spacer
spacer

PDBsum entry 2ftc

Go to PDB code: 
protein dna_rna links
Ribosome PDB id
2ftc
Contents
Protein chains
189 a.a.* *
136 a.a.* *
211 a.a.* *
175 a.a.* *
137 a.a.* *
145 a.a.* *
148 a.a.* *
118 a.a.* *
116 a.a.* *
98 a.a.* *
118 a.a.* *
110 a.a.* *
96 a.a.* *
69 a.a.* *
52 a.a.* *
38 a.a.* *
DNA/RNA
* Residue conservation analysis
* C-alpha coords only
PDB id:
2ftc
Name: Ribosome
Title: Structural model for the large subunit of the mammalian mitochondrial ribosome
Structure: Mitochondrial 16s ribosomal RNA. Chain: r. Mitochondrial ribosomal protein l1. Chain: a. Mitochondrial ribosomal protein l2. Chain: b. Mitochondrial 39s ribosomal protein l3. Chain: c. Synonym: l3mt, mrp-l3.
Source: Bos taurus. Cattle. Organism_taxid: 9913. Bovine,cow,domestic cattle,domestic cow. Organism_taxid: 9913
Biol. unit: 80mer (from PQS)
Authors: J.A.Mears,M.R.Sharma,R.R.Gutell,P.E.Richardson,R.K.Agrawal,S.C.Harvey
Key ref:
J.A.Mears et al. (2006). A structural model for the large subunit of the mammalian mitochondrial ribosome. J Mol Biol, 358, 193-212. PubMed id: 16510155 DOI: 10.1016/j.jmb.2006.01.094
Date:
24-Jan-06     Release date:   11-Apr-06    
 Headers
 References

Protein chain
Pfam   ArchSchema ?
A6QPQ5  (RM01_BOVIN) -  Large ribosomal subunit protein uL1m from Bos taurus
Seq:
Struc:
325 a.a.
189 a.a.*
Protein chain
Pfam   ArchSchema ?
Q2TA12  (RM02_BOVIN) -  Large ribosomal subunit protein uL2m from Bos taurus
Seq:
Struc:
306 a.a.
136 a.a.*
Protein chain
Pfam   ArchSchema ?
Q3ZBX6  (RM03_BOVIN) -  Large ribosomal subunit protein uL3m from Bos taurus
Seq:
Struc:
348 a.a.
211 a.a.*
Protein chain
Pfam   ArchSchema ?
Q32PI6  (RM04_BOVIN) -  Large ribosomal subunit protein uL4m from Bos taurus
Seq:
Struc:
294 a.a.
175 a.a.*
Protein chains
Pfam   ArchSchema ?
Q7YR75  (RM12_BOVIN) -  Large ribosomal subunit protein bL12m from Bos taurus
Seq:
Struc:
198 a.a.
137 a.a.
Protein chain
Pfam   ArchSchema ?
Q2YDI0  (RM11_BOVIN) -  Large ribosomal subunit protein uL11m from Bos taurus
Seq:
Struc:
192 a.a.
145 a.a.*
Protein chain
Pfam   ArchSchema ?
Q3SYS1  (RM13_BOVIN) -  Large ribosomal subunit protein uL13m from Bos taurus
Seq:
Struc:
178 a.a.
148 a.a.*
Protein chain
Pfam   ArchSchema ?
Q3T0J3  (RM16_BOVIN) -  Large ribosomal subunit protein uL16m from Bos taurus
Seq:
Struc:
251 a.a.
118 a.a.*
Protein chain
Pfam   ArchSchema ?
Q3T0L3  (RM17_BOVIN) -  Large ribosomal subunit protein bL17m from Bos taurus
Seq:
Struc:
172 a.a.
116 a.a.*
Protein chain
Pfam   ArchSchema ?
Q2HJI0  (RM19_BOVIN) -  Large ribosomal subunit protein bL19m from Bos taurus
Seq:
Struc:
292 a.a.
98 a.a.*
Protein chain
Pfam   ArchSchema ?
Q2TBR2  (RM20_BOVIN) -  Large ribosomal subunit protein bL20m from Bos taurus
Seq:
Struc:
149 a.a.
118 a.a.*
Protein chain
Pfam   ArchSchema ?
Q3SZX5  (RM22_BOVIN) -  Large ribosomal subunit protein uL22m from Bos taurus
Seq:
Struc:
204 a.a.
110 a.a.*
Protein chain
Pfam   ArchSchema ?
Q3SYS0  (RM24_BOVIN) -  Large ribosomal subunit protein uL24m from Bos taurus
Seq:
Struc:
216 a.a.
96 a.a.*
Protein chain
Pfam   ArchSchema ?
Q32PC3  (RM27_BOVIN) -  Large ribosomal subunit protein bL27m from Bos taurus
Seq:
Struc:
148 a.a.
69 a.a.*
Protein chain
Pfam   ArchSchema ?
Q3SZ47  (RM33_BOVIN) -  Large ribosomal subunit protein bL33m from Bos taurus
Seq:
Struc:
65 a.a.
52 a.a.*
Protein chain
Pfam   ArchSchema ?
A8NN94  (RM34_BOVIN) -  Large ribosomal subunit protein bL34m from Bos taurus
Seq:
Struc:
96 a.a.
38 a.a.*
Key:    PfamA domain  Secondary structure
* PDB and UniProt seqs differ at 178 residue positions (black crosses)

DNA/RNA chain
  A-C-U-A-G-A-C-C-U-A-G-C-C-C-A-A-A-A-G-U-A-U-A-G-G-A-G-A-U-A-G-A-A-A-U-C-G-G-C- ... 1443 bases

 

 
    reference    
 
 
DOI no: 10.1016/j.jmb.2006.01.094 J Mol Biol 358:193-212 (2006)
PubMed id: 16510155  
 
 
A structural model for the large subunit of the mammalian mitochondrial ribosome.
J.A.Mears, M.R.Sharma, R.R.Gutell, A.S.McCook, P.E.Richardson, T.R.Caulfield, R.K.Agrawal, S.C.Harvey.
 
  ABSTRACT  
 
Protein translation is essential for all forms of life and is conducted by a macromolecular complex, the ribosome. Evolutionary changes in protein and RNA sequences can affect the 3D organization of structural features in ribosomes in different species. The most dramatic changes occur in animal mitochondria, whose genomes have been reduced and altered significantly. The RNA component of the mitochondrial ribosome (mitoribosome) is reduced in size, with a compensatory increase in protein content. Until recently, it was unclear how these changes affect the 3D structure of the mitoribosome. Here, we present a structural model of the large subunit of the mammalian mitoribosome developed by combining molecular modeling techniques with cryo-electron microscopic data at 12.1A resolution. The model contains 93% of the mitochondrial rRNA sequence and 16 mitochondrial ribosomal proteins in the large subunit of the mitoribosome. Despite the smaller mitochondrial rRNA, the spatial positions of RNA domains known to be involved directly in protein synthesis are essentially the same as in bacterial and archaeal ribosomes. However, the dramatic reduction in rRNA content necessitates evolution of unique structural features to maintain connectivity between RNA domains. The smaller rRNA sequence also limits the likelihood of tRNA binding at the E-site of the mitoribosome, and correlates with the reduced size of D-loops and T-loops in some animal mitochondrial tRNAs, suggesting co-evolution of mitochondrial rRNA and tRNA structures.
 
  Selected figure(s)  
 
Figure 5.
Figure 5. Three-dimensional model for the mitochondrial 16 S rRNA. (a) The 16 S rRNA is represented from the interface and solvent-accessible sides of the structure and colored by domain (I, purple; II, dark blue; III, orange; IV, green; V, red; and VI, yellow). (b) The model RNA fit to EM density that is attributable to RNA,13 except for the tip of a domain V helix that contacts the L1 protein. However, the model of the extended rRNA segment fits into the complete LSU map (also see Figure 4(b)). Coloring is the same as in (a).
Figure 7.
Figure 7. Stereo-view representation of the 3D model of the 39 S subunit of the mitochondrial ribosome. (a) The interface view of the subunit shows that the conserved interface of the mitochondrial ribosome is still dominated by rRNA structure (colored as in Figure 5). (b) The homologous MRPs (grey) are located predominantly towards the solvent-accessible side of the particle. Upper and lower panels in both sections show the modeled structure (rRNA and proteins), and its fitting into the cryo-EM map,13 respectively.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2006, 358, 193-212) copyright 2006.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21380560 S.Sato (2011).
The apicomplexan plastid and its evolution.
  Cell Mol Life Sci, 68, 1285-1296.  
20304999 C.E.Bullerwell, G.Burger, J.M.Gott, O.Kourennaia, M.N.Schnare, and M.W.Gray (2010).
Abundant 5S rRNA-like transcripts encoded by the mitochondrial genome in amoebozoa.
  Eukaryot Cell, 9, 762-773.  
  20634984 C.Gorba, and F.Tama (2010).
Normal Mode Flexible Fitting of High-Resolution Structures of Biological Molecules Toward SAXS Data.
  Bioinform Biol Insights, 4, 43-54.  
20396601 P.Smits, J.Smeitink, and L.van den Heuvel (2010).
Mitochondrial translation and beyond: processes implicated in combined oxidative phosphorylation deficiencies.
  J Biomed Biotechnol, 2010, 737385.  
20967780 S.Gruschke, and M.Ott (2010).
The polypeptide tunnel exit of the mitochondrial ribosome is tailored to meet the specific requirements of the organelle.
  Bioessays, 32, 1050-1057.  
19997590 A.Abhyankar, H.B.Park, G.Tonolo, and H.Luthman (2009).
Comparative sequence analysis of the non-protein-coding mitochondrial DNA of inbred rat strains.
  PLoS One, 4, e8148.  
19279186 C.Hsiao, and L.D.Williams (2009).
A recurrent magnesium-binding motif provides a framework for the ribosomal peptidyl transferase center.
  Nucleic Acids Res, 37, 3134-3142.  
19536094 C.Jacques, J.F.Fontaine, B.Franc, D.Mirebeau-Prunier, S.Triau, F.Savagner, and Y.Malthiery (2009).
Death-associated protein 3 is overexpressed in human thyroid oncocytic tumours.
  Br J Cancer, 101, 132-138.  
19398010 L.G.Trabuco, E.Villa, E.Schreiner, C.B.Harrison, and K.Schulten (2009).
Molecular dynamics flexible fitting: a practical guide to combine cryo-electron microscopy and X-ray crystallography.
  Methods, 49, 174-180.  
19408245 M.Gershoni, A.R.Templeton, and D.Mishmar (2009).
Mitochondrial bioenergetics as a major motive force of speciation.
  Bioessays, 31, 642-650.  
19497863 M.R.Sharma, T.M.Booth, L.Simpson, D.A.Maslov, and R.K.Agrawal (2009).
Structure of a mitochondrial ribosome with minimal RNA.
  Proc Natl Acad Sci U S A, 106, 9637-9642.
PDB codes: 3iy8 3iy9
17993489 C.Gorba, O.Miyashita, and F.Tama (2008).
Normal-mode flexible fitting of high-resolution structure of biological molecules toward one-dimensional low-resolution data.
  Biophys J, 94, 1589-1599.  
18617037 J.A.Mears, and J.E.Hinshaw (2008).
Visualization of dynamins.
  Methods Cell Biol, 88, 237-256.  
18849406 M.Orzechowski, and F.Tama (2008).
Flexible fitting of high-resolution x-ray structures into cryoelectron microscopy maps using biased molecular dynamics simulations.
  Biophys J, 95, 5692-5705.  
18572416 R.K.Tan, B.Devkota, and S.C.Harvey (2008).
YUP.SCX: coaxing atomic models into medium resolution electron density maps.
  J Struct Biol, 163, 163-174.  
18154666 J.P.Burgstaller, P.Schinogl, A.Dinnyes, M.Müller, and R.Steinborn (2007).
Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer.
  BMC Dev Biol, 7, 141.  
17499045 K.L.Leach, S.M.Swaney, J.R.Colca, W.G.McDonald, J.R.Blinn, L.M.Thomasco, R.C.Gadwood, D.Shinabarger, L.Xiong, and A.S.Mankin (2007).
The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria.
  Mol Cell, 26, 393-402.  
17956639 L.Yu, Y.W.Li, O.A.Ryder, and Y.P.Zhang (2007).
Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation.
  BMC Evol Biol, 7, 198.  
17604309 P.Smits, J.A.Smeitink, L.P.van den Heuvel, M.A.Huynen, and T.J.Ettema (2007).
Reconstructing the evolution of the mitochondrial ribosomal proteome.
  Nucleic Acids Res, 35, 4686-4703.  
16885236 D.Pye, D.S.Kyriakouli, G.A.Taylor, R.Johnson, M.Elstner, B.Meunier, Z.M.Chrzanowska-Lightowlers, R.W.Taylor, D.M.Turnbull, and R.N.Lightowlers (2006).
Production of transmitochondrial cybrids containing naturally occurring pathogenic mtDNA variants.
  Nucleic Acids Res, 34, e95.  
17069639 J.J.Gillespie, J.S.Johnston, J.J.Cannone, and R.R.Gutell (2006).
Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements.
  Insect Mol Biol, 15, 657-686.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer