 |
PDBsum entry 1z1u
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Virus/viral protein
|
PDB id
|
|
|
|
1z1u
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Theoretical model |
 |
|
PDB id:
|
 |
|
 |
| Name: |
 |
Virus/viral protein
|
 |
|
Title:
|
 |
Model of bacteriophage t4 hexameric capsomers. The model is based on the crystal structure of capsid vertex protein gp24
|
|
Structure:
|
 |
Major capsid protein (g23). Chain: a, b, c, d, e, f
|
|
Source:
|
 |
Bacteriophage t4
|
|
Authors:
|
 |
A.Fokine,P.G.Leiman,M.M.Shneider,B.Ahvazi,K.M.Boeshans, A.C.Steven,L.W.Black,V.V.Mesyanzhinov,M.G.Rossmann
|
Key ref:
|
 |
A.Fokine
et al.
(2005).
Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97 point to a common ancestry.
Proc Natl Acad Sci U S A,
102,
7163-7168.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
06-Mar-05
|
Release date:
|
26-Apr-05
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
No UniProt id for this chain
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Proc Natl Acad Sci U S A
102:7163-7168
(2005)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97 point to a common ancestry.
|
|
A.Fokine,
P.G.Leiman,
M.M.Shneider,
B.Ahvazi,
K.M.Boeshans,
A.C.Steven,
L.W.Black,
V.V.Mesyanzhinov,
M.G.Rossmann.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Gene product (gp) 24 of bacteriophage T4 forms the pentameric vertices of the
capsid. Using x-ray crystallography, we found the principal domain of gp24 to
have a polypeptide fold similar to that of the HK97 phage capsid protein plus an
additional insertion domain. Fitting gp24 monomers into a cryo-EM density map of
the mature T4 capsid suggests that the insertion domain interacts with a
neighboring subunit, effecting a stabilization analogous to the covalent
crosslinking in the HK97 capsid. Sequence alignment and genetic data show that
the folds of gp24 and the hexamer-forming capsid protein, gp23*, are similar.
Accordingly, models of gp24* pentamers, gp23* hexamers, and the whole capsid
were built, based on a cryo-EM image reconstruction of the capsid. Mutations in
gene 23 that affect capsid shape map to the capsomer's periphery, whereas
mutations that allow gp23 to substitute for gp24 at the vertices modify the
interactions between monomers within capsomers. Structural data show that capsid
proteins of most tailed phages, and some eukaryotic viruses, may have evolved
from a common ancestor.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Fig. 1. A cryo-EM reconstruction at 22.5-Å resolution
of the T4 head capsid is shown. The gene products 23, 24, hoc,
and soc are colored blue, magenta, yellow, and pink,
respectively. The reconstruction used 5-fold averaging about the
long axis of the head. The features of the tail (green) appear
blurred because the tail has six-fold symmetry. [Adapted from
Fokine et al. (2).
|
 |
Figure 3.
Fig. 3. Stereo diagram shows the superposition of the C
backbones of T4 gp24
(red) and the HK97 capsid protein (blue).
|
 |
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
D.H.Chen,
M.L.Baker,
C.F.Hryc,
F.DiMaio,
J.Jakana,
W.Wu,
M.Dougherty,
C.Haase-Pettingell,
M.F.Schmid,
W.Jiang,
D.Baker,
J.A.King,
and
W.Chiu
(2011).
Structural basis for scaffolding-mediated assembly and maturation of a dsDNA virus.
|
| |
Proc Natl Acad Sci U S A,
108,
1355-1360.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Xiang,
and
M.G.Rossmann
(2011).
Structure of bacteriophage phi29 head fibers has a supercoiled triple repeating helix-turn-helix motif.
|
| |
Proc Natl Acad Sci U S A,
108,
4806-4810.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Roine,
P.Kukkaro,
L.Paulin,
S.Laurinavicius,
A.Domanska,
P.Somerharju,
and
D.H.Bamford
(2010).
New, closely related haloarchaeal viral elements with different nucleic Acid types.
|
| |
J Virol,
84,
3682-3689.
|
 |
|
|
|
|
 |
G.F.Hatfull,
D.Jacobs-Sera,
J.G.Lawrence,
W.H.Pope,
D.A.Russell,
C.C.Ko,
R.J.Weber,
M.C.Patel,
K.L.Germane,
R.H.Edgar,
N.N.Hoyte,
C.A.Bowman,
A.T.Tantoco,
E.C.Paladin,
M.S.Myers,
A.L.Smith,
M.S.Grace,
T.T.Pham,
M.B.O'Brien,
A.M.Vogelsberger,
A.J.Hryckowian,
J.L.Wynalek,
H.Donis-Keller,
M.W.Bogel,
C.L.Peebles,
S.G.Cresawn,
and
R.W.Hendrix
(2010).
