spacer
spacer

PDBsum entry 2fnj

Go to PDB code: 
protein Protein-protein interface(s) links
Protein transport/signaling protein PDB id
2fnj

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
217 a.a. *
98 a.a. *
88 a.a. *
Waters ×298
* Residue conservation analysis
PDB id:
2fnj
Name: Protein transport/signaling protein
Title: Crystal structure of a b30.2/spry domain-containing protein gustavus in complex with elongin b and elongin c
Structure: Cg2944-pf, isoform f. Chain: a. Fragment: residues 28-253. Synonym: gustavus. Engineered: yes. Transcription elongation factor b polypeptide 2. Chain: b. Synonym: RNA polymerase ii transcription factor siii subunit b, siii p18, elongin b, elob, elongin 18 kda subunit.
Source: Drosophila melanogaster. Fruit fly. Organism_taxid: 7227. Expressed in: escherichia coli. Expression_system_taxid: 562. Mus musculus. House mouse. Organism_taxid: 10090. Expression_system_taxid: 562
Biol. unit: Trimer (from PQS)
Resolution:
1.80Å     R-factor:   0.218     R-free:   0.247
Authors: J.S.Woo,B.H.Oh
Key ref:
J.S.Woo et al. (2006). Structural and functional insights into the B30.2/SPRY domain. EMBO J, 25, 1353-1363. PubMed id: 16498413 DOI: 10.1038/sj.emboj.7600994
Date:
11-Jan-06     Release date:   21-Mar-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
A1Z6E0  (GUS_DROME) -  Protein gustavus from Drosophila melanogaster
Seq:
Struc:
279 a.a.
217 a.a.
Protein chain
Pfam   ArchSchema ?
P62869  (ELOB_MOUSE) -  Elongin-B from Mus musculus
Seq:
Struc:
118 a.a.
98 a.a.
Protein chain
Pfam   ArchSchema ?
P83940  (ELOC_MOUSE) -  Elongin-C from Mus musculus
Seq:
Struc:
112 a.a.
88 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chains A, B, C: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1038/sj.emboj.7600994 EMBO J 25:1353-1363 (2006)
PubMed id: 16498413  
 
 
Structural and functional insights into the B30.2/SPRY domain.
J.S.Woo, J.H.Imm, C.K.Min, K.J.Kim, S.S.Cha, B.H.Oh.
 
  ABSTRACT  
 
The B30.2/SPRY domain is present in approximately 700 eukaryotic (approximately 150 human) proteins, including medically important proteins such as TRIM5alpha and Pyrin. Nonetheless, the functional role of this modular domain remained unclear. Here, we report the crystal structure of an SPRY-SOCS box family protein GUSTAVUS in complex with Elongins B and C, revealing a highly distorted two-layered beta-sandwich core structure of its B30.2/SPRY domain. Ensuing studies identified one end of the beta-sandwich as the surface interacting with an RNA helicase VASA with a 40 nM dissociation constant. The sequence variation in TRIM5alpha responsible for HIV-1 restriction and most of the mutations in Pyrin causing familial Mediterranean fever map on this surface, implicating the corresponding region in many B30.2/SPRY domains as the ligand-binding site. The amino acids lining the binding surface are highly variable among the B30.2/SPRY domains, suggesting that these domains are protein-interacting modules, which recognize a specific individual partner protein rather than a consensus sequence motif.
 
  Selected figure(s)  
 
Figure 1.
Figure 1 Structure of the GUS:ElonginBC complex. (A) Ribbon drawing of the GUS:ElonginBC complex. The -helices of GUS are in either red or magenta (for BC box), sheet A in orange, and sheet B in green. The domain organization of GUSTAVUS is shown. The region in yellow on the diagram indicates the fragment of the protein used for the structure determination. (B) Ribbon drawing of the B30.2/SPRY domain of GUS. The secondary structural elements are sequentially labeled and colored as in (A). The SPRY domain in GUS is indicated by color-coding the secondary structural elements.
Figure 3.
Figure 3 Sequence variations or mutations in TRIM5 , Pyrin, and MID1. (A) Location on the primary structures. The diagrams depict the primary structures of the three proteins and the domains they possess. The locations of the sequence variations or disease-causing mutations are marked on the diagrams for TRIM5 : pink triangles, locations of the significant sequence variation and length polymorphism in primate TRIM5 proteins; pink arrow, the substitution of R332P in human TRIM5 that confers the ability to restrict HIV-1, for Pyrin: blue arrows, the FMF-causing point mutations including three mutational hot spots marked with an asterisk, and for MID1: white arrows, the OS-causing frame shift or nonsense mutations; yellow arrows, point mutations, insertion, or deletion of amino acids. (B) Location of the corresponding residues of GUS on the tertiary structure. The sequence variations or mutations in the three proteins are mapped on the structure of the B30.2/SPRY domain of GUS. The mutation sites are indicated by large C atom spheres and labels shown in the same color of the arrows in (A). The residues of GUS corresponding to the mutation points are in the parentheses. The loop regions in pink correspond to the locations of the length polymorphism in the primate TRIM5 proteins. 'Insertion' stands for the eight amino-acid insertional mutation in MID1, and 'del' stands for deletion of a residue in Pyrin. A schematic drawing of the -sandwich structure of GUS is shown to aid the recognition of surface A and surface B.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: EMBO J (2006, 25, 1353-1363) copyright 2006.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
19943174 A.Kajaste-Rudnitski, C.Pultrone, F.Marzetta, S.Ghezzi, T.Coradin, and E.Vicenzi (2010).
Restriction factors of retroviral replication: the example of Tripartite Motif (TRIM) protein 5 alpha and 22.
  Amino Acids, 39, 1-9.  
20586054 E.A.Gustafson, and G.M.Wessel (2010).
Vasa genes: emerging roles in the germ line and in multipotent cells.
  Bioessays, 32, 626-637.  
20140218 J.M.Kugler, C.Lem, and P.Lasko (2010).
Reduced cul-5 activity causes aberrant follicular morphogenesis and germ cell loss in Drosophila oogenesis.
  PLoS One, 5, e9048.  
20123973 J.M.Kugler, J.S.Woo, B.H.Oh, and P.Lasko (2010).
Regulation of Drosophila vasa in vivo through paralogous cullin-RING E3 ligase specificity receptors.
  Mol Cell Biol, 30, 1769-1782.  
19897479 P.F.South, I.M.Fingerman, D.P.Mersman, H.N.Du, and S.D.Briggs (2010).
A conserved interaction between the SDI domain of Bre2 and the Dpy-30 domain of Sdc1 is required for histone methylation and gene expression.
  J Biol Chem, 285, 595-607.  
20561531 P.Filippakopoulos, A.Low, T.D.Sharpe, J.Uppenberg, S.Yao, Z.Kuang, P.Savitsky, R.S.Lewis, S.E.Nicholson, R.S.Norton, and A.N.Bullock (2010).
Structural basis for Par-4 recognition by the SPRY domain- and SOCS box-containing proteins SPSB1, SPSB2, and SPSB4.
  J Mol Biol, 401, 389-402.
PDB codes: 2jk9 2v24 3emw 3f2o
19825046 A.P.Mascarenhas, and K.Musier-Forsyth (2009).
The capsid protein of human immunodeficiency virus: interactions of HIV-1 capsid with host protein factors.
  FEBS J, 276, 6118-6127.  
19076161 H.S.Tae, N.C.Norris, Y.Cui, Y.Karunasekara, P.G.Board, A.F.Dulhunty, and M.G.Casarotto (2009).
Molecular recognition of the disordered dihydropyridine receptor II-III loop by a conserved spry domain of the type 1 ryanodine receptor.
  Clin Exp Pharmacol Physiol, 36, 346-349.  
19531472 J.Jeong, A.U.Rao, J.Xu, S.L.Ogg, Y.Hathout, C.Fenselau, and I.H.Mather (2009).
The PRY/SPRY/B30.2 domain of butyrophilin 1A1 (BTN1A1) binds to xanthine oxidoreductase: implications for the function of BTN1A1 in the mammary gland and other tissues.
  J Biol Chem, 284, 22444-22456.  
19577266 J.N.Torimiro, H.Javanbakht, F.Diaz-Griffero, J.Kim, J.K.Carr, M.Carrington, J.Sawitzke, D.S.Burke, N.D.Wolfe, M.Dean, and J.Sodroski (2009).
A rare null allele potentially encoding a dominant-negative TRIM5alpha protein in Baka pygmies.
  Virology, 391, 140-147.  
19196451 L.M.van der Aa, J.P.Levraud, M.Yahmi, E.Lauret, V.Briolat, P.Herbomel, A.Benmansour, and P.Boudinot (2009).
A large new subset of TRIM genes highly diversified by duplication and positive selection in teleost fish.
  BMC Biol, 7, 7.  
19741300 M.R.Neagu, P.Ziegler, T.Pertel, C.Strambio-De-Castillia, C.Grütter, G.Martinetti, L.Mazzucchelli, M.Grütter, M.G.Manz, and J.Luban (2009).
Potent inhibition of HIV-1 by TRIM5-cyclophilin fusion proteins engineered from human components.
  J Clin Invest, 119, 3035-3047.  
19153241 S.Sebastian, C.Grütter, C.S.de Castillia, T.Pertel, S.Olivari, M.G.Grütter, and J.Luban (2009).
An invariant surface patch on the TRIM5alpha PRYSPRY domain is required for retroviral restriction but dispensable for capsid binding.
  J Virol, 83, 3365-3373.  
19238338 W.E.Johnson, and S.L.Sawyer (2009).
Molecular evolution of the antiretroviral TRIM5 gene.
  Immunogenetics, 61, 163-176.  
18761102 Y.Cui, H.S.Tae, N.C.Norris, Y.Karunasekara, P.Pouliquin, P.G.Board, A.F.Dulhunty, and M.G.Casarotto (2009).
A dihydropyridine receptor alpha1s loop region critical for skeletal muscle contraction is intrinsically unstructured and binds to a SPRY domain of the type 1 ryanodine receptor.
  Int J Biochem Cell Biol, 41, 677-686.  
18799572 A.K.Kar, F.Diaz-Griffero, Y.Li, X.Li, and J.Sodroski (2008).
Biochemical and biophysical characterization of a chimeric TRIM21-TRIM5alpha protein.
  J Virol, 82, 11669-11681.  
18330885 B.Balci-Peynircioglu, A.L.Waite, C.Hu, N.Richards, A.Staubach-Grosse, E.Yilmaz, and D.L.Gumucio (2008).
Pyrin, product of the MEFV locus, interacts with the proapoptotic protein, Siva.
  J Cell Physiol, 216, 595-602.  
18562529 B.J.Stanley, E.S.Ehrlich, L.Short, Y.Yu, Z.Xiao, X.F.Yu, and Y.Xiong (2008).
Structural insight into the human immunodeficiency virus Vif SOCS box and its role in human E3 ubiquitin ligase assembly.
  J Virol, 82, 8656-8663.
PDB code: 3dcg
18287033 G.Brennan, Y.Kozyrev, and S.L.Hu (2008).
TRIMCyp expression in Old World primates Macaca nemestrina and Macaca fascicularis.
  Proc Natl Acad Sci U S A, 105, 3569-3574.  
18279037 J.Anderson, and R.Akkina (2008).
Human immunodeficiency virus type 1 restriction by human-rhesus chimeric tripartite motif 5alpha (TRIM 5alpha) in CD34(+) cell-derived macrophages in vitro and in T cells in vivo in severe combined immunodeficient (SCID-hu) mice transplanted with human fetal tissue.
  Hum Gene Ther, 19, 217-228.  
18656177 J.Bonnefont, S.I.Nikolaev, A.L.Perrier, S.Guo, L.Cartier, S.Sorce, T.Laforge, L.Aubry, P.Khaitovich, M.Peschanski, S.E.Antonarakis, and K.H.Krause (2008).
Evolutionary forces shape the human RFPL1,2,3 genes toward a role in neocortex development.
  Am J Hum Genet, 83, 208-218.  
18281860 J.G.Ryan, and R.Goldbach-Mansky (2008).
The spectrum of autoinflammatory diseases: recent bench to bedside observations.
  Curr Opin Rheumatol, 20, 66-75.  
18673550 M.Sardiello, S.Cairo, B.Fontanella, A.Ballabio, and G.Meroni (2008).
Genomic analysis of the TRIM family reveals two groups of genes with distinct evolutionary properties.
  BMC Evol Biol, 8, 225.  
18200608 O.Okhrimenko, and I.Jelesarov (2008).
A survey of the year 2006 literature on applications of isothermal titration calorimetry.
  J Mol Recognit, 21, 1.  
  18641315 R.Higgs, J.Ní Gabhann, N.Ben Larbi, E.P.Breen, K.A.Fitzgerald, and C.A.Jefferies (2008).
The E3 ubiquitin ligase Ro52 negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3.
  J Immunol, 181, 1780-1786.  
17195238 D.Ustek, C.G.Ekmekci, F.Selçukbiricik, A.Cakiris, B.Oku, B.Vural, H.Yanar, K.Taviloglu, U.Ozbek, and A.Gül (2007).
Association between reduced levels of MEFV messenger RNA in peripheral blood leukocytes and acute inflammation.
  Arthritis Rheum, 56, 345-350.  
17804491 G.Brennan, Y.Kozyrev, T.Kodama, and S.L.Hu (2007).
Novel TRIM5 isoforms expressed by Macaca nemestrina.
  J Virol, 81, 12210-12217.  
  17565686 G.J.Towers (2007).
The control of viral infection by tripartite motif proteins and cyclophilin A.
  Retrovirology, 4, 40.  
16956947 J.Luban (2007).
Cyclophilin A, TRIM5, and resistance to human immunodeficiency virus type 1 infection.
  J Virol, 81, 1054-1061.  
17400754 L.C.James, A.H.Keeble, Z.Khan, D.A.Rhodes, and J.Trowsdale (2007).
Structural basis for PRYSPRY-mediated tripartite motif (TRIM) protein function.
  Proc Natl Acad Sci U S A, 104, 6200-6205.
PDB code: 2iwg
18166079 P.V.Maillard, S.Reynard, F.Serhan, P.Turelli, and D.Trono (2007).
Interfering residues narrow the spectrum of MLV restriction by human TRIM5alpha.
  PLoS Pathog, 3, e200.  
17324355 S.Sebastian, and J.Luban (2007).
The Retroviral Restriction Factor TRIM5alpha.
  Curr Infect Dis Rep, 9, 167-173.  
17728224 T.Schaller, S.Hué, and G.J.Towers (2007).
An active TRIM5 protein in rabbits indicates a common antiviral ancestor for mammalian TRIM5 proteins.
  J Virol, 81, 11713-11721.  
16785446 J.J.Chae, G.Wood, S.L.Masters, K.Richard, G.Park, B.J.Smith, and D.L.Kastner (2006).
The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1beta production.
  Proc Natl Acad Sci U S A, 103, 9982-9987.  
17189197 J.S.Woo, H.Y.Suh, S.Y.Park, and B.H.Oh (2006).
Structural basis for protein recognition by B30.2/SPRY domains.
  Mol Cell, 24, 967-976.
PDB code: 2ihs
17088647 S.L.Masters, A.A.Lobito, J.Chae, and D.L.Kastner (2006).
Recent advances in the molecular pathogenesis of hereditary recurrent fevers.
  Curr Opin Allergy Clin Immunol, 6, 428-433.  
16912305 S.Ohkura, M.W.Yap, T.Sheldon, and J.P.Stoye (2006).
All three variable regions of the TRIM5alpha B30.2 domain can contribute to the specificity of retrovirus restriction.
  J Virol, 80, 8554-8565.  
17088318 S.Yao, M.S.Liu, S.L.Masters, J.G.Zhang, J.J.Babon, N.A.Nicola, S.E.Nicholson, and R.S.Norton (2006).
Dynamics of the SPRY domain-containing SOCS box protein 2: flexibility of key functional loops.
  Protein Sci, 15, 2761-2772.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer