|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
424 a.a.
|
 |
|
|
|
|
|
|
|
218 a.a.
|
 |
|
|
|
|
|
|
|
55 a.a.
|
 |
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Transcription/DNA
|
 |
|
Title:
|
 |
Crystal structure of activated notch, csl and maml on hes-1 promoter DNA sequence
|
|
Structure:
|
 |
5'-d( Gp Tp Tp Ap Cp Tp Gp Tp Gp Gp Gp Ap Ap Ap Gp Ap Ap A) -3'. Chain: x. Engineered: yes. 5'-d( Tp Tp Tp Cp Tp Tp Tp Cp Cp Cp Ap Cp Ap Gp Tp Ap Ap C) -3'. Chain: y. Engineered: yes. Recombining binding protein suppressor of hairless, isoform
|
|
Source:
|
 |
Synthetic: yes. Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562. Gene: notch1, tan1. Gene: maml1, kiaa0200.
|
|
Biol. unit:
|
 |
Pentamer (from
)
|
|
Resolution:
|
 |
|
3.25Å
|
R-factor:
|
0.222
|
R-free:
|
0.257
|
|
|
Authors:
|
 |
Y.Nam,P.Sliz,S.C.Blacklow
|
Key ref:
|
 |
Y.Nam
et al.
(2006).
Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes.
Cell,
124,
973-983.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
04-Dec-05
|
Release date:
|
04-Apr-06
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
Q06330
(SUH_HUMAN) -
Recombining binding protein suppressor of hairless from Homo sapiens
|
|
|
|
Seq: Struc:
|
 |
 |
 |
500 a.a.
424 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Cell
124:973-983
(2006)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes.
|
|
Y.Nam,
P.Sliz,
L.Song,
J.C.Aster,
S.C.Blacklow.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Notch receptors transduce essential developmental signals between neighboring
cells by forming a complex that leads to transcription of target genes upon
activation. We report here the crystal structure of a Notch transcriptional
activation complex containing the ankyrin domain of human Notch1 (ANK), the
transcription factor CSL on cognate DNA, and a polypeptide from the coactivator
Mastermind-like-1 (MAML-1). Together, CSL and ANK create a groove to bind the
MAML-1 polypeptide as a kinked, 70 A helix. The composite binding surface likely
restricts the recruitment of MAML proteins to promoters on which Notch:CSL
complexes have been preassembled, ensuring tight transcriptional control of
Notch target genes.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 3.
Figure 3. Interactions between ANK and RHR-C
|
 |
Figure 4.
Figure 4. Cooperative Binding of MAML-1 by ANK and CSL
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Cell
(2006,
124,
973-983)
copyright 2006.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
D.J.O'Donovan,
I.Stokes-Rees,
Y.Nam,
S.C.Blacklow,
G.F.Schröder,
A.T.Brunger,
and
P.Sliz
(2012).
A grid-enabled web service for low-resolution crystal structure refinement.
|
| |
Acta Crystallogr D Biol Crystallogr,
68,
261-267.
|
 |
|
|
|
|
 |
D.A.Guarracino,
B.N.Bullock,
and
P.S.Arora
(2011).
Protein-protein interactions in transcription: A fertile ground for helix mimetics.
|
| |
Biopolymers,
95,
1-7.
|
 |
|
|
|
|
 |
E.Bridges,
C.E.Oon,
and
A.Harris
(2011).
Notch regulation of tumor angiogenesis.
|
| |
Future Oncol,
7,
569-588.
|
 |
|
|
|
|
 |
H.Liu,
J.Long,
P.H.Zhang,
K.Li,
J.J.Tan,
B.Sun,
J.Yu,
Z.G.Tu,
and
L.Zou
(2011).
Elevated β-arrestin1 expression correlated with risk stratification in acute lymphoblastic leukemia.
|
| |
Int J Hematol,
93,
494-501.
|
 |
|
|
|
|
 |
J.C.Aster,
S.C.Blacklow,
and
W.S.Pear
(2011).
Notch signalling in T-cell lymphoblastic leukaemia/lymphoma and other haematological malignancies.
|
| |
J Pathol,
223,
262-273.
|
 |
|
|
|
|
 |
K.Köchert,
K.Ullrich,
S.Kreher,
J.C.Aster,
M.Kitagawa,
K.Jöhrens,
I.Anagnostopoulos,
F.Jundt,
B.Lamprecht,
U.Zimber-Strobl,
H.Stein,
M.Janz,
B.Dörken,
and
S.Mathas
(2011).
High-level expression of Mastermind-like 2 contributes to aberrant activation of the NOTCH signaling pathway in human lymphomas.
|
| |
Oncogene,
30,
1831-1840.
|
 |
|
|
|
|
 |
M.A.Calderwood,
S.Lee,
A.M.Holthaus,
S.C.Blacklow,
E.Kieff,
and
E.Johannsen
(2011).
Epstein-Barr virus nuclear protein 3C binds to the N-terminal (NTD) and beta trefoil domains (BTD) of RBP/CSL; only the NTD interaction is essential for lymphoblastoid cell growth.
|
| |
Virology,
414,
19-25.
|
 |
|
|
|
|
 |
P.Vanhee,
A.M.van der Sloot,
E.Verschueren,
L.Serrano,
F.Rousseau,
and
J.Schymkowitz
(2011).
Computational design of peptide ligands.
|
| |
Trends Biotechnol,
29,
231-239.
|
 |
|
|
|
|
 |
R.Schwanbeck,
S.Martini,
K.Bernoth,
and
U.Just
(2011).
The Notch signaling pathway: molecular basis of cell context dependency.
|
| |
Eur J Cell Biol,
90,
572-581.
|
 |
|
|
|
|
 |
C.Del Bianco,
A.Vedenko,
S.H.Choi,
M.F.Berger,
L.Shokri,
M.L.Bulyk,
and
S.C.Blacklow
(2010).
Notch and MAML-1 complexation do not detectably alter the dna binding specificity of the transcription factor CSL.
|
| |
PLoS One,
5,
e15034.
|
 |
|
|
|
|
 |
D.R.Friedmann,
and
R.A.Kovall
(2010).
Thermodynamic and structural insights into CSL-DNA complexes.
|
| |
Protein Sci,
19,
34-46.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.Radtke,
N.Fasnacht,
and
H.R.Macdonald
(2010).
Notch signaling in the immune system.
|
| |
Immunity,
32,
14-27.
|
 |
|
|
|
|
 |
I.Dikic,
and
M.H.Schmidt
(2010).
Notch: Implications of endogenous inhibitors for therapy.
|
| |
Bioessays,
32,
481-487.
|
 |
|
|
|
|
 |
J.S.Yuan,
P.C.Kousis,
S.Suliman,
I.Visan,
and
C.J.Guidos
(2010).
Functions of notch signaling in the immune system: consensus and controversies.
|
| |
Annu Rev Immunol,
28,
343-365.
|
 |
|
|
|
|
 |
K.L.Arnett,
M.Hass,
D.G.McArthur,
M.X.Ilagan,
J.C.Aster,
R.Kopan,
and
S.C.Blacklow
(2010).
Structural and mechanistic insights into cooperative assembly of dimeric Notch transcription complexes.
|
| |
Nat Struct Mol Biol,
17,
1312-1317.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Aste-Amézaga,
N.Zhang,
J.E.Lineberger,
B.A.Arnold,
T.J.Toner,
M.Gu,
L.Huang,
S.Vitelli,
K.T.Vo,
P.Haytko,
J.Z.Zhao,
F.Baleydier,
S.L'Heureux,
H.Wang,
W.R.Gordon,
E.Thoryk,
M.B.Andrawes,
K.Tiyanont,
K.Stegmaier,
G.Roti,
K.N.Ross,
L.L.Franlin,
H.Wang,
F.Wang,
M.Chastain,
A.J.Bett,
L.P.Audoly,
J.C.Aster,
S.C.Blacklow,
and
H.E.Huber
(2010).
Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors.
|
| |
PLoS One,
5,
e9094.
|
 |
|
|
|
|
 |
M.I.Siponen,
M.Wisniewska,
L.Lehtiö,
I.Johansson,
L.Svensson,
G.Raszewski,
L.Nilsson,
M.Sigvardsson,
and
H.Berglund
(2010).
Structural determination of functional domains in early B-cell factor (EBF) family of transcription factors reveals similarities to Rel DNA-binding proteins and a novel dimerization motif.
|
| |
J Biol Chem,
285,
25875-25879.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.Sanalkumar,
S.B.Dhanesh,
and
J.James
(2010).
Non-canonical activation of Notch signaling/target genes in vertebrates.
|
| |
Cell Mol Life Sci,
67,
2957-2968.
|
 |
|
|
|
|
 |
S.E.Johnson,
M.X.Ilagan,
R.Kopan,
and
D.Barrick
(2010).
Thermodynamic analysis of the CSL x Notch interaction: distribution of binding energy of the Notch RAM region to the CSL beta-trefoil domain and the mode of competition with the viral transactivator EBNA2.
|
| |
J Biol Chem,
285,
6681-6692.
|
 |
|
|
|
|
 |
S.Eliasz,
S.Liang,
Y.Chen,
M.A.De Marco,
O.Machek,
S.Skucha,
L.Miele,
and
M.Bocchetta
(2010).
Notch-1 stimulates survival of lung adenocarcinoma cells during hypoxia by activating the IGF-1R pathway.
|
| |
Oncogene,
29,
2488-2498.
|
 |
|
|
|
|
 |
S.Zanotti,
and
E.Canalis
(2010).
Notch and the skeleton.
|
| |
Mol Cell Biol,
30,
886-896.
|
 |
|
|
|
|
 |
D.Barrick
(2009).
Biological regulation via ankyrin repeat folding.
|
| |
ACS Chem Biol,
4,
19-22.
|
 |
|
|
|
|
 |
G.P.Dotto
(2009).
Crosstalk of Notch with p53 and p63 in cancer growth control.
|
| |
Nat Rev Cancer,
9,
587-595.
|
 |
|
|
|
|
 |
K.A.Jones
(2009).
Outsmarting a mastermind.
|
| |
Dev Cell,
17,
750-752.
|
 |
|
|
|
|
 |
M.K.Hancock,
L.Kopp,
and
K.Bi
(2009).
High-throughput screening compatible cell-based assay for interrogating activated notch signaling.
|
| |
Assay Drug Dev Technol,
7,
68-79.
|
 |
|
|
|
|
 |
M.L.Hansson,
A.E.Popko-Scibor,
M.Saint Just Ribeiro,
B.M.Dancy,
M.J.Lindberg,
P.A.Cole,
and
A.E.Wallberg
(2009).
The transcriptional coactivator MAML1 regulates p300 autoacetylation and HAT activity.
|
| |
Nucleic Acids Res,
37,
2996-3006.
|
 |
|
|
|
|
 |
P.G.Sanders,
S.Muñoz-Descalzo,
T.Balayo,
F.Wirtz-Peitz,
P.Hayward,
and
A.M.Arias
(2009).
Ligand-independent traffic of Notch buffers activated Armadillo in Drosophila.
|
| |
PLoS Biol,
7,
e1000169.
|
 |
|
|
|
|
 |
R.E.Moellering,
M.Cornejo,
T.N.Davis,
C.Del Bianco,
J.C.Aster,
S.C.Blacklow,
A.L.Kung,
D.G.Gilliland,
G.L.Verdine,
and
J.E.Bradner
(2009).
Direct inhibition of the NOTCH transcription factor complex.
|
| |
Nature,
462,
182-188.
|
 |
|
|
|
|
 |
R.Kopan,
and
M.X.Ilagan
(2009).
The canonical Notch signaling pathway: unfolding the activation mechanism.
|
| |
Cell,
137,
216-233.
|
 |
|
|
|
|
 |
T.Mercher,
G.D.Raffel,
S.A.Moore,
M.G.Cornejo,
D.Baudry-Bluteau,
N.Cagnard,
J.L.Jesneck,
Y.Pikman,
D.Cullen,
I.R.Williams,
K.Akashi,
H.Shigematsu,
J.P.Bourquin,
M.Giovannini,
W.Vainchenker,
R.L.Levine,
B.H.Lee,
O.A.Bernard,
and
D.G.Gilliland
(2009).
The OTT-MAL fusion oncogene activates RBPJ-mediated transcription and induces acute megakaryoblastic leukemia in a knockin mouse model.
|
| |
J Clin Invest,
119,
852-864.
|
 |
|
|
|
|
 |
W.R.Gordon,
M.Roy,
D.Vardar-Ulu,
M.Garfinkel,
M.R.Mansour,
J.C.Aster,
and
S.C.Blacklow
(2009).
Structure of the Notch1-negative regulatory region: implications for normal activation and pathogenic signaling in T-ALL.
|
| |
Blood,
113,
4381-4390.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Fu,
A.Chang,
L.Chang,
K.Niessen,
S.Eapen,
A.Setiadi,
and
A.Karsan
(2009).
Differential Regulation of Transforming Growth Factor {beta} Signaling Pathways by Notch in Human Endothelial Cells.
|
| |
J Biol Chem,
284,
19452-19462.
|
 |
|
|
|
|
 |
A.S.McElhinny,
J.L.Li,
and
L.Wu
(2008).
Mastermind-like transcriptional co-activators: emerging roles in regulating cross talk among multiple signaling pathways.
|
| |
Oncogene,
27,
5138-5147.
|
 |
|
|
|
|
 |
A.Smerdel-Ramoya,
S.Zanotti,
V.Deregowski,
and
E.Canalis
(2008).
Connective tissue growth factor enhances osteoblastogenesis in vitro.
|
| |
J Biol Chem,
283,
22690-22699.
|
 |
|
|
|
|
 |
C.Del Bianco,
J.C.Aster,
and
S.C.Blacklow
(2008).
Mutational and energetic studies of Notch 1 transcription complexes.
|
| |
J Mol Biol,
376,
131-140.
|
 |
|
|
|
|
 |
C.T.Ong,
J.R.Sedy,
K.M.Murphy,
and
R.Kopan
(2008).
Notch and presenilin regulate cellular expansion and cytokine secretion but cannot instruct Th1/Th2 fate acquisition.
|
| |
PLoS ONE,
3,
e2823.
|
 |
|
|
|
|
 |
D.Barrick,
D.U.Ferreiro,
and
E.A.Komives
(2008).
Folding landscapes of ankyrin repeat proteins: experiments meet theory.
|
| |
Curr Opin Struct Biol,
18,
27-34.
|
 |
|
|
|
|
 |
D.Bellavia,
S.Checquolo,
A.F.Campese,
M.P.Felli,
A.Gulino,
and
I.Screpanti
(2008).
Notch3: from subtle structural differences to functional diversity.
|
| |
Oncogene,
27,
5092-5098.
|
 |
|
|
|
|
 |
D.Maier,
A.X.Chen,
A.Preiss,
and
M.Ketelhut
(2008).
The tiny Hairless protein from Apis mellifera: a potent antagonist of Notch signaling in Drosophila melanogaster.
|
| |
BMC Evol Biol,
8,
175.
|
 |
|
|
|
|
 |
D.R.Friedmann,
J.J.Wilson,
and
R.A.Kovall
(2008).
RAM-induced allostery facilitates assembly of a notch pathway active transcription complex.
|
| |
J Biol Chem,
283,
14781-14791.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.Kleinmann,
A.S.Geimer Le Lay,
M.Sellars,
P.Kastner,
and
S.Chan
(2008).
Ikaros represses the transcriptional response to Notch signaling in T-cell development.
|
| |
Mol Cell Biol,
28,
7465-7475.
|
 |
|
|
|
|
 |
E.Kloss,
N.Courtemanche,
and
D.Barrick
(2008).
Repeat-protein folding: new insights into origins of cooperativity, stability, and topology.
|
| |
Arch Biochem Biophys,
469,
83-99.
|
 |
|
|
|
|
 |
J.C.Aster,
W.S.Pear,
and
S.C.Blacklow
(2008).
Notch signaling in leukemia.
|
| |
Annu Rev Pathol,
3,
587-613.
|
 |
|
|
|
|
 |
J.R.Williamson
(2008).
Cooperativity in macromolecular assembly.
|
| |
Nat Chem Biol,
4,
458-465.
|
 |
|
|
|
|
 |
J.W.Cave,
and
M.A.Caudy
(2008).
Promoter-specific co-activation by Drosophila mastermind.
|
| |
Biochem Biophys Res Commun,
377,
658-661.
|
 |
|
|
|
|
 |
L.Poellinger,
and
U.Lendahl
(2008).
Modulating Notch signaling by pathway-intrinsic and pathway-extrinsic mechanisms.
|
| |
Curr Opin Genet Dev,
18,
449-454.
|
 |
|
|
|
|
 |
M.Fukami,
Y.Wada,
M.Okada,
F.Kato,
N.Katsumata,
T.Baba,
K.Morohashi,
J.Laporte,
M.Kitagawa,
and
T.Ogata
(2008).
Mastermind-like domain-containing 1 (MAMLD1 or CXorf6) transactivates the Hes3 promoter, augments testosterone production, and contains the SF1 target sequence.
|
| |
J Biol Chem,
283,
5525-5532.
|
 |
|
|
|
|
 |
M.Le Gall,
C.De Mattei,
and
E.Giniger
(2008).
Molecular separation of two signaling pathways for the receptor, Notch.
|
| |
Dev Biol,
313,
556-567.
|
 |
|
|
|
|
 |
R.A.Kovall
(2008).
More complicated than it looks: assembly of Notch pathway transcription complexes.
|
| |
Oncogene,
27,
5099-5109.
|
 |
|
|
|
|
 |
T.Mercher,
M.G.Cornejo,
C.Sears,
T.Kindler,
S.A.Moore,
I.Maillard,
W.S.Pear,
J.C.Aster,
and
D.G.Gilliland
(2008).
Notch signaling specifies megakaryocyte development from hematopoietic stem cells.
|
| |
Cell Stem Cell,
3,
314-326.
|
 |
|
|
|
|
 |
T.Shimizu,
T.Kagawa,
T.Inoue,
A.Nonaka,
S.Takada,
H.Aburatani,
and
T.Taga
(2008).
Stabilized beta-catenin functions through TCF/LEF proteins and the Notch/RBP-Jkappa complex to promote proliferation and suppress differentiation of neural precursor cells.
|
| |
Mol Cell Biol,
28,
7427-7441.
|
 |
|
|
|
|
 |
W.R.Gordon,
K.L.Arnett,
and
S.C.Blacklow
(2008).
The molecular logic of Notch signaling--a structural and biochemical perspective.
|
| |
J Cell Sci,
121,
3109-3119.
|
 |
|
|
|
|
 |
A.C.Nagel,
I.Wech,
D.Schwinkendorf,
and
A.Preiss
(2007).
Involvement of co-repressors Groucho and CtBP in the regulation of single-minded in Drosophila.
|
| |
Hereditas,
144,
195-205.
|
 |
|
|
|
|
 |
A.Krejcí,
and
S.Bray
(2007).
Notch activation stimulates transient and selective binding of Su(H)/CSL to target enhancers.
|
| |
Genes Dev,
21,
1322-1327.
|
 |
|
|
|
|
 |
B.A.Osborne,
and
L.M.Minter
(2007).
Notch signalling during peripheral T-cell activation and differentiation.
|
| |
Nat Rev Immunol,
7,
64-75.
|
 |
|
|
|
|
 |
C.Y.Peng,
H.Yajima,
C.E.Burns,
L.I.Zon,
S.S.Sisodia,
S.L.Pfaff,
and
K.Sharma
(2007).
Notch and MAML signaling drives Scl-dependent interneuron diversity in the spinal cord.
|
| |
Neuron,
53,
813-827.
|
 |
|
|
|
|
 |
D.F.Kelly,
R.J.Lake,
T.Walz,
and
S.Artavanis-Tsakonas
(2007).
Conformational variability of the intracellular domain of Drosophila Notch and its interaction with Suppressor of Hairless.
|
| |
Proc Natl Acad Sci U S A,
104,
9591-9596.
|
 |
|
|
|
|
 |
F.A.High,
M.Zhang,
A.Proweller,
L.Tu,
M.S.Parmacek,
W.S.Pear,
and
J.A.Epstein
(2007).
An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation.
|
| |
J Clin Invest,
117,
353-363.
|
 |
|
|
|
|
 |
J.K.Takeuchi,
H.Lickert,
B.W.Bisgrove,
X.Sun,
M.Yamamoto,
K.Chawengsaksophak,
H.Hamada,
H.J.Yost,
J.Rossant,
and
B.G.Bruneau
(2007).
Baf60c is a nuclear Notch signaling component required for the establishment of left-right asymmetry.
|
| |
Proc Natl Acad Sci U S A,
104,
846-851.
|
 |
|
|
|
|
 |
K.Lefort,
A.Mandinova,
P.Ostano,
V.Kolev,
V.Calpini,
I.Kolfschoten,
V.Devgan,
J.Lieb,
W.Raffoul,
D.Hohl,
V.Neel,
J.Garlick,
G.Chiorino,
and
G.P.Dotto
(2007).
Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases.
|
| |
Genes Dev,
21,
562-577.
|
 |
|
|
|
|
 |
L.Wu,
I.Maillard,
M.Nakamura,
W.S.Pear,
and
J.D.Griffin
(2007).
The transcriptional coactivator Maml1 is required for Notch2-mediated marginal zone B-cell development.
|
| |
Blood,
110,
3618-3623.
|
 |
|
|
|
|
 |
M.A.Santos,
L.M.Sarmento,
M.Rebelo,
A.A.Doce,
I.Maillard,
A.Dumortier,
H.Neves,
F.Radtke,
W.S.Pear,
L.Parreira,
and
J.Demengeot
(2007).
Notch1 engagement by Delta-like-1 promotes differentiation of B lymphocytes to antibody-secreting cells.
|
| |
Proc Natl Acad Sci U S A,
104,
15454-15459.
|
 |
|
|
|
|
 |
M.L.Coleman,
M.A.McDonough,
K.S.Hewitson,
C.Coles,
J.Mecinovic,
M.Edelmann,
K.M.Cook,
M.E.Cockman,
D.E.Lancaster,
B.M.Kessler,
N.J.Oldham,
P.J.Ratcliffe,
and
C.J.Schofield
(2007).
Asparaginyl hydroxylation of the Notch ankyrin repeat domain by factor inhibiting hypoxia-inducible factor.
|
| |
J Biol Chem,
282,
24027-24038.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
O.Y.Lubman,
M.X.Ilagan,
R.Kopan,
and
D.Barrick
(2007).
Quantitative dissection of the Notch:CSL interaction: insights into the Notch-mediated transcriptional switch.
|
| |
J Mol Biol,
365,
577-589.
|
 |
|
|
|
|
 |
R.A.Kovall
(2007).
Structures of CSL, Notch and Mastermind proteins: piecing together an active transcription complex.
|
| |
Curr Opin Struct Biol,
17,
117-127.
|
 |
|
|
|
|
 |
S.J.Kugler,
and
A.C.Nagel
(2007).
putzig is required for cell proliferation and regulates notch activity in Drosophila.
|
| |
Mol Biol Cell,
18,
3733-3740.
|
 |
|
|
|
|
 |
S.M.Chan,
A.P.Weng,
R.Tibshirani,
J.C.Aster,
and
P.J.Utz
(2007).
Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia.
|
| |
Blood,
110,
278-286.
|
 |
|
|
|
|
 |
S.Rydziel,
L.Stadmeyer,
S.Zanotti,
D.Durant,
A.Smerdel-Ramoya,
and
E.Canalis
(2007).
Nephroblastoma overexpressed (Nov) inhibits osteoblastogenesis and causes osteopenia.
|
| |
J Biol Chem,
282,
19762-19772.
|
 |
|
|
|
|
 |
T.C.Fang,
Y.Yashiro-Ohtani,
C.Del Bianco,
D.M.Knoblock,
S.C.Blacklow,
and
W.S.Pear
(2007).
Notch directly regulates Gata3 expression during T helper 2 cell differentiation.
|
| |
Immunity,
27,
100-110.
|
 |
|
|
|
|
 |
T.Oyama,
K.Harigaya,
A.Muradil,
K.Hozumi,
S.Habu,
H.Oguro,
A.Iwama,
K.Matsuno,
R.Sakamoto,
M.Sato,
N.Yoshida,
and
M.Kitagawa
(2007).
Mastermind-1 is required for Notch signal-dependent steps in lymphocyte development in vivo.
|
| |
Proc Natl Acad Sci U S A,
104,
9764-9769.
|
 |
|
|
|
|
 |
T.Vilimas,
J.Mascarenhas,
T.Palomero,
M.Mandal,
S.Buonamici,
F.Meng,
B.Thompson,
C.Spaulding,
S.Macaroun,
M.L.Alegre,
B.L.Kee,
A.Ferrando,
L.Miele,
and
I.Aifantis
(2007).
Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia.
|
| |
Nat Med,
13,
70-77.
|
 |
|
|
|
|
 |
X.Zhu,
J.Wang,
B.G.Ju,
and
M.G.Rosenfeld
(2007).
Signaling and epigenetic regulation of pituitary development.
|
| |
Curr Opin Cell Biol,
19,
605-611.
|
 |
|
|
|
|
 |
Y.Nam,
P.Sliz,
W.S.Pear,
J.C.Aster,
and
S.C.Blacklow
(2007).
Cooperative assembly of higher-order Notch complexes functions as a switch to induce transcription.
|
| |
Proc Natl Acad Sci U S A,
104,
2103-2108.
|
 |
|
|
|
|
 |
Y.Zhao,
R.B.Katzman,
L.M.Delmolino,
I.Bhat,
Y.Zhang,
C.B.Gurumurthy,
A.Germaniuk-Kurowska,
H.V.Reddi,
A.Solomon,
M.S.Zeng,
A.Kung,
H.Ma,
Q.Gao,
G.Dimri,
A.Stanculescu,
L.Miele,
L.Wu,
J.D.Griffin,
D.E.Wazer,
H.Band,
and
V.Band
(2007).
The notch regulator MAML1 interacts with p53 and functions as a coactivator.
|
| |
J Biol Chem,
282,
11969-11981.
|
 |
|
|
|
|
 |
I.Maillard,
L.Tu,
A.Sambandam,
Y.Yashiro-Ohtani,
J.Millholland,
K.Keeshan,
O.Shestova,
L.Xu,
A.Bhandoola,
and
W.S.Pear
(2006).
The requirement for Notch signaling at the beta-selection checkpoint in vivo is absolute and independent of the pre-T cell receptor.
|
| |
J Exp Med,
203,
2239-2245.
|
 |
|
|
|
|
 |
M.Y.Chiang,
M.L.Xu,
G.Histen,
O.Shestova,
M.Roy,
Y.Nam,
S.C.Blacklow,
D.B.Sacks,
W.S.Pear,
and
J.C.Aster
(2006).
Identification of a conserved negative regulatory sequence that influences the leukemogenic activity of NOTCH1.
|
| |
Mol Cell Biol,
26,
6261-6271.
|
 |
|
|
|
|
 |
S.J.Bray
(2006).
Notch signalling: a simple pathway becomes complex.
|
| |
Nat Rev Mol Cell Biol,
7,
678-689.
|
 |
|
|
|
|
 |
V.Deregowski,
E.Gazzerro,
L.Priest,
S.Rydziel,
and
E.Canalis
(2006).
Role of the RAM domain and ankyrin repeats on notch signaling and activity in cells of osteoblastic lineage.
|
| |
J Bone Miner Res,
21,
1317-1326.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |
|