spacer
spacer

PDBsum entry 2bki

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Motor protein/metal-binding protein PDB id
2bki

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
824 a.a. *
145 a.a. *
78 a.a. *
Ligands
SO4
Metals
_CA ×4
Waters ×49
* Residue conservation analysis
PDB id:
2bki
Name: Motor protein/metal-binding protein
Title: Myosin vi nucleotide-free (mdinsert2-iq) crystal structure
Structure: Unconventional myosin. Chain: a. Fragment: domain long-s1, residues 1-858. Synonym: myosin vi. Engineered: yes. Calmodulin. Chain: b, d. Synonym: cam. Engineered: yes
Source: Sus scrofa. Pig. Organism_taxid: 9823. Expressed in: spodoptera frugiperda. Expression_system_taxid: 7108. Expression_system_cell_line: sf9. Gallus gallus. Chicken. Organism_taxid: 9031.
Biol. unit: Trimer (from PDB file)
Resolution:
2.90Å     R-factor:   0.266     R-free:   0.304
Authors: J.Menetrey,A.Bahloul,C.Yengo,A.Wells,C.Morris,H.L.Sweeney,A.Houdusse
Key ref:
J.Ménétrey et al. (2005). The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature, 435, 779-785. PubMed id: 15944696 DOI: 10.1038/nature03592
Date:
16-Feb-05     Release date:   07-Jun-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q29122  (MYO6_PIG) -  Unconventional myosin-VI from Sus scrofa
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1254 a.a.
824 a.a.*
Protein chain
Pfam   ArchSchema ?
P62149  (CALM_CHICK) -  Calmodulin from Gallus gallus
Seq:
Struc:
149 a.a.
145 a.a.
Protein chain
Pfam   ArchSchema ?
P62149  (CALM_CHICK) -  Calmodulin from Gallus gallus
Seq:
Struc:
149 a.a.
78 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 6 residue positions (black crosses)

 

 
DOI no: 10.1038/nature03592 Nature 435:779-785 (2005)
PubMed id: 15944696  
 
 
The structure of the myosin VI motor reveals the mechanism of directionality reversal.
J.Ménétrey, A.Bahloul, A.L.Wells, C.M.Yengo, C.A.Morris, H.L.Sweeney, A.Houdusse.
 
  ABSTRACT  
 
Here we solve a 2.4-A structure of a truncated version of the reverse-direction myosin motor, myosin VI, that contains the motor domain and binding sites for two calmodulin molecules. The structure reveals only minor differences in the motor domain from that in plus-end directed myosins, with the exception of two unique inserts. The first is near the nucleotide-binding pocket and alters the rates of nucleotide association and dissociation. The second unique insert forms an integral part of the myosin VI converter domain along with a calmodulin bound to a novel target motif within the insert. This serves to redirect the effective 'lever arm' of myosin VI, which includes a second calmodulin bound to an 'IQ motif', towards the pointed (minus) end of the actin filament. This repositioning largely accounts for the reverse directionality of this class of myosin motors. We propose a model incorporating a kinesin-like uncoupling/docking mechanism to provide a full explanation of the movements of myosin VI.
 
  Selected figure(s)  
 
Figure 4.
Figure 4: A new CaM-binding motif that interacts strongly with 4Ca^2+-CaM. a, The overall conformation and polarity of the insert-2 -CaM complex (new 1-6-14 motif) is compared with those observed when CaM interacts with myosin light chain kinase (MLCK) (classic 1-8-14 motif) (target peptides superimposed). Note that in both cases the C-lobe of CaM in an open conformation grips the N-terminal region of the target sequence, largely through the first anchoring hydrophobic residue (W793/W800). b, In contrast, comparison of the N-lobes (helices A and D superimposed) shows differences in their conformation (closure differs by 20°) and in the target peptide position (note the 14th anchoring residue position) within the lobe. Note that the sixth anchoring residue of the 1-6-14 motif (W798) interacts strongly with both lobes of CaM (helices A and H). c, Sequence comparison of the two CaM-binding motifs. The letters n, c and b indicate whether each residue of these motifs interacts with the N-lobe, the C-lobe or both lobes of CaM, respectively.
Figure 5.
Figure 5: Directionality of movement and power stroke in myosin motors. a, b, Schematic drawings of the myosin VI (a) and myosin V (b) structural models (see Methods) before and after force generation. Similar colours to those in Fig. 1 are used. Note in particular how conformational changes in the relay (yellow) and SH1 helix (red) lead to the rotation (black arrow) of the converter (green). The red arrow represents the predicted F-actin displacement (stroke) for these models; the green arrow indicates the converter contribution for this stroke. c, For reverse myosin I, the solid arrow indicates the stroke that would be produced with a lever arm of about 4 nm (that equivalent to one IQ motif) and the dotted arrow corresponds to the stroke generated by an approximately 14-nm lever arm as described for this engineered motor28. d, e, Two mechanisms could account for the 12-nm stroke of the myosin VI MD^ins2IQ. If the converter remains coupled to the motor domain (d), it must adopt an orientation that differs by about 90° from that found for plus-end motors in the pre-powerstroke state. Alternatively, unwinding of the SH1 helix in the weak actin-binding states would decouple the converter from the motor domain (e). In this case, the relay -converter interactions would be maintained but the relay helix would not be bent in the pre-powerstroke state because steric clashes with the SH1 helix are eliminated. Thus, the converter would be biased towards the plus end of the actin filament. Recoupling of the converter to the motor domain would occur on strong binding to actin.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2005, 435, 779-785) copyright 2005.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21361558 V.Ovchinnikov, M.Karplus, and E.Vanden-Eijnden (2011).
Free energy of conformational transition paths in biomolecules: The string method and its application to myosin VI.
  J Chem Phys, 134, 085103.  
20385849 A.R.Dunn, P.Chuan, Z.Bryant, and J.A.Spudich (2010).
Contribution of the myosin VI tail domain to processive stepping and intramolecular tension sensing.
  Proc Natl Acad Sci U S A, 107, 7746-7750.  
21081082 C.F.Song, K.Sader, H.White, J.Kendrick-Jones, and J.Trinick (2010).
Nucleotide-dependent shape changes in the reverse direction motor, myosin VI.
  Biophys J, 99, 3336-3344.  
19962990 E.Prochniewicz, H.F.Chin, A.Henn, D.E.Hannemann, A.O.Olivares, D.D.Thomas, and E.M.De La Cruz (2010).
Myosin isoform determines the conformational dynamics and cooperativity of actin filaments in the strongly bound actomyosin complex.
  J Mol Biol, 396, 501-509.  
21070943 H.Kim, J.Hsin, Y.Liu, P.R.Selvin, and K.Schulten (2010).
Formation of salt bridges mediates internal dimerization of myosin VI medial tail domain.
  Structure, 18, 1443-1449.  
20192767 H.L.Sweeney, and A.Houdusse (2010).
Structural and functional insights into the Myosin motor mechanism.
  Annu Rev Biophys, 39, 539-557.  
20094053 J.A.Spudich, and S.Sivaramakrishnan (2010).
Myosin VI: an innovative motor that challenged the swinging lever arm hypothesis.
  Nat Rev Mol Cell Biol, 11, 128-137.  
20459085 J.J.Frye, V.A.Klenchin, C.R.Bagshaw, and I.Rayment (2010).
Insights into the importance of hydrogen bonding in the gamma-phosphate binding pocket of myosin: structural and functional studies of serine 236.
  Biochemistry, 49, 4897-4907.
PDB codes: 3myh 3myk 3myl
19996092 N.Juranic, E.Atanasova, A.G.Filoteo, S.Macura, F.G.Prendergast, J.T.Penniston, and E.E.Strehler (2010).
Calmodulin wraps around its binding domain in the plasma membrane Ca2+ pump anchored by a novel 18-1 motif.
  J Biol Chem, 285, 4015-4024.
PDB code: 2kne
20226094 T.P.Burghardt, K.L.Neff, E.D.Wieben, and K.Ajtai (2010).
Myosin individualized: single nucleotide polymorphisms in energy transduction.
  BMC Genomics, 11, 172.  
19853615 V.Ovchinnikov, B.L.Trout, and M.Karplus (2010).
Mechanical coupling in myosin V: a simulation study.
  J Mol Biol, 395, 815-833.  
19665975 C.Yu, W.Feng, Z.Wei, Y.Miyanoiri, W.Wen, Y.Zhao, and M.Zhang (2009).
Myosin VI undergoes cargo-mediated dimerization.
  Cell, 138, 537-548.
PDB codes: 2kia 3h8d
19411736 D.Gillo, B.Gilboa, R.Gurka, and A.Bernheim-Groswasser (2009).
The fusion of actin bundles driven by interacting motor proteins.
  Phys Biol, 6, 036003.  
19805065 D.Phichith, M.Travaglia, Z.Yang, X.Liu, A.B.Zong, D.Safer, and H.L.Sweeney (2009).
Cargo binding induces dimerization of myosin VI.
  Proc Natl Acad Sci U S A, 106, 17320-17324.  
19828438 J.G.Reifenberger, E.Toprak, H.Kim, D.Safer, H.L.Sweeney, and P.R.Selvin (2009).
Myosin VI undergoes a 180 degrees power stroke implying an uncoupling of the front lever arm.
  Proc Natl Acad Sci U S A, 106, 18255-18260.  
19664948 M.Mukherjea, P.Llinas, H.Kim, M.Travaglia, D.Safer, J.Ménétrey, C.Franzini-Armstrong, P.R.Selvin, A.Houdusse, and H.L.Sweeney (2009).
Myosin VI dimerization triggers an unfolding of a three-helix bundle in order to extend its reach.
  Mol Cell, 35, 305-315.
PDB code: 3gn4
19620127 P.Wang, and M.C.González (2009).
Understanding spatial connectivity of individuals with non-uniform population density.
  Philos Transact A Math Phys Eng Sci, 367, 3321-3329.  
19089983 T.I.Evans, and M.A.Shea (2009).
Energetics of calmodulin domain interactions with the calmodulin binding domain of CaMKII.
  Proteins, 76, 47-61.  
19005209 T.Noguchi, D.J.Frank, M.Isaji, and K.G.Miller (2009).
Coiled-coil-mediated dimerization is not required for myosin VI to stabilize actin during spermatid individualization in Drosophila melanogaster.
  Mol Biol Cell, 20, 358-367.  
19558455 T.Takarada, K.Tamaki, T.Takumi, M.Ogura, Y.Ito, N.Nakamichi, and Y.Yoneda (2009).
A protein-protein interaction of stress-responsive myosin VI endowed to inhibit neural progenitor self-replication with RNA binding protein, TLS, in murine hippocampus.
  J Neurochem, 110, 1457-1468.  
19452133 W.Hwang, and M.J.Lang (2009).
Mechanical design of translocating motor proteins.
  Cell Biochem Biophys, 54, 11-22.  
19607837 Y.Sugimoto, O.Sato, S.Watanabe, R.Ikebe, M.Ikebe, and K.Wakabayashi (2009).
Reverse conformational changes of the light chain-binding domain of myosin V and VI processive motor heads during and after hydrolysis of ATP by small-angle X-ray solution scattering.
  J Mol Biol, 392, 420-435.  
18511944 B.J.Spink, S.Sivaramakrishnan, J.Lipfert, S.Doniach, and J.A.Spudich (2008).
Long single alpha-helical tail domains bridge the gap between structure and function of myosin VI.
  Nat Struct Mol Biol, 15, 591-597.  
18068125 F.Buss, and J.Kendrick-Jones (2008).
How are the cellular functions of myosin VI regulated within the cell?
  Biochem Biophys Res Commun, 369, 165-175.  
18211842 J.A.Spudich (2008).
Molecular motors: a surprising twist in myosin VI translocation.
  Curr Biol, 18, R68-R70.  
18046460 J.Ménétrey, P.Llinas, J.Cicolari, G.Squires, X.Liu, A.Li, H.L.Sweeney, and A.Houdusse (2008).
The post-rigor structure of myosin VI and implications for the recovery stroke.
  EMBO J, 27, 244-252.
PDB codes: 2vas 2vb6
18704171 M.Cecchini, A.Houdusse, and M.Karplus (2008).
Allosteric communication in myosin V: from small conformational changes to large directed movements.
  PLoS Comput Biol, 4, e1000129.  
18833301 R.Hertzano, E.Shalit, A.K.Rzadzinska, A.A.Dror, L.Song, U.Ron, J.T.Tan, A.S.Shitrit, H.Fuchs, T.Hasson, N.Ben-Tal, H.L.Sweeney, M.H.de Angelis, K.P.Steel, and K.B.Avraham (2008).
A Myo6 mutation destroys coordination between the myosin heads, revealing new functions of myosin VI in the stereocilia of mammalian inner ear hair cells.
  PLoS Genet, 4, e1000207.  
18184584 W.Hwang, M.J.Lang, and M.Karplus (2008).
Force generation in kinesin hinges on cover-neck bundle formation.
  Structure, 16, 62-71.  
18509050 Y.Oguchi, S.V.Mikhailenko, T.Ohki, A.O.Olivares, E.M.De La Cruz, and S.Ishiwata (2008).
Load-dependent ADP binding to myosins V and VI: implications for subunit coordination and function.
  Proc Natl Acad Sci U S A, 105, 7714-7719.  
17074769 A.C.Dosé, S.Ananthanarayanan, J.E.Moore, B.Burnside, and C.M.Yengo (2007).
Kinetic mechanism of human myosin IIIA.
  J Biol Chem, 282, 216-231.  
17379245 B.M.Miller, M.J.Bloemink, M.Nyitrai, S.I.Bernstein, and M.A.Geeves (2007).
A variable domain near the ATP-binding site in Drosophila muscle myosin is part of the communication pathway between the nucleotide and actin-binding sites.
  J Mol Biol, 368, 1051-1066.  
17175153 H.L.Sweeney, and A.Houdusse (2007).
What can myosin VI do in cells?
  Curr Opin Cell Biol, 19, 57-66.  
17510632 H.L.Sweeney, H.Park, A.B.Zong, Z.Yang, P.R.Selvin, and S.S.Rosenfeld (2007).
How myosin VI coordinates its heads during processive movement.
  EMBO J, 26, 2682-2692.  
17213313 H.Park, A.Li, L.Q.Chen, A.Houdusse, P.R.Selvin, and H.L.Sweeney (2007).
The unique insert at the end of the myosin VI motor is the sole determinant of directionality.
  Proc Natl Acad Sci U S A, 104, 778-783.  
17666122 H.Park, E.Toprak, and P.R.Selvin (2007).
Single-molecule fluorescence to study molecular motors.
  Q Rev Biophys, 40, 87.  
17956731 J.Ménétrey, P.Llinas, M.Mukherjea, H.L.Sweeney, and A.Houdusse (2007).
The structural basis for the large powerstroke of myosin VI.
  Cell, 131, 300-308.
PDB code: 2v26
17429832 K.Sugiura, K.Ohkawa, T.Hirai, and T.Fujii (2007).
ATPase-coupled release control from polyion complex capsules encapsulating muscle proteins.
  Macromol Biosci, 7, 508-516.  
17028139 N.Naber, T.J.Purcell, E.Pate, and R.Cooke (2007).
Dynamics of the nucleotide pocket of myosin measured by spin-labeled nucleotides.
  Biophys J, 92, 172-184.  
18158894 Y.Sun, H.W.Schroeder, J.F.Beausang, K.Homma, M.Ikebe, and Y.E.Goldman (2007).
Myosin VI walks "wiggly" on actin with large and variable tilting.
  Mol Cell, 28, 954-964.  
17502101 Y.Yang, S.Gourinath, M.Kovács, L.Nyitray, R.Reutzel, D.M.Himmel, E.O'Neall-Hennessey, L.Reshetnikova, A.G.Szent-Györgyi, J.H.Brown, and C.Cohen (2007).
Rigor-like structures from muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor.
  Structure, 15, 553-564.
PDB codes: 2ec6 2ekv 2ekw 2os8 2otg 2ovk 2oy6 3i5f 3i5g 3i5h 3i5i
17182734 Z.Bryant, D.Altman, and J.A.Spudich (2007).
The power stroke of myosin VI and the basis of reverse directionality.
  Proc Natl Acad Sci U S A, 104, 772-777.  
16921171 A.O.Olivares, W.Chang, M.S.Mooseker, D.D.Hackney, and E.M.De La Cruz (2006).
The tail domain of myosin Va modulates actin binding to one head.
  J Biol Chem, 281, 31326-31336.  
16505385 B.J.Foth, M.C.Goedecke, and D.Soldati (2006).
New insights into myosin evolution and classification.
  Proc Natl Acad Sci U S A, 103, 3681-3686.  
16790438 D.J.Frank, S.R.Martin, B.N.Gruender, Y.S.Lee, R.A.Simonette, P.M.Bayley, K.G.Miller, and K.M.Beckingham (2006).
Androcam is a tissue-specific light chain for myosin VI in the Drosophila testis.
  J Biol Chem, 281, 24728-24736.  
16963511 G.Lan, and S.X.Sun (2006).
Flexible light-chain and helical structure of F-actin explain the movement and step size of myosin-VI.
  Biophys J, 91, 4002-4013.  
16741830 G.Offer (2006).
Fifty years on: where have we reached?
  J Muscle Res Cell Motil, 27, 205-213.  
16455488 H.Park, B.Ramamurthy, M.Travaglia, D.Safer, L.Q.Chen, C.Franzini-Armstrong, P.R.Selvin, and H.L.Sweeney (2006).
Full-length myosin VI dimerizes and moves processively along actin filaments upon monomer clustering.
  Mol Cell, 21, 331-336.  
17132771 J.A.Dantzig, T.Y.Liu, and Y.E.Goldman (2006).
Functional studies of individual myosin molecules.
  Ann N Y Acad Sci, 1080, 1.  
16500969 M.Iwaki, H.Tanaka, A.H.Iwane, E.Katayama, M.Ikebe, and T.Yanagida (2006).
Cargo-binding makes a wild-type single-headed myosin-VI move processively.
  Biophys J, 90, 3643-3652.  
16857047 M.Kollmar (2006).
Thirteen is enough: the myosins of Dictyostelium discoideum and their light chains.
  BMC Genomics, 7, 183.  
16382238 N.F.Endres, C.Yoshioka, R.A.Milligan, and R.D.Vale (2006).
A lever-arm rotation drives motility of the minus-end-directed kinesin Ncd.
  Nature, 439, 875-878.  
16982629 S.Fujita-Becker, G.Tsiavaliaris, R.Ohkura, T.Shimada, D.J.Manstein, and K.Sutoh (2006).
Functional characterization of the N-terminal region of myosin-2.
  J Biol Chem, 281, 36102-36109.  
  17071605 T.A.Dunn, S.Chen, D.A.Faith, J.L.Hicks, E.A.Platz, Y.Chen, C.M.Ewing, J.Sauvageot, W.B.Isaacs, A.M.De Marzo, and J.Luo (2006).
A novel role of myosin VI in human prostate cancer.
  Am J Pathol, 169, 1843-1854.  
16120677 M.Terrak, G.Rebowski, R.C.Lu, Z.Grabarek, and R.Dominguez (2005).
Structure of the light chain-binding domain of myosin V.
  Proc Natl Acad Sci U S A, 102, 12718-12723.
PDB codes: 1n2d 1n2p 1n30 1n3d 1n3v
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer