spacer
spacer

PDBsum entry 2jmn

Go to PDB code: 
protein Protein-protein interface(s) links
Hormone/growth factor PDB id
2jmn
Jmol
Contents
Protein chains
21 a.a.
30 a.a. *
* Residue conservation analysis
PDB id:
2jmn
Name: Hormone/growth factor
Title: Nmr structure of human insulin mutant his-b10-asp, pro-b28- lys, lys-b29-pro, 20 structures
Structure: Insulin a chain. Chain: a. Engineered: yes. Insulin b chain. Chain: b. Engineered: yes. Mutation: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: ins. Expressed in: escherichia coli. Expression_system_taxid: 562.
NMR struc: 20 models
Authors: Q.X.Hua,S.Q.Hu,B.H.Frank,W.H.Jia,Y.C.Chu,S.H.Wang,G.T.Burke, P.G.Katsoyannis,M.A.Weiss
Key ref:
Q.X.Hua et al. (1996). Mapping the functional surface of insulin by design: structure and function of a novel A-chain analogue. J Mol Biol, 264, 390-403. PubMed id: 8951384 DOI: 10.1006/jmbi.1996.0648
Date:
21-Nov-06     Release date:   05-Dec-06    
Supersedes: 1lnp
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P01308  (INS_HUMAN) -  Insulin
Seq:
Struc:
110 a.a.
21 a.a.
Protein chain
Pfam   ArchSchema ?
P01308  (INS_HUMAN) -  Insulin
Seq:
Struc:
110 a.a.
30 a.a.*
Key:    PfamA domain  Secondary structure
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     extracellular region   1 term 
  Biochemical function     hormone activity     1 term  

 

 
DOI no: 10.1006/jmbi.1996.0648 J Mol Biol 264:390-403 (1996)
PubMed id: 8951384  
 
 
Mapping the functional surface of insulin by design: structure and function of a novel A-chain analogue.
Q.X.Hua, S.Q.Hu, B.H.Frank, W.Jia, Y.C.Chu, S.H.Wang, G.T.Burke, P.G.Katsoyannis, M.A.Weiss.
 
  ABSTRACT  
 
Functional surfaces of a protein are often mapped by combination of X-ray crystallography and mutagenesis. Such studies of insulin have yielded paradoxical results, suggesting that the native state is inactive and reorganizes on receptor binding. Of particular interest is the N-terminal alpha-helix of the A-chain. Does this segment function as an alpha-helix or reorganize as recently proposed in a prohormone-convertase complex? To correlate structure and function, we describe a mapping strategy based on protein design. The solution structure of an engineered monomer ([AspB10, LysB28, ProB29]-human insulin) is determined at neutral pH as a template for synthesis of a novel A-chain analogue. Designed by analogy to a protein-folding intermediate, the analogue lacks the A6-A11 disulphide bridge; the cysteine residues are replaced by serine. Its solution structure is remarkable for segmental unfolding of the N-terminal A-chain alpha-helix (A1 to A8) in an otherwise native subdomain. The structure demonstrates that the overall orientation of the A and B chains is consistent with reorganization of the A-chain's N-terminal segment. Nevertheless, the analogue's low biological activity suggests that this segment, a site of clinical mutation causing diabetes mellitus, functions as a preformed recognition alpha-helix.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. A, Ribbon model of T6 insulin hexamer in 2-Zn crystal form (Protein Data Bank identifier 2ZN; Baker et al., 1988). Protomers are shown in red and green. The central Zn-binding sites are coordinated by HisB10 (white). The view is along the 3-fold symmetry axis of the hexamer. B, Surface representation of T-state protomer (2-Zn molecule 1) showing residues HisB10, ProB28 and LysB29 (green; sites of mutation in DKP-insulin) and cystine A6--A11 (yellow; sites of serine substitution in DKP-[A6-A11] Ser ). Because the latter is inaccessible, the yellow surface is not well seen. The view is rotated from that shown in A to visualize most clearly the relevant protein surfaces. C, Stereo depiction of internal environment of A6--A11 disulphide bridge (yellow) in 2-Zn molecule 1; neighbouring aliphatic side-chains are shown in red (A-chain) and blue (B-chain) as indicated.
Figure 5.
Figure 5. Differences in 1 H-NMR chemical shifts between DKP-insulin and DKP-[A6-A11] Ser at neutral pH are shown by residue: a, amide resonances, b, a resonances, c, b methylene resonances, and d, other side-chain resonances. For each residue only the difference largest in magnitude is shown. A-chain residues are numbered 1 to 21; B-chain residues, 22 to 51. Arrows indicate sites of serine substitution in DKP-[A6- A11] Ser .
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (1996, 264, 390-403) copyright 1996.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20948967 M.Liu, L.Haataja, J.Wright, N.P.Wickramasinghe, Q.X.Hua, N.F.Phillips, F.Barbetti, M.A.Weiss, and P.Arvan (2010).
Mutant INS-gene induced diabetes of youth: proinsulin cysteine residues impose dominant-negative inhibition on wild-type proinsulin transport.
  PLoS One, 5, e13333.  
20106974 Y.Yang, Q.X.Hua, J.Liu, E.H.Shimizu, M.H.Choquette, R.B.Mackin, and M.A.Weiss (2010).
Solution structure of proinsulin: connecting domain flexibility and prohormone processing.
  J Biol Chem, 285, 7847-7851.
PDB code: 2kqp
20336256 Z.Ganim, K.C.Jones, and A.Tokmakoff (2010).
Insulin dimer dissociation and unfolding revealed by amide I two-dimensional infrared spectroscopy.
  Phys Chem Chem Phys, 12, 3579-3588.  
19321435 B.Xu, K.Huang, Y.C.Chu, S.Q.Hu, S.Nakagawa, S.Wang, R.Y.Wang, J.Whittaker, P.G.Katsoyannis, and M.A.Weiss (2009).
Decoding the Cryptic Active Conformation of a Protein by Synthetic Photoscanning: INSULIN INSERTS A DETACHABLE ARM BETWEEN RECEPTOR DOMAINS.
  J Biol Chem, 284, 14597-14608.  
19618407 G.Le Flem, J.Pecher, V.Le Flem-Bonhomme, A.Withdrawn, J.Rochette, J.P.Pujol, and P.Bogdanowicz (2009).
Human insulin A-chain peptide analog(s) with in vitro biological activity.
  Cell Biochem Funct, 27, 370-377.  
19395706 M.A.Weiss (2009).
Proinsulin and the genetics of diabetes mellitus.
  J Biol Chem, 284, 19159-19163.  
19850922 M.Liu, Z.L.Wan, Y.C.Chu, H.Aladdin, B.Klaproth, M.Choquette, Q.X.Hua, R.B.Mackin, J.S.Rao, P.De Meyts, P.G.Katsoyannis, P.Arvan, and M.A.Weiss (2009).
Crystal structure of a "nonfoldable" insulin: impaired folding efficiency despite native activity.
  J Biol Chem, 284, 35259-35272.
PDB code: 3gky
19321436 Q.X.Hua, B.Xu, K.Huang, S.Q.Hu, S.Nakagawa, W.Jia, S.Wang, J.Whittaker, P.G.Katsoyannis, and M.A.Weiss (2009).
Enhancing the Activity of a Protein by Stereospecific Unfolding: CONFORMATIONAL LIFE CYCLE OF INSULIN AND ITS EVOLUTIONARY ORIGINS.
  J Biol Chem, 284, 14586-14596.
PDB codes: 2k91 2k9r
18332129 Q.X.Hua, S.H.Nakagawa, W.Jia, K.Huang, N.B.Phillips, S.Q.Hu, and M.A.Weiss (2008).
Design of an active ultrastable single-chain insulin analog: synthesis, structure, and therapeutic implications.
  J Biol Chem, 283, 14703-14716.
PDB codes: 2jzq 3bxq
18492668 Z.L.Wan, K.Huang, S.Q.Hu, J.Whittaker, and M.A.Weiss (2008).
The structure of a mutant insulin uncouples receptor binding from protein allostery. An electrostatic block to the TR transition.
  J Biol Chem, 283, 21198-21210.  
18004974 Z.Y.Guo, Z.S.Qiao, and Y.M.Feng (2008).
The in vitro oxidative folding of the insulin superfamily.
  Antioxid Redox Signal, 10, 127-140.  
17410596 J.P.Mayer, F.Zhang, and R.D.DiMarchi (2007).
Insulin structure and function.
  Biopolymers, 88, 687-713.  
17884811 K.Huang, S.J.Chan, Q.X.Hua, Y.C.Chu, R.Y.Wang, B.Klaproth, W.Jia, J.Whittaker, P.De Meyts, S.H.Nakagawa, D.F.Steiner, P.G.Katsoyannis, and M.A.Weiss (2007).
The A-chain of insulin contacts the insert domain of the insulin receptor. Photo-cross-linking and mutagenesis of a diabetes-related crevice.
  J Biol Chem, 282, 35337-35349.
PDB codes: 2jum 2juu 2juv
17716170 M.Koch, F.F.Schmid, V.Zoete, and M.Meuwly (2006).
Insulin: a model system for nanomedicine?
  Nanomed, 1, 373-378.  
16864583 Q.X.Hua, J.P.Mayer, W.Jia, J.Zhang, and M.A.Weiss (2006).
The folding nucleus of the insulin superfamily: a flexible peptide model foreshadows the native state.
  J Biol Chem, 281, 28131-28142.  
16728398 Q.X.Hua, M.Liu, S.Q.Hu, W.Jia, P.Arvan, and M.A.Weiss (2006).
A conserved histidine in insulin is required for the foldability of human proinsulin: structure and function of an ALAB5 analog.
  J Biol Chem, 281, 24889-24899.
PDB code: 2h67
16762918 Q.X.Hua, S.Nakagawa, S.Q.Hu, W.Jia, S.Wang, and M.A.Weiss (2006).
Toward the active conformation of insulin: stereospecific modulation of a structural switch in the B chain.
  J Biol Chem, 281, 24900-24909.
PDB codes: 2hh4 2hho
16751187 S.H.Nakagawa, Q.X.Hua, S.Q.Hu, W.Jia, S.Wang, P.G.Katsoyannis, and M.A.Weiss (2006).
Chiral mutagenesis of insulin. Contribution of the B20-B23 beta-turn to activity and stability.
  J Biol Chem, 281, 22386-22396.  
16215822 J.Jing, and S.Lu (2005).
Inhibition of platelet aggregation of a mutant proinsulin chimera engineered by introduction of a native Lys-Gly-Asp-containing sequence.
  Biotechnol Lett, 27, 1259-1265.  
16080143 V.Zoete, M.Meuwly, and M.Karplus (2005).
Study of the insulin dimerization: binding free energy calculations and per-residue free energy decomposition.
  Proteins, 61, 79-93.  
14988398 Q.X.Hua, and M.A.Weiss (2004).
Mechanism of insulin fibrillation: the structure of insulin under amyloidogenic conditions resembles a protein-folding intermediate.
  J Biol Chem, 279, 21449-21460.
PDB code: 1sf1
15501824 Y.Chen, R.Jin, H.Y.Dong, and Y.M.Feng (2004).
In vitro refolding/unfolding pathways of amphioxus insulin-like peptide: implications for folding behavior of insulin family proteins.
  J Biol Chem, 279, 55224-55233.  
12876340 G.D.Smith, and R.H.Blessing (2003).
Lessons from an aged, dried crystal of T(6) human insulin.
  Acta Crystallogr D Biol Crystallogr, 59, 1384-1394.
PDB codes: 1os3 1os4
12654724 Q.X.Hua, S.H.Nakagawa, J.Wilken, R.R.Ramos, W.Jia, J.Bass, and M.A.Weiss (2003).
A divergent INS protein in Caenorhabditis elegans structurally resembles human insulin and activates the human insulin receptor.
  Genes Dev, 17, 826-831.  
14573855 X.Y.Jia, Z.Y.Guo, Y.Wang, Y.Xu, S.S.Duan, and Y.M.Feng (2003).
Peptide models of four possible insulin folding intermediates with two disulfides.
  Protein Sci, 12, 2412-2419.  
14596591 Z.L.Wan, B.Xu, Y.C.Chu, P.G.Katsoyannis, and M.A.Weiss (2003).
Crystal structure of allo-Ile(A2)-insulin, an inactive chiral analogue: implications for the mechanism of receptor binding.
  Biochemistry, 42, 12770-12783.
PDB codes: 1lw8 1pc1 1q4v
12624089 Z.S.Qiao, C.Y.Min, Q.X.Hua, M.A.Weiss, and Y.M.Feng (2003).
In vitro refolding of human proinsulin. Kinetic intermediates, putative disulfide-forming pathway folding initiation site, and potential role of C-peptide in folding process.
  J Biol Chem, 278, 17800-17809.  
11742127 B.Xu, Q.X.Hua, S.H.Nakagawa, W.Jia, Y.C.Chu, P.G.Katsoyannis, and M.A.Weiss (2002).
A cavity-forming mutation in insulin induces segmental unfolding of a surrounding alpha-helix.
  Protein Sci, 11, 104-116.
PDB code: 1k3m
12196530 Q.X.Hua, Y.C.Chu, W.Jia, N.F.Phillips, R.Y.Wang, P.G.Katsoyannis, and M.A.Weiss (2002).
Mechanism of insulin chain combination. Asymmetric roles of A-chain alpha-helices in disulfide pairing.
  J Biol Chem, 277, 43443-43453.
PDB code: 1lkq
12186544 Z.Y.Guo, L.Shen, W.Gu, A.Z.Wu, J.G.Ma, and Y.M.Feng (2002).
In vitro evolution of amphioxus insulin-like peptide to mammalian insulin.
  Biochemistry, 41, 10603-10607.  
11814349 Z.Y.Guo, L.Shen, and Y.M.Feng (2002).
The different folding behavior of insulin and insulin-like growth factor 1 is mainly controlled by their B-chain/domain.
  Biochemistry, 41, 1556-1567.  
12186542 Z.Y.Guo, L.Shen, and Y.M.Feng (2002).
The different energetic state of the intra A-chain/domain disulfide of insulin and insulin-like growth factor 1 is mainly controlled by their B-chain/domain.
  Biochemistry, 41, 10585-10592.  
11517220 M.A.Weiss, Q.X.Hua, W.Jia, S.H.Nakagawa, Y.C.Chu, S.Q.Hu, and P.G.Katsoyannis (2001).
Activities of monomeric insulin analogs at position A8 are uncorrelated with their thermodynamic stabilities.
  J Biol Chem, 276, 40018-40024.  
11112528 M.A.Weiss, Q.X.Hua, W.Jia, Y.C.Chu, R.Y.Wang, and P.G.Katsoyannis (2000).
Hierarchical protein "un-design": insulin's intrachain disulfide bridge tethers a recognition alpha-helix.
  Biochemistry, 39, 15429-15440.  
9558319 Q.X.Hua, W.H.Jia, B.P.Bullock, J.F.Habener, and M.A.Weiss (1998).
Transcriptional activator-coactivator recognition: nascent folding of a kinase-inducible transactivation domain predicts its structure on coactivator binding.
  Biochemistry, 37, 5858-5866.  
9566117 C.McInnes, and B.D.Sykes (1997).
Growth factor receptors: structure, mechanism, and drug discovery.
  Biopolymers, 43, 339-366.  
9131992 I.Pittman, S.H.Nakagawa, H.S.Tager, and D.F.Steiner (1997).
Maintenance of the B-chain beta-turn in [GlyB24] insulin mutants: a steady-state fluorescence anisotropy study.
  Biochemistry, 36, 3430-3437.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.