spacer
spacer

PDBsum entry 2bjv

Go to PDB code: 
protein links
Transcription PDB id
2bjv

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
237 a.a. *
Waters ×162
* Residue conservation analysis
PDB id:
2bjv
Name: Transcription
Title: Crystal structure of pspf(1-275) r168a mutant
Structure: Psp operon transcriptional activator. Chain: a. Fragment: aaa domain, residues 1-265. Synonym: pspf, phage shock protein f. Engineered: yes. Mutation: yes
Source: Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
1.70Å     R-factor:   0.172     R-free:   0.212
Authors: M.Rappas,J.Schumacher,F.Beuron,H.Niwa,P.Bordes,S.Wigneshweraraj, C.A.Keetch,C.V.Robinson,M.Buck,X.Zhang
Key ref:
M.Rappas et al. (2005). Structural insights into the activity of enhancer-binding proteins. Science, 307, 1972-1975. PubMed id: 15790859 DOI: 10.1126/science.1105932
Date:
08-Feb-05     Release date:   31-Mar-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P37344  (PSPF_ECOLI) -  Psp operon transcriptional activator from Escherichia coli (strain K12)
Seq:
Struc:
325 a.a.
237 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1126/science.1105932 Science 307:1972-1975 (2005)
PubMed id: 15790859  
 
 
Structural insights into the activity of enhancer-binding proteins.
M.Rappas, J.Schumacher, F.Beuron, H.Niwa, P.Bordes, S.Wigneshweraraj, C.A.Keetch, C.V.Robinson, M.Buck, X.Zhang.
 
  ABSTRACT  
 
Activators of bacterial sigma54-RNA polymerase holoenzyme are mechanochemical proteins that use adenosine triphosphate (ATP) hydrolysis to activate transcription. We have determined by cryogenic electron microscopy (cryo-EM) a 20 angstrom resolution structure of an activator, phage shock protein F [PspF(1-275)], which is bound to an ATP transition state analog in complex with its basal factor, sigma54. By fitting the crystal structure of PspF(1-275) at 1.75 angstroms into the EM map, we identified two loops involved in binding sigma54. Comparing enhancer-binding structures in different nucleotide states and mutational analysis led us to propose nucleotide-dependent conformational changes that free the loops for association with sigma54.
 
  Selected figure(s)  
 
Figure 2.
Fig. 2. Crystal structure of PspF[(1-275)]. The P6[5] hexamer of PspF[(1-275)] is shown as viewed down the sixfold axis. Both /ß (green) and -helical domains (pink) of one monomer are contoured with dashed lines. The nucleotide-binding pocket is highlighted in yellow and is located in the cleft between the /ß and -helical domain at the interface with the adjacent monomer. N- and C-termini of two adjacent monomers are also shown. Color coding is as follows: blue, helices; red, central ß sheet; orange, L1; and green, L2. The tip of the highlighted L1 is shown as a dotted line because residues 82 to 89 were not resolved in our crystal structure.
Figure 3.
Fig. 3. Fitting of the PspF[(1-275)] crystal structure into the EM electron density map of the PspF[(1-275)]-ADP.AlF[x]- 54 complex. (A) The front view of the EM density is colored transparent gray and the PspF[(1-275)] crystal structure has a blue ribbon representation. The fitting of the -helical domain into one "claw" of the hexameric ring is highlighted; the densities connecting PspF[(1-275)] to 54 are indicated by red arrows. (B) Cross-eye stereo view of the fitting of one pair of L1 and L2 loops into the connecting densities; the tip of L1 is shown as a dotted line because residues 82 to 89 are not resolved. When positioned in the densities, the loops extend upward almost at a right angle to the plane of the hexamer.
 
  The above figures are reprinted by permission from the AAAs: Science (2005, 307, 1972-1975) copyright 2005.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21330489 A.P.Carter, C.Cho, L.Jin, and R.D.Vale (2011).
Crystal structure of the dynein motor domain.
  Science, 331, 1159-1165.
PDB code: 3qmz
21259006 C.Engl, A.T.Beek, M.Bekker, J.T.de Mattos, G.Jovanovic, and M.Buck (2011).
Dissipation of proton motive force is not sufficient to induce the phage shock protein response in Escherichia coli.
  Curr Microbiol, 62, 1374-1385.  
21265790 M.Bush, T.Ghosh, N.Tucker, X.Zhang, and R.Dixon (2011).
Transcriptional regulation by the dedicated nitric oxide sensor, NorR: a route towards NO detoxification.
  Biochem Soc Trans, 39, 289-293.  
  21285955 M.Jovanovic, E.H.James, P.C.Burrows, F.G.Rego, M.Buck, and J.Schumacher (2011).
Regulation of the co-evolved HrpR and HrpS AAA+ proteins required for Pseudomonas syringae pathogenicity.
  Nat Commun, 2, 177.  
21054445 V.Shingler (2011).
Signal sensory systems that impact σ⁵⁴ -dependent transcription.
  FEMS Microbiol Rev, 35, 425-440.  
21070941 B.Chen, T.A.Sysoeva, S.Chowdhury, L.Guo, S.De Carlo, J.A.Hanson, H.Yang, and B.T.Nixon (2010).
Engagement of arginine finger to ATP triggers large conformational changes in NtrC1 AAA+ ATPase for remodeling bacterial RNA polymerase.
  Structure, 18, 1420-1430.
PDB code: 3m0e
21070936 M.Buck, and T.R.Hoover (2010).
An ATPase R-finger leaves its print on transcriptional activation.
  Structure, 18, 1391-1392.  
19955233 N.P.Tucker, T.Ghosh, M.Bush, X.Zhang, and R.Dixon (2010).
Essential roles of three enhancer sites in sigma54-dependent transcription by the nitric oxide sensing regulatory protein NorR.
  Nucleic Acids Res, 38, 1182-1194.  
20439713 P.C.Burrows, N.Joly, and M.Buck (2010).
A prehydrolysis state of an AAA+ ATPase supports transcription activation of an enhancer-dependent RNA polymerase.
  Proc Natl Acad Sci U S A, 107, 9376-9381.  
20167112 S.Koechler, J.Cleiss-Arnold, C.Proux, O.Sismeiro, M.A.Dillies, F.Goulhen-Chollet, F.Hommais, D.Lièvremont, F.Arsène-Ploetze, J.Y.Coppée, and P.N.Bertin (2010).
Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans.
  BMC Microbiol, 10, 53.  
19505947 A.F.Neuwald (2009).
Rapid detection, classification and accurate alignment of up to a million or more related protein sequences.
  Bioinformatics, 25, 1869-1875.  
19143839 B.Chen, T.A.Sysoeva, S.Chowdhury, L.Guo, and B.T.Nixon (2009).
ADPase activity of recombinantly expressed thermotolerant ATPases may be caused by copurification of adenylate kinase of Escherichia coli.
  FEBS J, 276, 807-815.  
19699748 J.D.Batchelor, H.J.Sterling, E.Hong, E.R.Williams, and D.E.Wemmer (2009).
Receiver domains control the active-state stoichiometry of Aquifex aeolicus sigma54 activator NtrC4, as revealed by electrospray ionization mass spectrometry.
  J Mol Biol, 393, 634-643.  
19372156 J.Peña-Sánchez, S.Poggio, U.Flores-Pérez, A.Osorio, C.Domenzain, G.Dreyfus, and L.Camarena (2009).
Identification of the binding site of the {sigma}54 hetero-oligomeric FleQ/FleT activator in the flagellar promoters of Rhodobacter sphaeroides.
  Microbiology, 155, 1669-1679.  
19692583 N.Zhang, N.Joly, P.C.Burrows, M.Jovanovic, S.R.Wigneshweraraj, and M.Buck (2009).
The role of the conserved phenylalanine in the sigma54-interacting GAFTGA motif of bacterial enhancer binding proteins.
  Nucleic Acids Res, 37, 5981-5992.  
19486295 P.C.Burrows, J.Schumacher, S.Amartey, T.Ghosh, T.A.Burgis, X.Zhang, B.T.Nixon, and M.Buck (2009).
Functional roles of the pre-sensor I insertion sequence in an AAA+ bacterial enhancer binding protein.
  Mol Microbiol, 73, 519-533.  
19553192 P.C.Burrows, N.Joly, B.T.Nixon, and M.Buck (2009).
Comparative analysis of activator-Esigma54 complexes formed with nucleotide-metal fluoride analogues.
  Nucleic Acids Res, 37, 5138-5150.  
19356588 P.C.Burrows, N.Joly, W.V.Cannon, B.P.Cámara, M.Rappas, X.Zhang, K.Dawes, B.T.Nixon, S.R.Wigneshweraraj, and M.Buck (2009).
Coupling sigma factor conformation to RNA polymerase reorganisation for DNA melting.
  J Mol Biol, 387, 306-319.  
19474350 Y.Xiao, S.R.Wigneshweraraj, R.Weinzierl, Y.P.Wang, and M.Buck (2009).
Construction and functional analyses of a comprehensive sigma54 site-directed mutant library using alanine-cysteine mutagenesis.
  Nucleic Acids Res, 37, 4482-4497.  
18524912 A.Filloux, A.Hachani, and S.Bleves (2008).
The bacterial type VI secretion machine: yet another player for protein transport across membranes.
  Microbiology, 154, 1570-1583.  
18208392 B.Chen, T.A.Sysoeva, S.Chowdhury, and B.T.Nixon (2008).
Regulation and action of the bacterial enhancer-binding protein AAA+ domains.
  Biochem Soc Trans, 36, 89-93.  
18995832 D.Bose, T.Pape, P.C.Burrows, M.Rappas, S.R.Wigneshweraraj, M.Buck, and X.Zhang (2008).
Organization of an activator-bound RNA polymerase holoenzyme.
  Mol Cell, 32, 337-346.  
18006331 M.Hu, L.Qian, R.P.Briñas, E.S.Lymar, L.Kuznetsova, and J.F.Hainfeld (2008).
Gold nanoparticle-protein arrays improve resolution for cryo-electron microscopy.
  J Struct Biol, 161, 83-91.  
18647240 N.D.Thomsen, and J.M.Berger (2008).
Structural frameworks for considering microbial protein- and nucleic acid-dependent motor ATPases.
  Mol Microbiol, 69, 1071-1090.  
18082766 N.Joly, M.Rappas, M.Buck, and X.Zhang (2008).
Trapping of a transcription complex using a new nucleotide analogue: AMP aluminium fluoride.
  J Mol Biol, 375, 1206-1211.
PDB code: 2vii
18331472 S.Wigneshweraraj, D.Bose, P.C.Burrows, N.Joly, J.Schumacher, M.Rappas, T.Pape, X.Zhang, P.Stockley, K.Severinov, and M.Buck (2008).
Modus operandi of the bacterial RNA polymerase containing the sigma54 promoter-specificity factor.
  Mol Microbiol, 68, 538-546.  
18849995 X.Zhang, and D.B.Wigley (2008).
The 'glutamate switch' provides a link between ATPase activity and ligand binding in AAA+ proteins.
  Nat Struct Mol Biol, 15, 1223-1227.  
17437715 B.Chen, M.Doucleff, D.E.Wemmer, S.De Carlo, H.H.Huang, E.Nogales, T.R.Hoover, E.Kondrashkina, L.Guo, and B.T.Nixon (2007).
ATP ground- and transition states of bacterial enhancer binding AAA+ ATPases support complex formation with their target protein, sigma54.
  Structure, 15, 429-440.  
17307879 B.M.Reinhard, S.Sheikholeslami, A.Mastroianni, A.P.Alivisatos, and J.Liphardt (2007).
Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes.
  Proc Natl Acad Sci U S A, 104, 2667-2672.  
18075576 C.V.Robinson, A.Sali, and W.Baumeister (2007).
The molecular sociology of the cell.
  Nature, 450, 973-982.  
17761879 E.L.Dueber, J.E.Corn, S.D.Bell, and J.M.Berger (2007).
Replication origin recognition and deformation by a heterodimeric archaeal Orc1 complex.
  Science, 317, 1210-1213.
PDB code: 2qby
17920859 J.Marles-Wright, and R.J.Lewis (2007).
Stress responses of bacteria.
  Curr Opin Struct Biol, 17, 755-760.  
17997097 L.L.Beck, T.G.Smith, and T.R.Hoover (2007).
Look, no hands! Unconventional transcriptional activators in bacteria.
  Trends Microbiol, 15, 530-537.  
17481658 M.Doucleff, J.G.Pelton, P.S.Lee, B.T.Nixon, and D.E.Wemmer (2007).
Structural basis of DNA recognition by the alternative sigma-factor, sigma54.
  J Mol Biol, 369, 1070-1078.
PDB codes: 2o8k 2o9l
17157497 M.Rappas, D.Bose, and X.Zhang (2007).
Bacterial enhancer-binding proteins: unlocking sigma54-dependent gene transcription.
  Curr Opin Struct Biol, 17, 110-116.  
17328674 M.Sharon, and C.V.Robinson (2007).
The role of mass spectrometry in structure elucidation of dynamic protein complexes.
  Annu Rev Biochem, 76, 167-193.  
17883390 N.Joly, M.Rappas, S.R.Wigneshweraraj, X.Zhang, and M.Buck (2007).
Coupling nucleotide hydrolysis to transcription activation performance in a bacterial enhancer binding protein.
  Mol Microbiol, 66, 583-595.  
18023171 P.A.Tucker, and L.Sallai (2007).
The AAA+ superfamily--a myriad of motions.
  Curr Opin Struct Biol, 17, 641-652.  
17313521 S.Spiro (2007).
Regulators of bacterial responses to nitric oxide.
  FEMS Microbiol Rev, 31, 193-211.  
17062628 A.Costa, T.Pape, M.van Heel, P.Brick, A.Patwardhan, and S.Onesti (2006).
Structural basis of the Methanothermobacter thermautotrophicus MCM helicase activity.
  Nucleic Acids Res, 34, 5829-5838.  
17121997 A.W.Serohijos, Y.Chen, F.Ding, T.C.Elston, and N.V.Dokholyan (2006).
A structural model reveals energy transduction in dynein.
  Proc Natl Acad Sci U S A, 103, 18540-18545.
PDB code: 2gf8
16430918 M.Rappas, J.Schumacher, H.Niwa, M.Buck, and X.Zhang (2006).
Structural basis of the nucleotide driven conformational changes in the AAA+ domain of transcription activator PspF.
  J Mol Biol, 357, 481-492.
PDB codes: 2c96 2c98 2c99 2c9c
16751184 S.De Carlo, B.Chen, T.R.Hoover, E.Kondrashkina, E.Nogales, and B.T.Nixon (2006).
The structural basis for regulated assembly and function of the transcriptional activator NtrC.
  Genes Dev, 20, 1485-1495.  
16359326 Y.X.Huo, Z.X.Tian, M.Rappas, J.Wen, Y.C.Chen, C.H.You, X.Zhang, M.Buck, Y.P.Wang, and A.Kolb (2006).
Protein-induced DNA bending clarifies the architectural organization of the sigma54-dependent glnAp2 promoter.
  Mol Microbiol, 59, 168-180.  
16045608 A.J.Darwin (2005).
The phage-shock-protein response.
  Mol Microbiol, 57, 621-628.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer