spacer
spacer

PDBsum entry 2f3n

Go to PDB code: 
protein links
Structural protein PDB id
2f3n

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
65 a.a. *
Waters ×162
* Residue conservation analysis
PDB id:
2f3n
Name: Structural protein
Title: Crystal structure of the native shank sam domain.
Structure: Sh3 and multiple ankyrin repeat domains 3. Chain: a, b, c. Fragment: sam domain. Synonym: shank3, proline-rich synapse associated protein 2, prosap2, spank-2. Engineered: yes. Mutation: yes
Source: Rattus norvegicus. Norway rat. Organism_taxid: 10116. Gene: shank3. Expressed in: escherichia coli bl21. Expression_system_taxid: 511693.
Resolution:
2.10Å     R-factor:   0.206     R-free:   0.251
Authors: M.K.Baron,J.U.Bowie,S.Faham
Key ref:
M.K.Baron et al. (2006). An architectural framework that may lie at the core of the postsynaptic density. Science, 311, 531-535. PubMed id: 16439662 DOI: 10.1126/science.1118995
Date:
22-Nov-05     Release date:   07-Feb-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q9JLU4  (SHAN3_RAT) -  SH3 and multiple ankyrin repeat domains protein 3 from Rattus norvegicus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1740 a.a.
65 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 

 
DOI no: 10.1126/science.1118995 Science 311:531-535 (2006)
PubMed id: 16439662  
 
 
An architectural framework that may lie at the core of the postsynaptic density.
M.K.Baron, T.M.Boeckers, B.Vaida, S.Faham, M.Gingery, M.R.Sawaya, D.Salyer, E.D.Gundelfinger, J.U.Bowie.
 
  ABSTRACT  
 
The postsynaptic density (PSD) is a complex assembly of proteins associated with the postsynaptic membrane that organizes neurotransmitter receptors, signaling pathways, and regulatory elements within a cytoskeletal matrix. Here we show that the sterile alpha motif domain of rat Shank3/ProSAP2, a master scaffolding protein located deep within the PSD, can form large sheets composed of helical fibers stacked side by side. Zn2+, which is found in high concentrations in the PSD, binds tightly to Shank3 and may regulate assembly. Sheets of the Shank protein could form a platform for the construction of the PSD complex.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. The Shank3 SAM domain forms large sheets of helical fibers. (A) An EM image of Shank-SAM reveals over 25 fibers stacked side by side in a two-dimensional sheet. (B) At higher magnification, the well-ordered nature of the sheet can be seen as individual subunits that are arranged in a highly ordered array. (C) The packing of Shank-SAM into a sheet is also evident in the crystal structure of Shank-SAM M56E (a soluble mutant) solved to 2.1 Å. Yellow and blue depict fibers stacked in opposite orientations. Both the antiparallel and parallel orientations are seen in the crystal, but we believe the antiparallel orientation is physiologically relevant for several reasons. First, the interfiber interface buries more surface area in the antiparallel orientation (1264 Å2 versus 852 Å2). Second, the position of a mutation that solubilizes the protein (W5E) is in the interface between antiparallel fibers (Fig. 2C) but not parallel fibers. Finally, Zn2+, which has a dramatic effect on sheet organization, stabilizes salt bridges between antiparallel fibers but not parallel fibers (Fig. 3C). In the numbering scheme used for the crystal structure, residue 1 corresponds to residue 174 in the full rat Shank3 sequence.
Figure 4.
Fig. 4. Assembly mutants prevent the localization of Shank to the synapse. Visualization of Shank variant distributions in transfected hippocampal neurons is shown. The wild-type Shank-416-GFP construct (green) clusters in neuronal dendrites and colocalizes with Bassoon (red) in transfected hippocampal neurons (insets: left, GFP; middle, Bassoon; right, merge). In contrast, mutants (W5E, H22A, M56E, and all three double mutants) display a diffusely distributed green fluorescence, indicating no preferential localization to synaptic sites as indicated by Bassoon staining (insets). F8E shows partial clustering and partial colocalization with Bassoon (inset).
 
  The above figures are reprinted by permission from the AAAs: Science (2006, 311, 531-535) copyright 2006.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22699619 M.J.Schmeisser, E.Ey, S.Wegener, J.Bockmann, A.V.Stempel, A.Kuebler, A.L.Janssen, P.T.Udvardi, E.Shiban, C.Spilker, D.Balschun, B.V.Skryabin, S.t.Dieck, K.H.Smalla, D.Montag, C.S.Leblond, P.Faure, N.Torquet, A.M.Le Sourd, R.Toro, A.M.Grabrucker, S.A.Shoichet, D.Schmitz, M.R.Kreutz, T.Bourgeron, E.D.Gundelfinger, and T.M.Boeckers (2012).
Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2.
  Nature, 486, 256-260.  
21217644 A.M.Grabrucker, M.J.Knight, C.Proepper, J.Bockmann, M.Joubert, M.Rowan, G.U.Nienhaus, C.C.Garner, J.U.Bowie, M.R.Kreutz, E.D.Gundelfinger, and T.M.Boeckers (2011).
Concerted action of zinc and ProSAP/Shank in synaptogenesis and synapse maturation.
  EMBO J, 30, 569-581.  
  21445960 S.Gessert, M.J.Schmeisser, S.Tao, T.M.Boeckers, and M.Kühl (2011).
The spatio-temporal expression of ProSAP/shank family members and their interaction partner LAPSER1 during Xenopus laevis development.
  Dev Dyn, 240, 1528-1536.  
20582613 A.Abdi, S.Eschenlauer, L.Reininger, and C.Doerig (2010).
SAM domain-dependent activity of PfTKL3, an essential tyrosine kinase-like kinase of the human malaria parasite Plasmodium falciparum.
  Cell Mol Life Sci, 67, 3355-3369.  
20055699 J.Bockaert, J.Perroy, C.Bécamel, P.Marin, and L.Fagni (2010).
GPCR interacting proteins (GIPs) in the nervous system: Roles in physiology and pathologies.
  Annu Rev Pharmacol Toxicol, 50, 89.  
20150898 S.M.Di Pietro, D.Cascio, D.Feliciano, J.U.Bowie, and G.S.Payne (2010).
Regulation of clathrin adaptor function in endocytosis: novel role for the SAM domain.
  EMBO J, 29, 1033-1044.
PDB code: 3idw
20858652 Y.Gong, and C.F.Lippa (2010).
Review: disruption of the postsynaptic density in Alzheimer's disease and other neurodegenerative dementias.
  Am J Alzheimers Dis Other Demen, 25, 547-555.  
18618697 A.Bhunia, P.N.Domadia, H.Mohanram, and S.Bhattacharjya (2009).
NMR structural studies of the Ste11 SAM domain in the dodecyl phosphocholine micelle.
  Proteins, 74, 328-343.  
18831011 A.D.Meruelo, and J.U.Bowie (2009).
Identifying polymer-forming SAM domains.
  Proteins, 74, 1-5.  
19547699 F.Roselli, P.Hutzler, Y.Wegerich, P.Livrea, and O.F.Almeida (2009).
Disassembly of shank and homer synaptic clusters is driven by soluble beta-amyloid(1-40) through divergent NMDAR-dependent signalling pathways.
  PLoS One, 4, e6011.  
19566951 J.Qin, M.Jia, L.Wang, T.Lu, Y.Ruan, J.Liu, Y.Guo, J.Zhang, X.Yang, W.Yue, and D.Zhang (2009).
Association study of SHANK3 gene polymorphisms with autism in Chinese Han population.
  BMC Med Genet, 10, 61.  
19345194 M.K.Hayashi, C.Tang, C.Verpelli, R.Narayanan, M.H.Stearns, R.M.Xu, H.Li, C.Sala, and Y.Hayashi (2009).
The postsynaptic density proteins Homer and Shank form a polymeric network structure.
  Cell, 137, 159-171.
PDB codes: 3cve 3cvf
19826435 S.L.Sensi, P.Paoletti, A.I.Bush, and I.Sekler (2009).
Zinc in the physiology and pathology of the CNS.
  Nat Rev Neurosci, 10, 780-791.  
19635471 Y.Gong, C.F.Lippa, J.Zhu, Q.Lin, and A.L.Rosso (2009).
Disruption of glutamate receptors at Shank-postsynaptic platform in Alzheimer's disease.
  Brain Res, 1292, 191-198.  
18937346 C.G.Specht, and A.Triller (2008).
The dynamics of synaptic scaffolds.
  Bioessays, 30, 1062-1074.  
18946537 D.Keith, and A.El-Husseini (2008).
Excitation Control: Balancing PSD-95 Function at the Synapse.
  Front Mol Neurosci, 1, 4.  
18832033 M.Renner, C.G.Specht, and A.Triller (2008).
Molecular dynamics of postsynaptic receptors and scaffold proteins.
  Curr Opin Neurobiol, 18, 532-540.  
19081375 P.Steiner, M.J.Higley, W.Xu, B.L.Czervionke, R.C.Malenka, and B.L.Sabatini (2008).
Destabilization of the postsynaptic density by PSD-95 serine 73 phosphorylation inhibits spine growth and synaptic plasticity.
  Neuron, 60, 788-802.  
18723686 T.A.Blanpied, J.M.Kerr, and M.D.Ehlers (2008).
Structural plasticity with preserved topology in the postsynaptic protein network.
  Proc Natl Acad Sci U S A, 105, 12587-12592.  
18287031 T.Rajakulendran, M.Sahmi, I.Kurinov, M.Tyers, M.Therrien, and F.Sicheri (2008).
CNK and HYP form a discrete dimer by their SAM domains to mediate RAF kinase signaling.
  Proc Natl Acad Sci U S A, 105, 2836-2841.
PDB codes: 3bs5 3bs7
18326622 X.Chen, C.Winters, R.Azzam, X.Li, J.A.Galbraith, R.D.Leapman, and T.S.Reese (2008).
Organization of the core structure of the postsynaptic density.
  Proc Natl Acad Sci U S A, 105, 4453-4458.  
17623647 A.Dosemeci, A.J.Makusky, E.Jankowska-Stephens, X.Yang, D.J.Slotta, and S.P.Markey (2007).
Composition of the synaptic PSD-95 complex.
  Mol Cell Proteomics, 6, 1749-1760.  
17173049 C.M.Durand, C.Betancur, T.M.Boeckers, J.Bockmann, P.Chaste, F.Fauchereau, G.Nygren, M.Rastam, I.C.Gillberg, H.Anckarsäter, E.Sponheim, H.Goubran-Botros, R.Delorme, N.Chabane, M.C.Mouren-Simeoni, P.de Mas, E.Bieth, B.Rogé, D.Héron, L.Burglen, C.Gillberg, M.Leboyer, and T.Bourgeron (2007).
Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders.
  Nat Genet, 39, 25-27.  
17304222 C.Proepper, S.Johannsen, S.Liebau, J.Dahl, B.Vaida, J.Bockmann, M.R.Kreutz, E.D.Gundelfinger, and T.M.Boeckers (2007).
Abelson interacting protein 1 (Abi-1) is essential for dendrite morphogenesis and synapse formation.
  EMBO J, 26, 1397-1409.  
17666528 E.Magidovich, I.Orr, D.Fass, U.Abdu, and O.Yifrach (2007).
Intrinsic disorder in the C-terminal domain of the Shaker voltage-activated K+ channel modulates its interaction with scaffold proteins.
  Proc Natl Acad Sci U S A, 104, 13022-13027.  
17387746 F.G.Wouterlood, A.J.Boekel, G.A.Meijer, and J.A.Beliën (2007).
Computer-assisted estimation in the CNS of 3D multimarker 'overlap' or 'touch' at the level of individual nerve endings: a confocal laser scanning microscope application.
  J Neurosci Res, 85, 1215-1228.  
17880892 J.Lu, T.D.Helton, T.A.Blanpied, B.Rácz, T.M.Newpher, R.J.Weinberg, and M.D.Ehlers (2007).
Postsynaptic positioning of endocytic zones and AMPA receptor cycling by physical coupling of dynamin-3 to Homer.
  Neuron, 55, 874-889.  
17596209 J.P.Vessey, and D.Karra (2007).
More than just synaptic building blocks: scaffolding proteins of the post-synaptic density regulate dendritic patterning.
  J Neurochem, 102, 324-332.  
17243894 M.Sheng, and C.C.Hoogenraad (2007).
The postsynaptic architecture of excitatory synapses: a more quantitative view.
  Annu Rev Biochem, 76, 823-847.  
17999366 R.Moessner, C.R.Marshall, J.S.Sutcliffe, J.Skaug, D.Pinto, J.Vincent, L.Zwaigenbaum, B.Fernandez, W.Roberts, P.Szatmari, and S.W.Scherer (2007).
Contribution of SHANK3 mutations to autism spectrum disorder.
  Am J Hum Genet, 81, 1289-1297.  
17419801 S.Beri, N.Tonna, G.Menozzi, M.C.Bonaglia, C.Sala, and R.Giorda (2007).
DNA methylation regulates tissue-specific expression of Shank3.
  J Neurochem, 101, 1380-1391.  
17379760 S.Liebau, B.Vaida, A.Storch, and T.M.Boeckers (2007).
Maturation of synaptic contacts in differentiating neural stem cells.
  Stem Cells, 25, 1720-1729.  
17600833 T.Ju, M.J.Ragusa, J.Hudak, A.C.Nairn, and W.Peti (2007).
Structural characterization of the neurabin sterile alpha motif domain.
  Proteins, 69, 192-198.
PDB code: 2gle
16515810 A.R.Kay (2006).
Imaging synaptic zinc: promises and perils.
  Trends Neurosci, 29, 200-206.  
16793273 E.D.Gundelfinger, T.M.Boeckers, M.K.Baron, and J.U.Bowie (2006).
A role for zinc in postsynaptic density asSAMbly and plasticity?
  Trends Biochem Sci, 31, 366-373.  
17487173 E.M.Schneider Gasser, C.J.Straub, P.Panzanelli, O.Weinmann, M.Sassoè-Pognetto, and J.M.Fritschy (2006).
Immunofluorescence in brain sections: simultaneous detection of presynaptic and postsynaptic proteins in identified neurons.
  Nat Protoc, 1, 1887-1897.  
16721762 H.H.Cheng, S.H.Liu, H.C.Lee, Y.S.Lin, Z.H.Huang, C.I.Hsu, Y.C.Chen, and Y.C.Chang (2006).
Heavy chain of cytoplasmic dynein is a major component of the postsynaptic density fraction.
  J Neurosci Res, 84, 244-254.  
16903782 S.Tsuriel, R.Geva, P.Zamorano, T.Dresbach, T.Boeckers, E.D.Gundelfinger, C.C.Garner, and N.E.Ziv (2006).
Local sharing as a predominant determinant of synaptic matrix molecular dynamics.
  PLoS Biol, 4, e271.  
16865346 T.M.Boeckers (2006).
The postsynaptic density.
  Cell Tissue Res, 326, 409-422.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer