spacer
spacer

PDBsum entry 2ftd

Go to PDB code: 
Top Page protein ligands Protein-protein interface(s) links
Hydrolase PDB id
2ftd
Contents
Protein chains
215 a.a.
Ligands
ILI ×2
Waters ×193

References listed in PDB file
Key reference
Title Structure activity relationships of 5-, 6-, And 7-Methyl-Substituted azepan-3-One cathepsin k inhibitors.
Authors D.S.Yamashita, R.W.Marquis, R.Xie, S.D.Nidamarthy, H.J.Oh, J.U.Jeong, K.F.Erhard, K.W.Ward, T.J.Roethke, B.R.Smith, H.Y.Cheng, X.Geng, F.Lin, P.H.Offen, B.Wang, N.Nevins, M.S.Head, R.C.Haltiwanger, A.A.Narducci sarjeant, L.M.Liable-Sands, B.Zhao, W.W.Smith, C.A.Janson, E.Gao, T.Tomaszek, M.Mcqueney, I.E.James, C.J.Gress, D.L.Zembryki, M.W.Lark, D.F.Veber.
Ref. J Med Chem, 2006, 49, 1597-1612. [DOI no: 10.1021/jm050915u]
PubMed id 16509577
Note In the PDB file this reference is annotated as "TO BE PUBLISHED". The citation details given above were identified by an automated search of PubMed on title and author names, giving a perfect match.
Abstract
The syntheses, in vitro characterizations, and rat and monkey in vivo pharmacokinetic profiles of a series of 5-, 6-, and 7-methyl-substituted azepanone-based cathepsin K inhibitors are described. Depending on the particular regiochemical substitution and stereochemical configuration, methyl-substituted azepanones were identified that had widely varied cathepsin K inhibitory potency as well as pharmacokinetic properties compared to the 4S-parent azepanone analogue, 1 (human cathepsin K, K(i,app) = 0.16 nM, rat oral bioavailability = 42%, rat in vivo clearance = 49.2 mL/min/kg). Of particular note, the 4S-7-cis-methylazepanone analogue, 10, had a K(i,app) = 0.041 nM vs human cathepsin K and 89% oral bioavailability and an in vivo clearance rate of 19.5 mL/min/kg in the rat. Hypotheses that rationalize some of the observed characteristics of these closely related analogues have been made using X-ray crystallography and conformational analysis. These examples demonstrate the potential for modulation of pharmacological properties of cathepsin inhibitors by substituting the azepanone core. The high potency for inhibition of cathepsin K coupled with the favorable rat and monkey pharmacokinetic characteristics of compound 10, also known as SB-462795 or relacatib, has made it the subject of considerable in vivo evaluation for safety and efficacy as an inhibitor of excessive bone resorption in rat, monkey, and human studies, which will be reported elsewhere.
PROCHECK
Go to PROCHECK summary
 Headers

 

spacer

spacer