Comparative genomic analysis of 60 Mycobacteriophage genomes: genome clustering, gene acquisition, and gene size.
|
| |
J Mol Biol,
397,
119-143.
|
 |
|
|
|
|
 |
I.Gertsman,
E.A.Komives,
and
J.E.Johnson
(2010).
HK97 maturation studied by crystallography and H/2H exchange reveals the structural basis for exothermic particle transitions.
|
| |
J Mol Biol,
397,
560-574.
|
 |
|
|
|
|
 |
J.A.Speir,
D.J.Taylor,
P.Natarajan,
F.M.Pringle,
L.A.Ball,
and
J.E.Johnson
(2010).
Evolution in action: N and C termini of subunits in related T = 4 viruses exchange roles as molecular switches.
|
| |
Structure,
18,
700-709.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.N.Parent,
R.Khayat,
L.H.Tu,
M.M.Suhanovsky,
J.R.Cortines,
C.M.Teschke,
J.E.Johnson,
and
T.S.Baker
(2010).
P22 coat protein structures reveal a novel mechanism for capsid maturation: stability without auxiliary proteins or chemical crosslinks.
|
| |
Structure,
18,
390-401.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Cardarelli,
L.G.Pell,
P.Neudecker,
N.Pirani,
A.Liu,
L.A.Baker,
J.L.Rubinstein,
K.L.Maxwell,
and
A.R.Davidson
(2010).
Phages have adapted the same protein fold to fulfill multiple functions in virion assembly.
|
| |
Proc Natl Acad Sci U S A,
107,
14384-14389.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.Qin,
A.Fokine,
E.O'Donnell,
V.B.Rao,
and
M.G.Rossmann
(2010).
Structure of the small outer capsid protein, Soc: a clamp for stabilizing capsids of T4-like phages.
|
| |
J Mol Biol,
395,
728-741.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.M.Suhanovsky,
K.N.Parent,
S.E.Dunn,
T.S.Baker,
and
C.M.Teschke
(2010).
Determinants of bacteriophage P22 polyhead formation: the role of coat protein flexibility in conformational switching.
|
| |
Mol Microbiol,
77,
1568-1582.
|
 |
|
|
|
|
 |
T.Sathaliyawala,
M.Z.Islam,
Q.Li,
A.Fokine,
M.G.Rossmann,
and
V.B.Rao
(2010).
Functional analysis of the highly antigenic outer capsid protein, Hoc, a virus decoration protein from T4-like bacteriophages.
|
| |
Mol Microbiol,
77,
444-455.
|
 |
|
|
|
|
 |
V.B.Rao,
and
L.W.Black
(2010).
Structure and assembly of bacteriophage T4 head.
|
| |
Virol J,
7,
356.
|
 |
|
|
|
|
 |
X.Liu,
Q.Zhang,
K.Murata,
M.L.Baker,
M.B.Sullivan,
C.Fu,
M.T.Dougherty,
M.F.Schmid,
M.S.Osburne,
S.W.Chisholm,
and
W.Chiu
(2010).
Structural changes in a marine podovirus associated with release of its genome into Prochlorococcus.
|
| |
Nat Struct Mol Biol,
17,
830-836.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.R.Stewart,
S.R.Casjens,
S.G.Cresawn,
J.M.Houtz,
A.L.Smith,
M.E.Ford,
C.L.Peebles,
G.F.Hatfull,
R.W.Hendrix,
W.M.Huang,
and
M.L.Pedulla
(2009).
The genome of Bacillus subtilis bacteriophage SPO1.
|
| |
J Mol Biol,
388,
48-70.
|
 |
|
|
|
|
 |
C.Xiao,
Y.G.Kuznetsov,
S.Sun,
S.L.Hafenstein,
V.A.Kostyuchenko,
P.R.Chipman,
M.Suzan-Monti,
D.Raoult,
A.McPherson,
and
M.G.Rossmann
(2009).
Structural studies of the giant mimivirus.
|
| |
PLoS Biol,
7,
e92.
|
 |
|
|
|
|
 |
D.K.Clare,
P.J.Bakkes,
H.van Heerikhuizen,
S.M.van der Vies,
and
H.R.Saibil
(2009).
Chaperonin complex with a newly folded protein encapsulated in the folding chamber.
|
| |
Nature,
457,
107-110.
|
 |
|
|
|
|
 |
H.Brüssow
(2009).
The not so universal tree of life or the place of viruses in the living world.
|
| |
Philos Trans R Soc Lond B Biol Sci,
364,
2263-2274.
|
 |
|
|
|
|
 |
I.Gertsman,
L.Gan,
M.Guttman,
K.Lee,
J.A.Speir,
R.L.Duda,
R.W.Hendrix,
E.A.Komives,
and
J.E.Johnson
(2009).
An unexpected twist in viral capsid maturation.
|
| |
Nature,
458,
646-650.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.G.Pell,
V.Kanelis,
L.W.Donaldson,
P.L.Howell,
and
A.R.Davidson
(2009).
The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system.
|
| |
Proc Natl Acad Sci U S A,
106,
4160-4165.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
X.Yan,
Z.Yu,
P.Zhang,
A.J.Battisti,
H.A.Holdaway,
P.R.Chipman,
C.Bajaj,
M.Bergoin,
M.G.Rossmann,
and
T.S.Baker
(2009).
The capsid proteins of a large, icosahedral dsDNA virus.
|
| |
J Mol Biol,
385,
1287-1299.
|
 |
|
|
|
|
 |
A.M.Comeau,
and
H.M.Krisch
(2008).
The capsid of the T4 phage superfamily: the evolution, diversity, and structure of some of the most prevalent proteins in the biosphere.
|
| |
Mol Biol Evol,
25,
1321-1332.
|
 |
|
|
|
|
 |
C.Butan,
D.C.Winkler,
J.B.Heymann,
R.C.Craven,
and
A.C.Steven
(2008).
RSV capsid polymorphism correlates with polymerization efficiency and envelope glycoprotein content: implications that nucleation controls morphogenesis.
|
| |
J Mol Biol,
376,
1168-1181.
|
 |
|
|
|
|
 |
G.C.Lander,
A.Evilevitch,
M.Jeembaeva,
C.S.Potter,
B.Carragher,
and
J.E.Johnson
(2008).
Bacteriophage lambda stabilization by auxiliary protein gpD: timing, location, and mechanism of attachment determined by cryo-EM.
|
| |
Structure,
16,
1399-1406.
|
 |
|
|
|
|
 |
K.H.Choi,
J.McPartland,
I.Kaganman,
V.D.Bowman,
L.B.Rothman-Denes,
and
M.G.Rossmann
(2008).
Insight into DNA and protein transport in double-stranded DNA viruses: the structure of bacteriophage N4.
|
| |
J Mol Biol,
378,
726-736.
|
 |
|
|
|
|
 |
K.K.Lee,
L.Gan,
H.Tsuruta,
C.Moyer,
J.F.Conway,
R.L.Duda,
R.W.Hendrix,
A.C.Steven,
and
J.E.Johnson
(2008).
Virus capsid expansion driven by the capture of mobile surface loops.
|
| |
Structure,
16,
1491-1502.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Krupovic,
and
D.H.Bamford
(2008).
Virus evolution: how far does the double beta-barrel viral lineage extend?
|
| |
Nat Rev Microbiol,
6,
941-948.
|
 |
|
|
|
|
 |
S.R.Casjens
(2008).
Diversity among the tailed-bacteriophages that infect the Enterobacteriaceae.
|
| |
Res Microbiol,
159,
340-348.
|
 |
|
|
|
|
 |
A.Fokine,
V.D.Bowman,
A.J.Battisti,
Q.Li,
P.R.Chipman,
V.B.Rao,
and
M.G.Rossmann
(2007).
Cryo-electron microscopy study of bacteriophage T4 displaying anthrax toxin proteins.
|
| |
Virology,
367,
422-427.
|
 |
|
|
|
|
 |
J.A.Thomas,
S.C.Hardies,
M.Rolando,
S.J.Hayes,
K.Lieman,
C.A.Carroll,
S.T.Weintraub,
and
P.Serwer
(2007).
Complete genomic sequence and mass spectrometric analysis of highly diverse, atypical Bacillus thuringiensis phage 0305phi8-36.
|
| |
Virology,
368,
405-421.
|
 |
|
|
|
|
 |
J.E.Johnson,
and
W.Chiu
(2007).
DNA packaging and delivery machines in tailed bacteriophages.
|
| |
Curr Opin Struct Biol,
17,
237-243.
|
 |
|
|
|
|
 |
P.R.Weigele,
W.H.Pope,
M.L.Pedulla,
J.M.Houtz,
A.L.Smith,
J.F.Conway,
J.King,
G.F.Hatfull,
J.G.Lawrence,
and
R.W.Hendrix
(2007).
Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus.
|
| |
Environ Microbiol,
9,
1675-1695.
|
 |
|
|
|
|
 |
S.Sun,
K.Kondabagil,
P.M.Gentz,
M.G.Rossmann,
and
V.B.Rao
(2007).
The structure of the ATPase that powers DNA packaging into bacteriophage T4 procapsids.
|
| |
Mol Cell,
25,
943-949.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Zuber,
C.Ngom-Bru,
C.Barretto,
A.Bruttin,
H.Brüssow,
and
E.Denou
(2007).
Genome analysis of phage JS98 defines a fourth major subgroup of T4-like phages in Escherichia coli.
|
| |
J Bacteriol,
189,
8206-8214.
|
 |
|
|
|
|
 |
X.Agirrezabala,
J.A.Velázquez-Muriel,
P.Gómez-Puertas,
S.H.Scheres,
J.M.Carazo,
and
J.L.Carrascosa
(2007).
Quasi-atomic model of bacteriophage t7 procapsid shell: insights into the structure and evolution of a basic fold.
|
| |
Structure,
15,
461-472.
|
 |
|
|
|
|
 |
Z.Jia,
R.Ishihara,
Y.Nakajima,
S.Asakawa,
and
M.Kimura
(2007).
Molecular characterization of T4-type bacteriophages in a rice field.
|
| |
Environ Microbiol,
9,
1091-1096.
|
 |
|
|
|
|
 |
E.J.Summer,
C.F.Gonzalez,
M.Bomer,
T.Carlile,
A.Embry,
A.M.Kucherka,
J.Lee,
L.Mebane,
W.C.Morrison,
L.Mark,
M.D.King,
J.J.LiPuma,
A.K.Vidaver,
and
R.Young
(2006).
Divergence and mosaicism among virulent soil phages of the Burkholderia cepacia complex.
|
| |
J Bacteriol,
188,
255-268.
|
 |
|
|
|
|
 |
P.D.Ross,
J.F.Conway,
N.Cheng,
L.Dierkes,
B.A.Firek,
R.W.Hendrix,
A.C.Steven,
and
R.L.Duda
(2006).
A free energy cascade with locks drives assembly and maturation of bacteriophage HK97 capsid.
|
| |
J Mol Biol,
364,
512-525.
|
 |
|
|
|
|
 |
W.Jiang,
J.Chang,
J.Jakana,
P.Weigele,
J.King,
and
W.Chiu
(2006).
Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus.
|
| |
Nature,
439,
612-616.
|
 |
|
|
|
|
 |
Y.Xiang,
M.C.Morais,
A.J.Battisti,
S.Grimes,
P.J.Jardine,
D.L.Anderson,
and
M.G.Rossmann
(2006).
Structural changes of bacteriophage phi29 upon DNA packaging and release.
|
| |
EMBO J,
25,
5229-5239.
|
 |
|
|
|
|
 |
F.Arisaka
(2005).
Assembly and infection process of bacteriophage T4.
|
| |
Chaos,
15,
047502.
|
 |
|
|
|
|
 |
J.Filée,
F.Tétart,
C.A.Suttle,
and
H.M.Krisch
(2005).
Marine T4-type bacteriophages, a ubiquitous component of the dark matter of the biosphere.
|
| |
Proc Natl Acad Sci U S A,
102,
12471-12476.
|
 |
|
|
|
|
 |
M.L.Baker,
W.Jiang,
F.J.Rixon,
and
W.Chiu
(2005).
Common ancestry of herpesviruses and tailed DNA bacteriophages.
|
| |
J Virol,
79,
14967-14970.
|
 |
|
|
|
|
 |
W.Jiang,
and
S.J.Ludtke
(2005).
Electron cryomicroscopy of single particles at subnanometer resolution.
|
| |
Curr Opin Struct Biol,
15,
571-577.
|
 |
|
|
|
|
 |
X.Agirrezabala,
J.Martín-Benito,
J.R.Castón,
R.Miranda,
J.M.Valpuesta,
and
J.L.Carrascosa
(2005).
Maturation of phage T7 involves structural modification of both shell and inner core components.
|
| |
EMBO J,
24,
3820-3829.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |