spacer
spacer

PDBsum entry 2bkk

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Transferase/peptide PDB id
2bkk

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
247 a.a. *
156 a.a. *
262 a.a. *
Ligands
ADP ×2
Metals
_MG ×4
Waters ×347
* Residue conservation analysis
PDB id:
2bkk
Name: Transferase/peptide
Title: Crystal structure of aminoglycoside phosphotransferase aph(3')-iiia in complex with the inhibitor ar_3a
Structure: Aminoglycoside 3'-phosphotransferase. Chain: a, c. Synonym: aph iiia, kanamycin kinase type iii, neomycin-kanamycin phosphotransferase type iii, aph(3')iii. Engineered: yes. Mutation: yes. Designed ankyrin repeat inhibitor ar_3a. Chain: b, d. Engineered: yes
Source: Enterococcus faecalis. Organism_taxid: 1351. Expressed in: escherichia coli. Expression_system_taxid: 469008. Other_details: streptococcus faecalis, staphylococcus aureus. Synthetic construct. Organism_taxid: 32630. Expression_system_taxid: 562
Biol. unit: Dimer (from PDB file)
Resolution:
2.15Å     R-factor:   0.200     R-free:   0.260
Authors: A.Kohl,P.Amstutz,P.Parizek,H.K.Binz,C.Briand,G.Capitani,P.Forrer, A.Pluckthun,M.G.Grutter
Key ref:
A.Kohl et al. (2005). Allosteric inhibition of aminoglycoside phosphotransferase by a designed ankyrin repeat protein. Structure (Camb), 13, 1131-1141. PubMed id: 16084385 DOI: 10.1016/j.str.2005.04.020
Date:
16-Feb-05     Release date:   09-Aug-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P0A3Y5  (KKA3_ENTFL) -  Aminoglycoside 3'-phosphotransferase from Enterococcus faecalis
Seq:
Struc:
264 a.a.
247 a.a.*
Protein chains
No UniProt id for this chain
Struc: 156 a.a.
Protein chain
Pfam   ArchSchema ?
P0A3Y5  (KKA3_ENTFL) -  Aminoglycoside 3'-phosphotransferase from Enterococcus faecalis
Seq:
Struc:
264 a.a.
262 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: Chains A, C: E.C.2.7.1.95  - kanamycin kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: kanamycin A + ATP = kanamycin 3'-phosphate + ADP + H+
kanamycin A
+ ATP
=
kanamycin 3'-phosphate
Bound ligand (Het Group name = ADP)
corresponds exactly
+ ADP
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1016/j.str.2005.04.020 Structure (Camb) 13:1131-1141 (2005)
PubMed id: 16084385  
 
 
Allosteric inhibition of aminoglycoside phosphotransferase by a designed ankyrin repeat protein.
A.Kohl, P.Amstutz, P.Parizek, H.K.Binz, C.Briand, G.Capitani, P.Forrer, A.Plückthun, M.G.Grütter.
 
  ABSTRACT  
 
Aminoglycoside phosphotransferase (3')-IIIa (APH) is a bacterial kinase that confers antibiotic resistance to many pathogenic bacteria and shares structural homology with eukaryotic protein kinases. We report here the crystal structure of APH, trapped in an inactive conformation by a tailor-made inhibitory ankyrin repeat (AR) protein, at 2.15 A resolution. The inhibitor was selected from a combinatorial library of designed AR proteins. The AR protein binds the C-terminal lobe of APH and thereby stabilizes three alpha helices, which are necessary for substrate binding, in a significantly displaced conformation. BIAcore analysis and kinetic enzyme inhibition experiments are consistent with the proposed allosteric inhibition mechanism. In contrast to most small-molecule kinase inhibitors, the AR proteins are not restricted to active site binding, allowing for higher specificity. Inactive conformations of pharmaceutically relevant enzymes, as can be elucidated with the approach presented here, represent powerful starting points for rational drug design.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. Crystal Structure of the mAPH in Complex with the AR Protein AR_3a
(A) Stereo view of the AB heterodimer of the mAPH/AR_3a complex. The mAPH is shown in orange, and the AR_3a is shown in light blue. AR_3a binds to the C-terminal lobe of the mAPH and stabilizes an inactive conformation.
(B) Asymmetric mAPH pseudo-homodimer found in the crystal of the mAPH/AR_3a complex.
(C) Symmetric wtAPH dimer found in the wtAPH crystal.
(D) Stereo view of the superposition of the mAPH hetereodimer AB (orange) and BC (light blue).
(E) wtAPH in the kanamycin A bound form (PDB: 1L8T1L8T). ADP and kanamycin A are labeled.
(F) mAPH/AR_3a AB heterodimer in the same orientation as the wtAPH in (E).
 
  The above figure is reprinted by permission from Cell Press: Structure (Camb) (2005, 13, 1131-1141) copyright 2005.  
  Figure was selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21390033 A.R.Bradbury, S.Sidhu, S.Dübel, and J.McCafferty (2011).
Beyond natural antibodies: the power of in vitro display technologies.
  Nat Biotechnol, 29, 245-254.  
21458342 J.Karanicolas, J.E.Corn, I.Chen, L.A.Joachimiak, O.Dym, S.H.Peck, S.Albeck, T.Unger, W.Hu, G.Liu, S.Delbecq, G.T.Montelione, C.P.Spiegel, D.R.Liu, and D.Baker (2011).
A de novo protein binding pair by computational design and directed evolution.
  Mol Cell, 42, 250-260.
PDB codes: 3q9n 3q9u 3qa9
21296164 N.Monroe, G.Sennhauser, M.A.Seeger, C.Briand, and M.G.Grütter (2011).
Designed ankyrin repeat protein binders for the crystallization of AcrB: Plasticity of the dominant interface.
  J Struct Biol, 174, 269-281.
PDB codes: 3noc 3nog
20564281 G.De Pascale, and G.D.Wright (2010).
Antibiotic resistance by enzyme inactivation: from mechanisms to solutions.
  Chembiochem, 11, 1325-1334.  
20833577 M.S.Ramirez, and M.E.Tolmasky (2010).
Aminoglycoside modifying enzymes.
  Drug Resist Updat, 13, 151-171.  
19433564 D.H.Fong, and A.M.Berghuis (2009).
Structural basis of APH(3')-IIIa-mediated resistance to N1-substituted aminoglycoside antibiotics.
  Antimicrob Agents Chemother, 53, 3049-3055.
PDB codes: 3h8p 3tm0
19740746 D.Veesler, B.Dreier, S.Blangy, J.Lichière, D.Tremblay, S.Moineau, S.Spinelli, M.Tegoni, A.Plückthun, V.Campanacci, and C.Cambillau (2009).
Crystal structure and function of a DARPin neutralizing inhibitor of lactococcal phage TP901-1: comparison of DARPin and camelid VHH binding mode.
  J Biol Chem, 284, 30718-30726.
PDB code: 3hg0
19501012 M.Gebauer, and A.Skerra (2009).
Engineered protein scaffolds as next-generation antibody therapeutics.
  Curr Opin Chem Biol, 13, 245-255.  
19389717 P.Milovnik, D.Ferrari, C.A.Sarkar, and A.Plückthun (2009).
Selection and characterization of DARPins specific for the neurotensin receptor 1.
  Protein Eng Des Sel, 22, 357-366.  
19477632 S.Koide (2009).
Engineering of recombinant crystallization chaperones.
  Curr Opin Struct Biol, 19, 449-457.  
18560151 D.Frey, T.Huber, A.Plückthun, and M.G.Grütter (2008).
Structure of the recombinant antibody Fab fragment f3p4.
  Acta Crystallogr D Biol Crystallogr, 64, 636-643.
PDB code: 2v7n
18621567 M.T.Stumpp, H.K.Binz, and P.Amstutz (2008).
DARPins: a new generation of protein therapeutics.
  Drug Discov Today, 13, 695-701.  
18391401 T.M.Bandeiras, R.C.Hillig, P.M.Matias, U.Eberspaecher, J.Fanghänel, M.Thomaz, S.Miranda, K.Crusius, V.Pütter, P.Amstutz, M.Gulotti-Georgieva, H.K.Binz, C.Holz, A.A.Schmitz, C.Lang, P.Donner, U.Egner, M.A.Carrondo, and B.Müller-Tiemann (2008).
Structure of wild-type Plk-1 kinase domain in complex with a selective DARPin.
  Acta Crystallogr D Biol Crystallogr, 64, 339-353.
PDB code: 2v5q
17502107 A.Schweizer, H.Roschitzki-Voser, P.Amstutz, C.Briand, M.Gulotti-Georgieva, E.Prenosil, H.K.Binz, G.Capitani, A.Baici, A.Plückthun, and M.G.Grütter (2007).
Inhibition of caspase-2 by a designed ankyrin repeat protein: specificity, structure, and inhibition mechanism.
  Structure, 15, 625-636.
PDB code: 2p2c
17493872 G.D.Wright, and A.D.Sutherland (2007).
New strategies for combating multidrug-resistant bacteria.
  Trends Mol Med, 13, 260-267.  
17050543 M.Kawe, P.Forrer, P.Amstutz, and A.Plückthun (2006).
Isolation of intracellular proteinase inhibitors derived from designed ankyrin repeat proteins by genetic screening.
  J Biol Chem, 281, 40252-40263.  
16373474 R.J.Hosse, A.Rothe, and B.E.Power (2006).
A new generation of protein display scaffolds for molecular recognition.
  Protein Sci, 15, 14-27.  
17125150 R.L.Rich, and D.G.Myszka (2006).
Survey of the year 2005 commercial optical biosensor literature.
  J Mol Recognit, 19, 478-534.  
16005204 H.K.Binz, and A.Plückthun (2005).
Engineered proteins as specific binding reagents.
  Curr Opin Biotechnol, 16, 459-469.  
16211069 H.K.Binz, P.Amstutz, and A.Plückthun (2005).
Engineering novel binding proteins from nonimmunoglobulin domains.
  Nat Biotechnol, 23, 1257-1268.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer