spacer
spacer

PDBsum entry 2bza

Go to PDB code: 
protein ligands metals links
Hydrolase PDB id
2bza

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
223 a.a. *
Ligands
SO4
ABN
Metals
_CA
_CL
Waters ×103
* Residue conservation analysis
PDB id:
2bza
Name: Hydrolase
Title: Bovine pancreas beta-trypsin in complex with benzylamine
Structure: Protein (trypsin). Chain: a. Ec: 3.4.21.4
Source: Bos taurus. Cattle. Organism_taxid: 9913. Organ: pancreas. Other_details: bovine pancreas beta-trypsin purchased from worthington biochemical corporation
Resolution:
1.90Å     R-factor:   0.175     R-free:   0.195
Authors: N.Ota,C.Stroupe,J.M.S.Ferreira-Da-Silva,S.S.Shah,M.Mares-Guia, A.T.Brunger
Key ref:
N.Ota et al. (1999). Non-Boltzmann thermodynamic integration (NBTI) for macromolecular systems: relative free energy of binding of trypsin to benzamidine and benzylamine. Proteins, 37, 641-653. PubMed id: 10651279 DOI: 10.1002/(SICI)1097-0134(19991201)37:4<641::AID-PROT14>3.0.CO;2-W
Date:
16-Mar-99     Release date:   23-Mar-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P00760  (TRY1_BOVIN) -  Serine protease 1 from Bos taurus
Seq:
Struc:
246 a.a.
223 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.4.21.4  - trypsin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Preferential cleavage: Arg-|-Xaa, Lys-|-Xaa.

 

 
DOI no: 10.1002/(SICI)1097-0134(19991201)37:4<641::AID-PROT14>3.0.CO;2-W Proteins 37:641-653 (1999)
PubMed id: 10651279  
 
 
Non-Boltzmann thermodynamic integration (NBTI) for macromolecular systems: relative free energy of binding of trypsin to benzamidine and benzylamine.
N.Ota, C.Stroupe, J.M.Ferreira-da-Silva, S.A.Shah, M.Mares-Guia, A.T.Brunger.
 
  ABSTRACT  
 
The relative free energies of binding of trypsin to two amine inhibitors, benzamidine (BZD) and benzylamine (BZA), were calculated using non-Boltzmann thermodynamic integration (NBTI). Comparison of the simulations with the crystal structures of both complexes, trypsin-BZD and trypsin-BZA, shows that NBTI simulations better sample conformational space relative to thermodynamic integration (TI) simulations. The relative binding free energy calculated using NBTI was much closer to the experimentally determined value than that obtained using TI. The error in the TI simulation was found to be primarily due to incorrect sampling of BZA's conformation in the binding pocket. In contrast, NBTI produces a smooth mutation from BZD to BZA using a surrogate potential, resulting in a much closer agreement between the inhibitors' conformations and the omit electron density maps. This superior agreement between experiment and simulation, of both relative binding free energy differences and conformational sampling, demonstrates NBTI's usefulness for free energy calculations in macromolecular simulations.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. The change in charges and covalent geometry for the mutation form benzamidine (BZD) to benzylamine (BZA). Dm indicates a dummy atom and C7 of BZD is located at the center of the spherical boundary method.
Figure 4.
Figure 4. Comparison of the binding pocket of crystal structures of trypsin-inhibitor complexes. Superposition of the trypsin-BZA complex (green) onto the trypsin-BZD complex (magenta) using the Ca atoms of trypsin of the reservoir region. The side chain of Gln 192 is not shown because of multiple conformations.
 
  The above figures are reprinted by permission from John Wiley & Sons, Inc.: Proteins (1999, 37, 641-653) copyright 1999.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
  21491494 T.Yang, J.C.Wu, C.Yan, Y.Wang, R.Luo, M.B.Gonzales, K.N.Dalby, and P.Ren (2011).
Virtual screening using molecular simulations.
  Proteins, 79, 1940-1951.  
20615447 P.Goettig, V.Magdolen, and H.Brandstetter (2010).
Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs).
  Biochimie, 92, 1546-1567.  
19399779 D.Jiao, J.Zhang, R.E.Duke, G.Li, M.J.Schnieders, and P.Ren (2009).
Trypsin-ligand binding free energies from explicit and implicit solvent simulations with polarizable potential.
  J Comput Chem, 30, 1701-1711.  
18653760 O.Khoruzhii, A.G.Donchev, N.Galkin, A.Illarionov, M.Olevanov, V.Ozrin, C.Queen, and V.Tarasov (2008).
Application of a polarizable force field to calculations of relative protein-ligand binding affinities.
  Proc Natl Acad Sci U S A, 105, 10378-10383.  
17427957 B.Fischer, S.Basili, H.Merlitz, and W.Wenzel (2007).
Accuracy of binding mode prediction with a cascadic stochastic tunneling method.
  Proteins, 68, 195-204.  
15578663 O.Guvench, D.J.Price, and C.L.Brooks (2005).
Receptor rigidity and ligand mobility in trypsin-ligand complexes.
  Proteins, 58, 407-417.  
11846789 P.Ascenzi, M.Fasano, M.Marino, G.Venturini, and R.Federico (2002).
Agmatine oxidation by copper amine oxidase.
  Eur J Biochem, 269, 884-892.  
12116383 S.M.Schwarzl, T.B.Tschopp, J.C.Smith, and S.Fischer (2002).
Can the calculation of ligand binding free energies be improved with continuum solvent electrostatics and an ideal-gas entropy correction?
  J Comput Chem, 23, 1143-1149.  
11340059 W.Wang, O.Donini, C.M.Reyes, and P.A.Kollman (2001).
Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions.
  Annu Rev Biophys Biomol Struct, 30, 211-243.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time.

 

spacer

spacer