spacer
spacer

PDBsum entry 1zc4

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Signaling protein PDB id
1zc4

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
173 a.a. *
113 a.a. *
Ligands
GNP ×2
Metals
_MG ×2
Waters ×153
* Residue conservation analysis
PDB id:
1zc4
Name: Signaling protein
Title: Crystal structure of the ral-binding domain of exo84 in complex with the active rala
Structure: Ras-related protein ral-a. Chain: a, c. Engineered: yes. Mutation: yes. Exocyst complex protein exo84. Chain: b, d. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: rala, ral. Expressed in: escherichia coli bl21. Expression_system_taxid: 511693. Rattus norvegicus. Norway rat. Organism_taxid: 10116.
Biol. unit: Tetramer (from PQS)
Resolution:
2.50Å     R-factor:   0.208     R-free:   0.248
Authors: R.Jin,J.R.Junutula,H.T.Matern,K.E.Ervin,R.H.Scheller,A.T.Brunger
Key ref:
R.Jin et al. (2005). Exo84 and Sec5 are competitive regulatory Sec6/8 effectors to the RalA GTPase. EMBO J, 24, 2064-2074. PubMed id: 15920473 DOI: 10.1038/sj.emboj.7600699
Date:
10-Apr-05     Release date:   14-Jun-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P11233  (RALA_HUMAN) -  Ras-related protein Ral-A from Homo sapiens
Seq:
Struc:
206 a.a.
173 a.a.*
Protein chains
Pfam   ArchSchema ?
O54924  (EXOC8_RAT) -  Exocyst complex component 8 from Rattus norvegicus
Seq:
Struc:
 
Seq:
Struc:
716 a.a.
113 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class 2: Chains A, C: E.C.3.6.5.2  - small monomeric GTPase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: GTP + H2O = GDP + phosphate + H+
GTP
+ H2O
=
GDP
Bound ligand (Het Group name = GNP)
matches with 81.82% similarity
+ phosphate
+ H(+)
   Enzyme class 3: Chains B, D: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1038/sj.emboj.7600699 EMBO J 24:2064-2074 (2005)
PubMed id: 15920473  
 
 
Exo84 and Sec5 are competitive regulatory Sec6/8 effectors to the RalA GTPase.
R.Jin, J.R.Junutula, H.T.Matern, K.E.Ervin, R.H.Scheller, A.T.Brunger.
 
  ABSTRACT  
 
The Sec6/8 complex, also known as the exocyst complex, is an octameric protein complex that has been implicated in tethering of secretory vesicles to specific regions on the plasma membrane. Two subunits of the Sec6/8 complex, Exo84 and Sec5, have recently been shown to be effector targets for active Ral GTPases. However, the mechanism by which Ral proteins regulate the Sec6/8 activities remains unclear. Here, we present the crystal structure of the Ral-binding domain of Exo84 in complex with active RalA. The structure reveals that the Exo84 Ral-binding domain adopts a pleckstrin homology domain fold, and that RalA interacts with Exo84 via an extended interface that includes both switch regions. Key residues of Exo84 and RalA were found that determine the specificity of the complex interactions; these interactions were confirmed by mutagenesis binding studies. Structural and biochemical data show that Exo84 and Sec5 competitively bind to active RalA. Taken together, these results further strengthen the proposed role of RalA-regulated assembly of the Sec6/8 complex.
 
  Selected figure(s)  
 
Figure 2.
Figure 2 Structure of the Exo84-RBD:RalA complex. (A) Ribbon diagram of the Exo84-RBD:RalA complex. Exo84-RBD is colored in red. RalA is colored in green, except that switch I (38 -50) and switch II (69 -85) are highlighted in orange. The secondary structures of RalA are numbered in a sequential order. The GMPPNP is shown in a ball-and-stick representation and the Mg2+ is shown as a gray sphere. A close-up view of the boxed region is shown in panel B, which is superimposed with a portion of electron density map. (B) Representative portion of a [A]-weighted 2F[o]-F[c] electron density map (contoured at 1.0 ) overlaid with the final refined model. The Exo84 and RalA molecules are colored as in panel A and the selected residues are shown in a ball-and-stick representation. (C) Ribbon representation of the Exo84-RBD structure. The secondary structure elements are numbered in a sequential order. (D) Exo84-RBD:RalA complex forms a two-fold symmetry related dimer in the crystal. The Exo84-RBD molecules are red and cyan, while the RalA molecules are green and light purple, respectively. Also shown are the two GMPPNP molecules. The putative phospholipid-binding sites are indicated by green oval circles.
Figure 4.
Figure 4 Exo84 and Sec5 have overlapping binding sites on the active RalA. (A) Superposition of the Exo84-RBD:RalA and the Sec5-RBD:RalA complexes. RalA is green in the Exo84-RBD:RalA complex and purple when in complex with Sec5-RBD. Exo84-RBD and Sec5-RBD are colored in red and blue, respectively. The two RalA molecules are superimposed using all equivalent C atoms except for residues in the two switch regions. Note that Exo84 and Sec5 cannot bind to RalA simultaneously. Close-up views of the areas that are indicated by red and blue boxes are shown in panels B and C, respectively. (B) Close-up view of the complex interface around RalA switch II where significantly different RalA conformations were observed between the two complexes. Shown are the five RalA residues in this region that directly contact Exo84-RBD. The molecules are colored as in panel A. (C) Close-up view of the Sec5-RBD:RalA interface. Shown are the five RalA residues that form hydrogen bonds with Sec5-RBD. The color scheme is the same as in panels A and B. (D) Molecular surface of RalA when it is in complex with Exo84-RBD. The RalA residues that exclusively contact Exo84-RBD are colored red, the residues that only bind Sec5-RBD are colored blue and the residues that are involved in interactions with both effectors are colored in orange.
 
  The above figures are reprinted from an Open Access publication published by Macmillan Publishers Ltd: EMBO J (2005, 24, 2064-2074) copyright 2005.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21241894 B.O.Bodemann, A.Orvedahl, T.Cheng, R.R.Ram, Y.H.Ou, E.Formstecher, M.Maiti, C.C.Hazelett, E.M.Wauson, M.Balakireva, J.H.Camonis, C.Yeaman, B.Levine, and M.A.White (2011).
RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly.
  Cell, 144, 253-267.  
21155963 H.Takeuchi, N.Furuta, I.Morisaki, and A.Amano (2011).
Exit of intracellular Porphyromonas gingivalis from gingival epithelial cells is mediated by endocytic recycling pathway.
  Cell Microbiol, 13, 677-691.  
21235523 M.Hertzog, and P.Chavrier (2011).
Cell polarity during motile processes: keeping on track with the exocyst complex.
  Biochem J, 433, 403-409.  
21516108 X.W.Chen, D.Leto, J.Xiao, J.Goss, Q.Wang, J.A.Shavit, T.Xiong, G.Yu, D.Ginsburg, D.Toomre, Z.Xu, and A.R.Saltiel (2011).
Exocyst function regulated by effector phosphorylation.
  Nat Cell Biol, 13, 580-588.  
20329706 G.D.Henry, D.J.Corrigan, J.V.Dineen, and J.D.Baleja (2010).
Charge effects in the selection of NPF motifs by the EH domain of EHD1.
  Biochemistry, 49, 3381-3392.  
19575650 I.M.Yu, and F.M.Hughson (2010).
Tethering factors as organizers of intracellular vesicular traffic.
  Annu Rev Cell Dev Biol, 26, 137-156.  
20700106 J.A.Kenniston, and M.A.Lemmon (2010).
Dynamin GTPase regulation is altered by PH domain mutations found in centronuclear myopathy patients.
  EMBO J, 29, 3054-3067.  
20139078 K.Baek, A.Knödler, S.H.Lee, X.Zhang, K.Orlando, J.Zhang, T.J.Foskett, W.Guo, and R.Dominguez (2010).
Structure-function study of the N-terminal domain of exocyst subunit Sec3.
  J Biol Chem, 285, 10424-10433.
PDB code: 3hie
20062059 M.Yamashita, K.Kurokawa, Y.Sato, A.Yamagata, H.Mimura, A.Yoshikawa, K.Sato, A.Nakano, and S.Fukai (2010).
Structural basis for the Rho- and phosphoinositide-dependent localization of the exocyst subunit Sec3.
  Nat Struct Mol Biol, 17, 180-186.
PDB code: 3a58
19913036 Q.Xu, A.Bateman, R.D.Finn, P.Abdubek, T.Astakhova, H.L.Axelrod, C.Bakolitsa, D.Carlton, C.Chen, H.J.Chiu, M.Chiu, T.Clayton, D.Das, M.C.Deller, L.Duan, K.Ellrott, D.Ernst, C.L.Farr, J.Feuerhelm, J.C.Grant, A.Grzechnik, G.W.Han, L.Jaroszewski, K.K.Jin, H.E.Klock, M.W.Knuth, P.Kozbial, S.S.Krishna, A.Kumar, D.Marciano, D.McMullan, M.D.Miller, A.T.Morse, E.Nigoghossian, A.Nopakun, L.Okach, C.Puckett, R.Reyes, C.L.Rife, N.Sefcovic, H.J.Tien, C.B.Trame, H.van den Bedem, D.Weekes, T.Wooten, K.O.Hodgson, J.Wooley, M.A.Elsliger, A.M.Deacon, A.Godzik, S.A.Lesley, and I.A.Wilson (2010).
Bacterial pleckstrin homology domains: a prokaryotic origin for the PH domain.
  J Mol Biol, 396, 31-46.
PDB codes: 3b77 3dcx 3hsa
20696399 R.B.Fenwick, L.J.Campbell, K.Rajasekar, S.Prasannan, D.Nietlispach, J.Camonis, D.Owen, and H.R.Mott (2010).
The RalB-RLIP76 complex reveals a novel mode of ral-effector interaction.
  Structure, 18, 985-995.
PDB codes: 2kwh 2kwi
19935652 K.Hase, S.Kimura, H.Takatsu, M.Ohmae, S.Kawano, H.Kitamura, M.Ito, H.Watarai, C.C.Hazelett, C.Yeaman, and H.Ohno (2009).
M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex.
  Nat Cell Biol, 11, 1427-1432.  
19214222 N.J.Croteau, M.L.Furgason, D.Devos, and M.Munson (2009).
Conservation of helical bundle structure between the exocyst subunits.
  PLoS ONE, 4, e4443.  
19567872 Q.Xu, B.A.Traag, J.Willemse, D.McMullan, M.D.Miller, M.A.Elsliger, P.Abdubek, T.Astakhova, H.L.Axelrod, C.Bakolitsa, D.Carlton, C.Chen, H.J.Chiu, M.Chruszcz, T.Clayton, D.Das, M.C.Deller, L.Duan, K.Ellrott, D.Ernst, C.L.Farr, J.Feuerhelm, J.C.Grant, A.Grzechnik, S.K.Grzechnik, G.W.Han, L.Jaroszewski, K.K.Jin, H.E.Klock, M.W.Knuth, P.Kozbial, S.S.Krishna, A.Kumar, D.Marciano, W.Minor, A.M.Mommaas, A.T.Morse, E.Nigoghossian, A.Nopakun, L.Okach, S.Oommachen, J.Paulsen, C.Puckett, R.Reyes, C.L.Rife, N.Sefcovic, H.J.Tien, C.B.Trame, H.van den Bedem, S.Wang, D.Weekes, K.O.Hodgson, J.Wooley, A.M.Deacon, A.Godzik, S.A.Lesley, I.A.Wilson, and G.P.van Wezel (2009).
Structural and functional characterizations of SsgB, a conserved activator of developmental cell division in morphologically complex actinomycetes.
  J Biol Chem, 284, 25268-25279.
PDB code: 3cm1
  20161436 R.S.Kang, and H.Fölsch (2009).
An old dog learns new tricks: novel functions of the exocyst complex in polarized epithelia in animals.
  F1000 Biol Rep, 1, nihpa159599.  
19394299 T.D.Bunney, O.Opaleye, S.M.Roe, P.Vatter, R.W.Baxendale, C.Walliser, K.L.Everett, M.B.Josephs, C.Christow, F.Rodrigues-Lima, P.Gierschik, L.H.Pearl, and M.Katan (2009).
Structural insights into formation of an active signaling complex between Rac and phospholipase C gamma 2.
  Mol Cell, 34, 223-233.
PDB codes: 2w2t 2w2v 2w2w 2w2x
18282697 H.Fölsch (2008).
Regulation of membrane trafficking in polarized epithelial cells.
  Curr Opin Cell Biol, 20, 208-213.  
18706813 H.Wu, G.Rossi, and P.Brennwald (2008).
The ghost in the machine: small GTPases as spatial regulators of exocytosis.
  Trends Cell Biol, 18, 397-404.  
18756269 I.Cascone, R.Selimoglu, C.Ozdemir, E.Del Nery, C.Yeaman, M.White, and J.Camonis (2008).
Distinct roles of RalA and RalB in the progression of cytokinesis are supported by distinct RalGEFs.
  EMBO J, 27, 2375-2387.  
18426794 J.A.Lopez, E.P.Kwan, L.Xie, Y.He, D.E.James, and H.Y.Gaisano (2008).
The RalA GTPase is a central regulator of insulin exocytosis from pancreatic islet beta cells.
  J Biol Chem, 283, 17939-17945.  
17938170 M.Kawato, R.Shirakawa, H.Kondo, T.Higashi, T.Ikeda, K.Okawa, S.Fukai, O.Nureki, T.Kita, and H.Horiuchi (2008).
Regulation of platelet dense granule secretion by the Ral GTPase-exocyst pathway.
  J Biol Chem, 283, 166-174.  
17583731 B.A.Moore, H.H.Robinson, and Z.Xu (2007).
The crystal structure of mouse Exo70 reveals unique features of the mammalian exocyst.
  J Mol Biol, 371, 410-421.
PDB codes: 2pft 2pfv
17229837 C.J.Westlake, J.R.Junutula, G.C.Simon, M.Pilli, R.Prekeris, R.H.Scheller, P.K.Jackson, and A.G.Eldridge (2007).
Identification of Rab11 as a small GTPase binding protein for the Evi5 oncogene.
  Proc Natl Acad Sci U S A, 104, 1236-1241.  
17989692 E.W.Frische, W.Pellis-van Berkel, G.van Haaften, E.Cuppen, R.H.Plasterk, M.Tijsterman, J.L.Bos, and F.J.Zwartkruis (2007).
RAP-1 and the RAL-1/exocyst pathway coordinate hypodermal cell organization in Caenorhabditis elegans.
  EMBO J, 26, 5083-5092.  
17581628 G.Zhu, J.Chen, J.Liu, J.S.Brunzelle, B.Huang, N.Wakeham, S.Terzyan, X.Li, Z.Rao, G.Li, and X.C.Zhang (2007).
Structure of the APPL1 BAR-PH domain and characterization of its interaction with Rab5.
  EMBO J, 26, 3484-3493.
PDB codes: 2q12 2q13
17875936 S.C.Falsetti, D.A.Wang, H.Peng, D.Carrico, A.D.Cox, C.J.Der, A.D.Hamilton, and S.M.Sebti (2007).
Geranylgeranyltransferase I inhibitors target RalB to inhibit anchorage-dependent growth and induce apoptosis and RalA to inhibit anchorage-independent growth.
  Mol Cell Biol, 27, 8003-8014.  
16855310 B.DeLaBarre, and A.T.Brunger (2006).
Considerations for the refinement of low-resolution crystal structures.
  Acta Crystallogr D Biol Crystallogr, 62, 923-932.  
16781882 E.M.van Dam, and P.J.Robinson (2006).
Ral: mediator of membrane trafficking.
  Int J Biochem Cell Biol, 38, 1841-1847.  
16826234 M.Munson, and P.Novick (2006).
The exocyst defrocked, a framework of rods revealed.
  Nat Struct Mol Biol, 13, 577-581.  
17125150 R.L.Rich, and D.G.Myszka (2006).
Survey of the year 2005 commercial optical biosensor literature.
  J Mol Recognit, 19, 478-534.  
17028198 X.W.Chen, M.Inoue, S.C.Hsu, and A.R.Saltiel (2006).
RalA-exocyst-dependent recycling endosome trafficking is required for the completion of cytokinesis.
  J Biol Chem, 281, 38609-38616.  
16249794 G.Dong, A.H.Hutagalung, C.Fu, P.Novick, and K.M.Reinisch (2005).
The structures of exocyst subunit Exo70p and the Exo84p C-terminal domains reveal a common motif.
  Nat Struct Mol Biol, 12, 1094-1100.
PDB codes: 2b1e 2d2s
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer