
304-311.
|
 |
|
|
|
|
 |
R.Margueron,
N.Justin,
K.Ohno,
M.L.Sharpe,
J.Son,
W.J.Drury,
P.Voigt,
S.R.Martin,
W.R.Taylor,
V.De Marco,
V.Pirrotta,
D.Reinberg,
and
S.J.Gamblin
(2009).
Role of the polycomb protein EED in the propagation of repressive histone marks.
|
| |
Nature,
461,
762-767.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.Suzuki,
H.Shindo,
A.Tase,
Y.Kikuchi,
M.Shimizu,
and
T.Yamazaki
(2009).
Solution structures and DNA binding properties of the N-terminal SAP domains of SUMO E3 ligases from Saccharomyces cerevisiae and Oryza sativa.
|
| |
Proteins,
75,
336-347.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Chakravarty,
L.Zeng,
and
M.M.Zhou
(2009).
Structure and site-specific recognition of histone H3 by the PHD finger of human autoimmune regulator.
|
| |
Structure,
17,
670-679.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Pradhan,
H.G.Chin,
P.O.Estève,
and
S.E.Jacobsen
(2009).
SET7/9 mediated methylation of non-histone proteins in mammalian cells.
|
| |
Epigenetics,
4,
383-387.
|
 |
|
|
|
|
 |
T.Gao,
R.E.Collins,
J.R.Horton,
X.Zhang,
R.Zhang,
A.Dhayalan,
R.Tamas,
A.Jeltsch,
and
X.Cheng
(2009).
The ankyrin repeat domain of Huntingtin interacting protein 14 contains a surface aromatic cage, a potential site for methyl-lysine binding.
|
| |
Proteins,
76,
772-777.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Hung,
O.Binda,
K.S.Champagne,
A.J.Kuo,
K.Johnson,
H.Y.Chang,
M.D.Simon,
T.G.Kutateladze,
and
O.Gozani
(2009).
ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation.
|
| |
Mol Cell,
33,
248-256.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Kim,
and
S.Buratowski
(2009).
Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5' transcribed regions.
|
| |
Cell,
137,
259-272.
|
 |
|
|
|
|
 |
W.Wei,
J.Huang,
Y.J.Hao,
H.F.Zou,
H.W.Wang,
J.Y.Zhao,
X.Y.Liu,
W.K.Zhang,
B.Ma,
J.S.Zhang,
and
S.Y.Chen
(2009).
Soybean GmPHD-type transcription regulators improve stress tolerance in transgenic Arabidopsis plants.
|
| |
PLoS One,
4,
e7209.
|
 |
|
|
|
|
 |
W.Y.Lee,
D.Lee,
W.I.Chung,
and
C.S.Kwon
(2009).
Arabidopsis ING and Alfin1-like protein families localize to the nucleus and bind to H3K4me3/2 via plant homeodomain fingers.
|
| |
Plant J,
58,
511-524.
|
 |
|
|
|
|
 |
X.Zhang,
Y.V.Bernatavichute,
S.Cokus,
M.Pellegrini,
and
S.E.Jacobsen
(2009).
Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana.
|
| |
Genome Biol,
10,
R62.
|
 |
|
|
|
|
 |
Y.Liu,
L.Zhang,
and
S.Desiderio
(2009).
Temporal and spatial regulation of V(D)J recombination: interactions of extrinsic factors with the RAG complex.
|
| |
Adv Exp Med Biol,
650,
157-165.
|
 |
|
|
|
|
 |
A.Grishok,
S.Hoersch,
and
P.A.Sharp
(2008).
RNA interference and retinoblastoma-related genes are required for repression of endogenous siRNA targets in Caenorhabditis elegans.
|
| |
Proc Natl Acad Sci U S A,
105,
20386-20391.
|
 |
|
|
|
|
 |
A.N.Iberg,
A.Espejo,
D.Cheng,
D.Kim,
J.Michaud-Levesque,
S.Richard,
and
M.T.Bedford
(2008).
Arginine methylation of the histone h3 tail impedes effector binding.
|
| |
J Biol Chem,
283,
3006-3010.
|
 |
|
|
|
|
 |
A.Palacios,
I.G.Muñoz,
D.Pantoja-Uceda,
M.J.Marcaida,
D.Torres,
J.M.Martín-García,
I.Luque,
G.Montoya,
and
F.J.Blanco
(2008).
Molecular basis of histone H3K4me3 recognition by ING4.
|
| |
J Biol Chem,
283,
15956-15964.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Shevchenko,
A.Roguev,
D.Schaft,
L.Buchanan,
B.Habermann,
C.Sakalar,
H.Thomas,
N.J.Krogan,
A.Shevchenko,
and
A.F.Stewart
(2008).
Chromatin Central: towards the comparative proteome by accurate mapping of the yeast proteomic environment.
|
| |
Genome Biol,
9,
R167.
|
 |
|
|
|
|
 |
C.Xu,
G.Cui,
M.V.Botuyan,
and
G.Mer
(2008).
Structural basis for the recognition of methylated histone H3K36 by the Eaf3 subunit of histone deacetylase complex Rpd3S.
|
| |
Structure,
16,
1740-1750.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Komander,
C.J.Lord,
H.Scheel,
S.Swift,
K.Hofmann,
A.Ashworth,
and
D.Barford
(2008).
The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module.
|
| |
Mol Cell,
29,
451-464.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Ythier,
D.Larrieu,
C.Brambilla,
E.Brambilla,
and
R.Pedeux
(2008).
The new tumor suppressor genes ING: genomic structure and status in cancer.
|
| |
Int J Cancer,
123,
1483-1490.
|
 |
|
|
|
|
 |
E.Kraft,
M.Bostick,
S.E.Jacobsen,
and
J.Callis
(2008).
ORTH/VIM proteins that regulate DNA methylation are functional ubiquitin E3 ligases.
|
| |
Plant J,
56,
704-715.
|
 |
|
|
|
|
 |
G.LeRoy,
B.Rickards,
and
S.J.Flint
(2008).
The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription.
|
| |
Mol Cell,
30,
51-60.
|
 |
|
|
|
|
 |
G.Musco,
and
P.Peterson
(2008).
PHD finger of autoimmune regulator: An epigenetic link between the histone modifications and tissue-specific antigen expression in thymus.
|
| |
Epigenetics,
3,
310-314.
|
 |
|
|
|
|
 |
H.Liu,
and
Y.Duan
(2008).
Effects of posttranslational modifications on the structure and dynamics of histone H3 N-terminal Peptide.
|
| |
Biophys J,
94,
4579-4585.
|
 |
|
|
|
|
 |
H.van Ingen,
F.M.van Schaik,
H.Wienk,
J.Ballering,
H.Rehmann,
A.C.Dechesne,
J.A.Kruijzer,
R.M.Liskamp,
H.T.Timmers,
and
R.Boelens
(2008).
Structural insight into the recognition of the H3K4me3 mark by the TFIID subunit TAF3.
|
| |
Structure,
16,
1245-1256.
|
 |
|
|
|
|
 |
J.Lee,
J.R.Thompson,
M.V.Botuyan,
and
G.Mer
(2008).
Distinct binding modes specify the recognition of methylated histones H3K4 and H4K20 by JMJD2A-tudor.
|
| |
Nat Struct Mol Biol,
15,
109-111.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Marango,
M.Shimoyama,
H.Nishio,
J.A.Meyer,
D.J.Min,
A.Sirulnik,
Y.Martinez-Martinez,
M.Chesi,
P.L.Bergsagel,
M.M.Zhou,
S.Waxman,
B.A.Leibovitch,
M.J.Walsh,
and
J.D.Licht
(2008).
The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor.
|
| |
Blood,
111,
3145-3154.
|
 |
|
|
|
|
 |
K.Kumamoto,
E.A.Spillare,
K.Fujita,
I.Horikawa,
T.Yamashita,
E.Appella,
M.Nagashima,
S.Takenoshita,
J.Yokota,
and
C.C.Harris
(2008).
Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence.
|
| |
Cancer Res,
68,
3193-3203.
|
 |
|
|
|
|
 |
K.Laue,
S.Daujat,
J.G.Crump,
N.Plaster,
H.H.Roehl,
C.B.Kimmel,
R.Schneider,
M.Hammerschmidt,
F.van Bebber,
E.Busch-Nentwich,
R.Dahm,
H.G.Frohnhöfer,
H.Geiger,
D.Gilmour,
S.Holley,
J.Hooge,
D.Jülich,
H.Knaut,
F.Maderspacher,
H.M.Maischein,
C.Neumann,
T.Nicolson,
C.Nüsslein-Volhard,
H.H.Roehl,
U.Schönberger,
C.Seiler,
C.Söllner,
M.Sonawane,
A.Wehner,
P.Erker,
H.Habeck,
U.Hagner,
C.Hennen,
E.Kaps,
A.Kirchner,
T.Koblitzek,
U.Langheinrich,
C.Loeschke,
C.Metzger,
R.Nordin,
J.Odenthal,
M.Pezzuti,
K.Schlombs,
J.deSatana-Stamm,
T.Trowe,
G.Vacun,
B.Walderich,
A.Walker,
and
C.Weiler
(2008).
The multidomain protein Brpf1 binds histones and is required for Hox gene expression and segmental identity.
|
| |
Development,
135,
1935-1946.
|
 |
|
|
|
|
 |
K.P.Sarker,
H.Kataoka,
A.Chan,
S.J.Netherton,
I.Pot,
M.A.Huynh,
X.Feng,
A.Bonni,
K.Riabowol,
and
S.Bonni
(2008).
ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells.
|
| |
J Biol Chem,
283,
13269-13279.
|
 |
|
|
|
|
 |
K.S.Champagne,
N.Saksouk,
P.V.Peña,
K.Johnson,
M.Ullah,
X.J.Yang,
J.Côté,
and
T.G.Kutateladze
(2008).
The crystal structure of the ING5 PHD finger in complex with an H3K4me3 histone peptide.
|
| |
Proteins,
72,
1371-1376.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.A.Baker,
C.D.Allis,
and
G.G.Wang
(2008).
PHD fingers in human diseases: disorders arising from misinterpreting epigenetic marks.
|
| |
Mutat Res,
647,
3.
|
 |
|
|
|
|
 |
L.Liu,
Y.Li,
and
T.O.Tollefsbol
(2008).
Gene-environment interactions and epigenetic basis of human diseases.
|
| |
Curr Issues Mol Biol,
10,
25-36.
|
 |
|
|
|
|
 |
L.Zeng,
K.L.Yap,
A.V.Ivanov,
X.Wang,
S.Mujtaba,
O.Plotnikova,
F.J.Rauscher,
and
M.M.Zhou
(2008).
Structural insights into human KAP1 PHD finger-bromodomain and its role in gene silencing.
|
| |
Nat Struct Mol Biol,
15,
626-633.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.A.Soliman,
P.Berardi,
S.Pastyryeva,
P.Bonnefin,
X.Feng,
A.Colina,
D.Young,
and
K.Riabowol
(2008).
ING1a expression increases during replicative senescence and induces a senescent phenotype.
|
| |
Aging Cell,
7,
783-794.
|
 |
|
|
|
|
 |
M.Fiedler,
M.J.Sánchez-Barrena,
M.Nekrasov,
J.Mieszczanek,
V.Rybin,
J.Müller,
P.Evans,
and
M.Bienz
(2008).
Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex.
|
| |
Mol Cell,
30,
507-518.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Nair,
I.Nagamori,
P.Sun,
D.P.Mishra,
C.Rhéaume,
B.Li,
P.Sassone-Corsi,
and
X.Dai
(2008).
Nuclear regulator Pygo2 controls spermiogenesis and histone H3 acetylation.
|
| |
Dev Biol,
320,
446-455.
|
 |
|
|
|
|
 |
M.Ullah,
N.Pelletier,
L.Xiao,
S.P.Zhao,
K.Wang,
C.Degerny,
S.Tahmasebi,
C.Cayrou,
Y.Doyon,
S.L.Goh,
N.Champagne,
J.Côté,
and
X.J.Yang
(2008).
Molecular architecture of quartet MOZ/MORF histone acetyltransferase complexes.
|
| |
Mol Cell Biol,
28,
6828-6843.
|
 |
|
|
|
|
 |
M.Unoki,
K.Kumamoto,
A.I.Robles,
J.C.Shen,
Z.M.Zheng,
and
C.C.Harris
(2008).
A novel ING2 isoform, ING2b, synergizes with ING2a to prevent cell cycle arrest and apoptosis.
|
| |
FEBS Lett,
582,
3868-3874.
|
 |
|
|
|
|
 |
P.Hahn,
J.Böse,
S.Edler,
and
A.Lengeling
(2008).
Genomic structure and expression of Jmjd6 and evolutionary analysis in the context of related JmjC domain containing proteins.
|
| |
BMC Genomics,
9,
293.
|
 |
|
|
|
|
 |
P.Hu,
S.Wang,
and
Y.Zhang
(2008).
How do SET-domain protein lysine methyltransferases achieve the methylation state specificity? Revisited by Ab initio QM/MM molecular dynamics simulations.
|
| |
J Am Chem Soc,
130,
3806-3813.
|
 |
|
|
|
|
 |
P.Karagianni,
L.Amazit,
J.Qin,
and
J.Wong
(2008).
ICBP90, a novel methyl K9 H3 binding protein linking protein ubiquitination with heterochromatin formation.
|
| |
Mol Cell Biol,
28,
705-717.
|
 |
|
|
|
|
 |
P.M.Gordon,
M.A.Soliman,
P.Bose,
Q.Trinh,
C.W.Sensen,
and
K.Riabowol
(2008).
Interspecies data mining to predict novel ING-protein interactions in human.
|
| |
BMC Genomics,
9,
426.
|
 |
|
|
|
|
 |
P.V.Peña,
R.A.Hom,
T.Hung,
H.Lin,
A.J.Kuo,
R.P.Wong,
O.M.Subach,
K.S.Champagne,
R.Zhao,
V.V.Verkhusha,
G.Li,
O.Gozani,
and
T.G.Kutateladze
(2008).
Histone H3K4me3 binding is required for the DNA repair and apoptotic activities of ING1 tumor suppressor.
|
| |
J Mol Biol,
380,
303-312.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Gamsjaeger,
M.K.Swanton,
F.J.Kobus,
E.Lehtomaki,
J.A.Lowry,
A.H.Kwan,
J.M.Matthews,
and
J.P.Mackay
(2008).
Structural and biophysical analysis of the DNA binding properties of myelin transcription factor 1.
|
| |
J Biol Chem,
283,
5158-5167.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Jessen,
B.Gu,
and
X.Dai
(2008).
Pygopus and the Wnt signaling pathway: a diverse set of connections.
|
| |
Bioessays,
30,
448-456.
|
 |
|
|
|
|
 |
S.Nozell,
T.Laver,
D.Moseley,
L.Nowoslawski,
M.De Vos,
G.P.Atkinson,
K.Harrison,
L.B.Nabors,
and
E.N.Benveniste
(2008).
The ING4 tumor suppressor attenuates NF-kappaB activity at the promoters of target genes.
|
| |
Mol Cell Biol,
28,
6632-6645.
|
 |
|
|
|
|
 |
T.Org,
F.Chignola,
C.Hetényi,
M.Gaetani,
A.Rebane,
I.Liiv,
U.Maran,
L.Mollica,
M.J.Bottomley,
G.Musco,
and
P.Peterson
(2008).
The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression.
|
| |
EMBO Rep,
9,
370-376.
|
 |
|
|
|
|
 |
T.Thorstensen,
P.E.Grini,
I.S.Mercy,
V.Alm,
S.Erdal,
R.Aasland,
and
R.B.Aalen
(2008).
The Arabidopsis SET-domain protein ASHR3 is involved in stamen development and interacts with the bHLH transcription factor ABORTED MICROSPORES (AMS).
|
| |
Plant Mol Biol,
66,
47-59.
|
 |
|
|
|
|
 |
U.G.Tallen,
M.Truss,
F.Kunitz,
S.Wellmann,
B.Unryn,
B.Sinn,
U.Lass,
S.Krabbe,
N.Holtkamp,
C.Hagemeier,
R.Wurm,
G.Henze,
K.T.Riabowol,
and
A.von Deimling
(2008).
Down-regulation of the inhibitor of growth 1 (ING1) tumor suppressor sensitizes p53-deficient glioblastoma cells to cisplatin-induced cell death.
|
| |
J Neurooncol,
86,
23-30.
|
 |
|
|
|
|
 |
X.Han,
X.Feng,
J.B.Rattner,
H.Smith,
P.Bose,
K.Suzuki,
M.A.Soliman,
M.S.Scott,
B.E.Burke,
and
K.Riabowol
(2008).
Tethering by lamin A stabilizes and targets the ING1 tumour suppressor.
|
| |
Nat Cell Biol,
10,
1333-1340.
|
 |
|
|
|
|
 |
X.Wu,
and
X.Hua
(2008).
Menin, histone h3 methyltransferases, and regulation of cell proliferation: current knowledge and perspective.
|
| |
Curr Mol Med,
8,
805-815.
|
 |
|
|
|
|
 |
Z.Hong,
J.Jiang,
L.Lan,
S.Nakajima,
S.Kanno,
H.Koseki,
and
A.Yasui
(2008).
A polycomb group protein, PHF1, is involved in the response to DNA double-strand breaks in human cell.
|
| |
Nucleic Acids Res,
36,
2939-2947.
|
 |
|
|
|
|
 |
A.G.Matthews,
A.J.Kuo,
S.Ramón-Maiques,
S.Han,
K.S.Champagne,
D.Ivanov,
M.Gallardo,
D.Carney,
P.Cheung,
D.N.Ciccone,
K.L.Walter,
P.J.Utz,
Y.Shi,
T.G.Kutateladze,
W.Yang,
O.Gozani,
and
M.A.Oettinger
(2007).
RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination.
|
| |
Nature,
450,
1106-1110.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.J.Ruthenburg,
C.D.Allis,
and
J.Wysocka
(2007).
Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark.
|
| |
Mol Cell,
25,
15-30.
|
 |
|
|
|
|
 |
A.J.Ruthenburg,
H.Li,
D.J.Patel,
and
C.D.Allis
(2007).
Multivalent engagement of chromatin modifications by linked binding modules.
|
| |
Nat Rev Mol Cell Biol,
8,
983-994.
|
 |
|
|
|
|
 |
A.Kirmizis,
H.Santos-Rosa,
C.J.Penkett,
M.A.Singer,
M.Vermeulen,
M.Mann,
J.Bähler,
R.D.Green,
and
T.Kouzarides
(2007).
Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation.
|
| |
Nature,
449,
928-932.
|
 |
|
|
|
|
 |
B.E.Dul,
and
N.C.Walworth
(2007).
The plant homeodomain fingers of fission yeast Msc1 exhibit E3 ubiquitin ligase activity.
|
| |
J Biol Chem,
282,
18397-18406.
|
 |
|
|
|
|
 |
C.Bronner,
M.Achour,
Y.Arima,
T.Chataigneau,
H.Saya,
and
V.B.Schini-Kerth
(2007).
The UHRF family: oncogenes that are drugable targets for cancer therapy in the near future?
|
| |
Pharmacol Ther,
115,
419-434.
|
 |
|
|
|
|
 |
C.G.Marfella,
and
A.N.Imbalzano
(2007).
The Chd family of chromatin remodelers.
|
| |
Mutat Res,
618,
30-40.
|
 |
|
|
|
|
 |
C.Grimm,
A.G.de Ayala Alonso,
V.Rybin,
U.Steuerwald,
N.Ly-Hartig,
W.Fischle,
J.Müller,
and
C.W.Müller
(2007).
Structural and functional analyses of methyl-lysine binding by the malignant brain tumour repeat protein Sex comb on midleg.
|
| |
EMBO Rep,
8,
1031-1037.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.Brown,
S.Malakar,
and
J.E.Krebs
(2007).
How many remodelers does it take to make a brain? Diverse and cooperative roles of ATP-dependent chromatin-remodeling complexes in development.
|
| |
Biochem Cell Biol,
85,
444-462.
|
 |
|
|
|
|
 |
F.He,
T.Umehara,
K.Tsuda,
M.Inoue,
T.Kigawa,
T.Matsuda,
T.Yabuki,
M.Aoki,
E.Seki,
T.Terada,
M.Shirouzu,
A.Tanaka,
S.Sugano,
Y.Muto,
and
S.Yokoyama
(2007).
Solution structure of the zinc finger HIT domain in protein FON.
|
| |
Protein Sci,
16,
1577-1587.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.Lan,
R.E.Collins,
R.De Cegli,
R.Alpatov,
J.R.Horton,
X.Shi,
O.Gozani,
X.Cheng,
and
Y.Shi
(2007).
Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression.
|
| |
Nature,
448,
718-722.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.Miao,
X.Wu,
L.Zhang,
Y.C.Yuan,
A.D.Riggs,
and
R.Natarajan
(2007).
Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes.
|
| |
J Biol Chem,
282,
13854-13863.
|
 |
|
|
|
|
 |
G.G.Wang,
C.D.Allis,
and
P.Chi
(2007).
Chromatin remodeling and cancer, Part I: Covalent histone modifications.
|
| |
Trends Mol Med,
13,
363-372.
|
 |
|
|
|
|
 |
G.Kustatscher,
and
A.G.Ladurner
(2007).
Modular paths to 'decoding' and 'wiping' histone lysine methylation.
|
| |
Curr Opin Chem Biol,
11,
628-635.
|
 |
|
|
|
|
 |
G.Raho,
C.Miranda,
E.Tamborini,
M.A.Pierotti,
and
A.Greco
(2007).
Detection of novel mRNA splice variants of human ING4 tumor suppressor gene.
|
| |
Oncogene,
26,
5247-5257.
|
 |
|
|
|
|
 |
H.Li,
W.Fischle,
W.Wang,
E.M.Duncan,
L.Liang,
S.Murakami-Ishibe,
C.D.Allis,
and
D.J.Patel
(2007).
Structural basis for lower lysine methylation state-specific readout by MBT repeats of L3MBTL1 and an engineered PHD finger.
|
| |
Mol Cell,
28,
677-691.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.F.Couture,
E.Collazo,
P.A.Ortiz-Tello,
J.S.Brunzelle,
and
R.C.Trievel
(2007).
Specificity and mechanism of JMJD2A, a trimethyllysine-specific histone demethylase.
|
| |
Nat Struct Mol Biol,
14,
689-695.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Huang,
R.Sengupta,
A.B.Espejo,
M.G.Lee,
J.A.Dorsey,
M.Richter,
S.Opravil,
R.Shiekhattar,
M.T.Bedford,
T.Jenuwein,
and
S.L.Berger
(2007).
p53 is regulated by the lysine demethylase LSD1.
|
| |
Nature,
449,
105-108.
|
 |
|
|
|
|
 |
J.R.Horton,
S.J.Elgar,
S.I.Khan,
X.Zhang,
P.A.Wade,
and
X.Cheng
(2007).
Structure of the SANT domain from the Xenopus chromatin remodeling factor ISWI.
|
| |
Proteins,
67,
1198-1202.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.K.Lee,
and
J.L.Workman
(2007).
Histone acetyltransferase complexes: one size doesn't fit all.
|
| |
Nat Rev Mol Cell Biol,
8,
284-295.
|
 |
|
|
|
|
 |
L.Corsini,
and
M.Sattler
(2007).
Tudor hooks up with DNA repair.
|
| |
Nat Struct Mol Biol,
14,
98-99.
|
 |
|
|
|
|
 |
M.A.Soliman,
and
K.Riabowol
(2007).
After a decade of study-ING, a PHD for a versatile family of proteins.
|
| |
Trends Biochem Sci,
32,
509-519.
|
 |
|
|
|
|
 |
M.Abad,
C.Menéndez,
A.Füchtbauer,
M.Serrano,
E.M.Füchtbauer,
and
I.Palmero
(2007).
Ing1 mediates p53 accumulation and chromatin modification in response to oncogenic stress.
|
| |
J Biol Chem,
282,
31060-31067.
|
 |
|
|
|
|
 |
M.Gordon,
D.G.Holt,
A.Panigrahi,
B.T.Wilhelm,
H.Erdjument-Bromage,
P.Tempst,
J.Bähler,
and
B.R.Cairns
(2007).
Genome-wide dynamics of SAPHIRE, an essential complex for gene activation and chromatin boundaries.
|
| |
Mol Cell Biol,
27,
4058-4069.
|
 |
|
|
|
|
 |
M.Vermeulen,
K.W.Mulder,
S.Denissov,
W.W.Pijnappel,
F.M.van Schaik,
R.A.Varier,
M.P.Baltissen,
H.G.Stunnenberg,
M.Mann,
and
H.T.Timmers
(2007).
Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4.
|
| |
Cell,
131,
58-69.
|
 |
|
|
|
|
 |
P.Trojer,
G.Li,
R.J.Sims,
A.Vaquero,
N.Kalakonda,
P.Boccuni,
D.Lee,
H.Erdjument-Bromage,
P.Tempst,
S.D.Nimer,
Y.H.Wang,
and
D.Reinberg
(2007).
L3MBTL1, a histone-methylation-dependent chromatin lock.
|
| |
Cell,
129,
915-928.
|
 |
|
|
|
|
 |
R.J.Klose,
and
Y.Zhang
(2007).
Regulation of histone methylation by demethylimination and demethylation.
|
| |
Nat Rev Mol Cell Biol,
8,
307-318.
|
 |
|
|
|
|
 |
S.Ahmed,
B.Dul,
X.Qiu,
and
N.C.Walworth
(2007).
Msc1 acts through histone H2A.Z to promote chromosome stability in Schizosaccharomyces pombe.
|
| |
Genetics,
177,
1487-1497.
|
 |
|
|
|
|
 |
S.D.Taverna,
H.Li,
A.J.Ruthenburg,
C.D.Allis,
and
D.J.Patel
(2007).
How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers.
|
| |
Nat Struct Mol Biol,
14,
1025-1040.
|
 |
|
|
|
|
 |
S.Lall
(2007).
Primers on chromatin.
|
| |
Nat Struct Mol Biol,
14,
1110-1115.
|
 |
|
|
|
|
 |
S.Mujtaba,
L.Zeng,
and
M.M.Zhou
(2007).
Structure and acetyl-lysine recognition of the bromodomain.
|
| |
Oncogene,
26,
5521-5527.
|
 |
|
|
|
|
 |
S.R.Young,
and
D.G.Skalnik
(2007).
CXXC finger protein 1 is required for normal proliferation and differentiation of the PLB-985 myeloid cell line.
|
| |
DNA Cell Biol,
26,
80-90.
|
 |
|
|
|
|
 |
S.Ramón-Maiques,
A.J.Kuo,
D.Carney,
A.G.Matthews,
M.A.Oettinger,
O.Gozani,
and
W.Yang
(2007).
The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2.
|
| |
Proc Natl Acad Sci U S A,
104,
18993-18998.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Greb,
J.S.Mylne,
P.Crevillen,
N.Geraldo,
H.An,
A.R.Gendall,
and
C.Dean
(2007).
The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC.
|
| |
Curr Biol,
17,
73-78.
|
 |
|
|
|
|
 |
T.Kouzarides
(2007).
Chromatin modifications and their function.
|
| |
Cell,
128,
693-705.
|
 |
|
|
|
|
 |
W.Huang,
H.Zhang,
F.Davrazou,
T.G.Kutateladze,
X.Shi,
O.Gozani,
and
G.D.Prestwich
(2007).
Stabilized phosphatidylinositol-5-phosphate analogues as ligands for the nuclear protein ING2: chemistry, biology, and molecular modeling.
|
| |
J Am Chem Soc,
129,
6498-6506.
|
 |
|
|
|
|
 |
X.Cheng,
and
X.Zhang
(2007).
Structural dynamics of protein lysine methylation and demethylation.
|
| |
Mutat Res,
618,
102-115.
|
 |
|
|
|
|
 |
X.J.Yang,
and
M.Ullah
(2007).
MOZ and MORF, two large MYSTic HATs in normal and cancer stem cells.
|
| |
Oncogene,
26,
5408-5419.
|
 |
|
|
|
|
 |
X.Shi,
I.Kachirskaia,
K.L.Walter,
J.H.Kuo,
A.Lake,
F.Davrazou,
S.M.Chan,
D.G.Martin,
I.M.Fingerman,
S.D.Briggs,
L.Howe,
P.J.Utz,
T.G.Kutateladze,
A.A.Lugovskoy,
M.T.Bedford,
and
O.Gozani
(2007).
Proteome-wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36.
|
| |
J Biol Chem,
282,
2450-2455.
|
 |
|
|
|
|
 |
X.Tian,
and
J.Fang
(2007).
Current perspectives on histone demethylases.
|
| |
Acta Biochim Biophys Sin (Shanghai),
39,
81-88.
|
 |
|
|
|
|
 |
Y.Liu,
R.Subrahmanyam,
T.Chakraborty,
R.Sen,
and
S.Desiderio
(2007).
A plant homeodomain in RAG-2 that binds Hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement.
|
| |
Immunity,
27,
561-571.
|
 |
|
|
|
|
 |
Y.Xiang,
Z.Zhu,
G.Han,
X.Ye,
B.Xu,
Z.Peng,
Y.Ma,
Y.Yu,
H.Lin,
A.P.Chen,
and
C.D.Chen
(2007).
JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer.
|
| |
Proc Natl Acad Sci U S A,
104,
19226-19231.
|
 |
|
|
|
|
 |
Z.Chen,
J.Zang,
J.Kappler,
X.Hong,
F.Crawford,
Q.Wang,
F.Lan,
C.Jiang,
J.Whetstine,
S.Dai,
K.Hansen,
Y.Shi,
and
G.Zhang
(2007).
Structural basis of the recognition of a methylated histone tail by JMJD2A.
|
| |
Proc Natl Acad Sci U S A,
104,
10818-10823.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.G.Martin,
K.Baetz,
X.Shi,
K.L.Walter,
V.E.MacDonald,
M.J.Wlodarski,
O.Gozani,
P.Hieter,
and
L.Howe
(2006).
The Yng1p plant homeodomain finger is a methyl-histone binding module that recognizes lysine 4-methylated histone H3.
|
| |
Mol Cell Biol,
26,
7871-7879.
|
 |
|
|
|
|
 |
F.Forneris,
C.Binda,
A.Dall'Aglio,
M.W.Fraaije,
E.Battaglioli,
and
A.Mattevi
(2006).
A highly specific mechanism of histone H3-K4 recognition by histone demethylase LSD1.
|
| |
J Biol Chem,
281,
35289-35295.
|
 |
|
|
|
|
 |
M.R.Kaadige,
and
D.E.Ayer
(2006).
The polybasic region that follows the plant homeodomain zinc finger 1 of Pf1 is necessary and sufficient for specific phosphoinositide binding.
|
| |
J Biol Chem,
281,
28831-28836.
|
 |
|
|
|
|
 |
M.S.Cosgrove
(2006).
PHinDing a new histone "effector" domain.
|
| |
Structure,
14,
1096-1098.
|
 |
|
|
|
|
 |
M.V.Botuyan,
J.Lee,
I.M.Ward,
J.E.Kim,
J.R.Thompson,
J.Chen,
and
G.Mer
(2006).
Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair.
|
| |
Cell,
127,
1361-1373.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.B.Becker
(2006).
Gene regulation: a finger on the mark.
|
| |
Nature,
442,
31-32.
|
 |
|
|
|
|
 |
S.P.Sripathy,
J.Stevens,
and
D.C.Schultz
(2006).
The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression.
|
| |
Mol Cell Biol,
26,
8623-8638.
|
 |
|
|
|
|
 |
X.Feng,
S.Bonni,
and
K.Riabowol
(2006).
HSP70 induction by ING proteins sensitizes cells to tumor necrosis factor alpha receptor-mediated apoptosis.
|
| |
Mol Cell Biol,
26,
9244-9255.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |