 |
PDBsum entry 1yfo
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.3.1.3.48
- protein-tyrosine-phosphatase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
O-phospho-L-tyrosyl-[protein] + H2O = L-tyrosyl-[protein] + phosphate
|
 |
 |
 |
 |
 |
O-phospho-L-tyrosyl-[protein]
|
+
|
H2O
|
=
|
L-tyrosyl-[protein]
|
+
|
phosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
|
Nature
382:555-559
(1996)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structural basis for inhibition of receptor protein-tyrosine phosphatase-alpha by dimerization.
|
|
A.M.Bilwes,
J.den Hertog,
T.Hunter,
J.P.Noel.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Receptor-like protein-tyrosine phosphatases (RPTPs), like their non-receptor
counterparts, regulate the level of phosphotyrosine-containing proteins derived
from the action of protein-tyrosine kinases. RPTPs are type-I integral membrane
proteins which contain one or two catalytic domains in their cytoplasmic region.
It is not known whether extracellular ligands regulate the activity of RPTPs.
Here we describe the crystal structure of the membrane-proximal catalytic domain
(D1) of a typical RPTP, murine RPTP alpha. Significant structural deviations
from the PTP1B fold reside within the amino-terminal helix-turn-helix segment of
RPTPalphaD1 (residues 214 to 242) and a distinctive two-stranded beta-sheet
formed between residues 211-213 and 458-461. The turn of the N-terminal segment
inserts into the active site of a dyad-related D1 monomer. On the basis of two
independent crystal structures, sequence alignments, and the reported biological
activity of EGF receptor/CD45 chimaeras, we propose that dimerization and
active-site blockage is a physiologically important mechanism for downregulating
the catalytic activity of RPTPalpha and other RPTPs.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.M.Vacaru,
and
J.den Hertog
(2010).
Serine dephosphorylation of receptor protein tyrosine phosphatase alpha in mitosis induces Src binding and activation.
|
| |
Mol Cell Biol,
30,
2850-2861.
|
 |
|
|
|
|
 |
A.E.Hower,
P.J.Beltran,
and
J.L.Bixby
(2009).
Dimerization of tyrosine phosphatase PTPRO decreases its activity and ability to inactivate TrkC.
|
| |
J Neurochem,
110,
1635-1647.
|
 |
|
|
|
|
 |
A.J.Barr,
E.Ugochukwu,
W.H.Lee,
O.N.King,
P.Filippakopoulos,
I.Alfano,
P.Savitsky,
N.A.Burgess-Brown,
S.Müller,
and
S.Knapp
(2009).
Large-scale structural analysis of the classical human protein tyrosine phosphatome.
|
| |
Cell,
136,
352-363.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.G.Jeong,
S.K.Jung,
T.S.Yoon,
E.J.Woo,
J.H.Kim,
B.C.Park,
S.E.Ryu,
and
S.J.Kim
(2009).
Crystal structure of the catalytic domain of human MKP-2 reveals a 24-mer assembly.
|
| |
Proteins,
76,
763-767.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Hofmeyer,
and
J.E.Treisman
(2009).
The receptor protein tyrosine phosphatase LAR promotes R7 photoreceptor axon targeting by a phosphatase-independent signaling mechanism.
|
| |
Proc Natl Acad Sci U S A,
106,
19399-19404.
|
 |
|
|
|
|
 |
M.C.Balasu,
L.N.Spiridon,
S.Miron,
C.T.Craescu,
A.J.Scheidig,
A.J.Petrescu,
and
S.E.Szedlacsek
(2009).
Interface analysis of the complex between ERK2 and PTP-SL.
|
| |
PLoS ONE,
4,
e5432.
|
 |
|
|
|
|
 |
M.L.Hermiston,
J.Zikherman,
A.L.Tan,
V.C.Lam,
N.M.Cresalia,
N.Oksenberg,
N.Goren,
D.Brassat,
J.R.Oksenberg,
and
A.Weiss
(2009).
Differential impact of the CD45 juxtamembrane wedge on central and peripheral T cell receptor responses.
|
| |
Proc Natl Acad Sci U S A,
106,
546-551.
|
 |
|
|
|
|
 |
M.L.Hermiston,
J.Zikherman,
and
J.W.Zhu
(2009).
CD45, CD148, and Lyp/Pep: critical phosphatases regulating Src family kinase signaling networks in immune cells.
|
| |
Immunol Rev,
228,
288-311.
|
 |
|
|
|
|
 |
M.L.Tremblay
(2009).
The PTP family photo album.
|
| |
Cell,
136,
213-214.
|
 |
|
|
|
|
 |
M.Pascaru,
C.Tanase,
A.M.Vacaru,
P.Boeti,
E.Neagu,
I.Popescu,
and
S.E.Szedlacsek
(2009).
Analysis of molecular determinants of PRL-3.
|
| |
J Cell Mol Med,
13,
3141-3150.
|
 |
|
|
|
|
 |
S.H.Lim,
S.K.Kwon,
M.K.Lee,
J.Moon,
D.G.Jeong,
E.Park,
S.J.Kim,
B.C.Park,
S.C.Lee,
S.E.Ryu,
D.Y.Yu,
B.H.Chung,
E.Kim,
P.K.Myung,
and
J.R.Lee
(2009).
Synapse formation regulated by protein tyrosine phosphatase receptor T through interaction with cell adhesion molecules and Fyn.
|
| |
EMBO J,
28,
3564-3578.
|
 |
|
|
|
|
 |
A.Groen,
J.Overvoorde,
T.van der Wijk,
and
J.den Hertog
(2008).
Redox regulation of dimerization of the receptor protein-tyrosine phosphatases RPTPalpha, LAR, RPTPmu and CD45.
|
| |
FEBS J,
275,
2597-2604.
|
 |
|
|
|
|
 |
J.den Hertog,
A.Ostman,
and
F.D.Böhmer
(2008).
Protein tyrosine phosphatases: regulatory mechanisms.
|
| |
FEBS J,
275,
831-847.
|
 |
|
|
|
|
 |
K.L.Abbott,
R.T.Matthews,
and
M.Pierce
(2008).
Receptor Tyrosine Phosphatase {beta} (RPTP{beta}) Activity and Signaling Are Attenuated by Glycosylation and Subsequent Cell Surface Galectin-1 Binding.
|
| |
J Biol Chem,
283,
33026-33035.
|
 |
|
|
|
|
 |
L.Tabernero,
A.R.Aricescu,
E.Y.Jones,
and
S.E.Szedlacsek
(2008).
Protein tyrosine phosphatases: structure-function relationships.
|
| |
FEBS J,
275,
867-882.
|
 |
|
|
|
|
 |
M.E.Primo,
S.Klinke,
M.P.Sica,
F.A.Goldbaum,
J.Jakoncic,
E.Poskus,
and
M.R.Ermácora
(2008).
Structure of the mature ectodomain of the human receptor-type protein-tyrosine phosphatase IA-2.
|
| |
J Biol Chem,
283,
4674-4681.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
V.A.Gupta,
M.L.Hermiston,
G.Cassafer,
D.I.Daikh,
and
A.Weiss
(2008).
B cells drive lymphocyte activation and expansion in mice with the CD45 wedge mutation and Fas deficiency.
|
| |
J Exp Med,
205,
2755-2761.
|
 |
|
|
|
|
 |
W.J.Hendriks,
A.Elson,
S.Harroch,
and
A.W.Stoker
(2008).
Protein tyrosine phosphatases: functional inferences from mouse models and human diseases.
|
| |
FEBS J,
275,
816-830.
|
 |
|
|
|
|
 |
H.C.Matozo,
M.A.Santos,
M.de Oliveira Neto,
L.Bleicher,
L.M.Lima,
R.Iuliano,
A.Fusco,
and
I.Polikarpov
(2007).
Low-resolution structure and fluorescence anisotropy analysis of protein tyrosine phosphatase eta catalytic domain.
|
| |
Biophys J,
92,
4424-4432.
|
 |
|
|
|
|
 |
K.Kapp,
J.Siemens,
P.Weyrich,
J.B.Schulz,
H.U.Häring,
and
R.Lammers
(2007).
Extracellular domain splice variants of a transforming protein tyrosine phosphatase alpha mutant differentially activate Src-kinase dependent focus formation.
|
| |
Genes Cells,
12,
63-73.
|
 |
|
|
|
|
 |
S.Lee,
C.Faux,
J.Nixon,
D.Alete,
J.Chilton,
M.Hawadle,
and
A.W.Stoker
(2007).
Dimerization of protein tyrosine phosphatase sigma governs both ligand binding and isoform specificity.
|
| |
Mol Cell Biol,
27,
1795-1808.
|
 |
|
|
|
|
 |
T.S.Girish,
and
B.Gopal
(2007).
The crystal structure of the catalytic domain of the chick retinal neurite inhibitor-receptor protein tyrosine phosphatase CRYP-2/cPTPRO.
|
| |
Proteins,
68,
1011-1015.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Ostman,
C.Hellberg,
and
F.D.Böhmer
(2006).
Protein-tyrosine phosphatases and cancer.
|
| |
Nat Rev Cancer,
6,
307-320.
|
 |
|
|
|
|
 |
A.R.Aricescu,
W.C.Hon,
C.Siebold,
W.Lu,
P.A.van der Merwe,
and
E.Y.Jones
(2006).
Molecular analysis of receptor protein tyrosine phosphatase mu-mediated cell adhesion.
|
| |
EMBO J,
25,
701-712.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Breithaupt,
R.Kurzbauer,
H.Lilie,
A.Schaller,
J.Strassner,
R.Huber,
P.Macheroux,
and
T.Clausen
(2006).
Crystal structure of 12-oxophytodienoate reductase 3 from tomato: self-inhibition by dimerization.
|
| |
Proc Natl Acad Sci U S A,
103,
14337-14342.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Eswaran,
J.E.Debreczeni,
E.Longman,
A.J.Barr,
and
S.Knapp
(2006).
The crystal structure of human receptor protein tyrosine phosphatase kappa phosphatase domain 1.
|
| |
Protein Sci,
15,
1500-1505.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Hofmeyer,
C.Maurel-Zaffran,
H.Sink,
and
J.E.Treisman
(2006).
Liprin-alpha has LAR-independent functions in R7 photoreceptor axon targeting.
|
| |
Proc Natl Acad Sci U S A,
103,
11595-11600.
|
 |
|
|
|
|
 |
N.Holmes
(2006).
CD45: all is not yet crystal clear.
|
| |
Immunology,
117,
145-155.
|
 |
|
|
|
|
 |
N.K.Tonks
(2006).
Protein tyrosine phosphatases: from genes, to function, to disease.
|
| |
Nat Rev Mol Cell Biol,
7,
833-846.
|
 |
|
|
|
|
 |
P.Perez-Pinera,
S.Alcantara,
T.Dimitrov,
J.A.Vega,
and
T.F.Deuel
(2006).
Pleiotrophin disrupts calcium-dependent homophilic cell-cell adhesion and initiates an epithelial-mesenchymal transition.
|
| |
Proc Natl Acad Sci U S A,
103,
17795-17800.
|
 |
|
|
|
|
 |
R.Merritt,
M.J.Hayman,
and
Y.M.Agazie
(2006).
Mutation of Thr466 in SHP2 abolishes its phosphatase activity, but provides a new substrate-trapping mutant.
|
| |
Biochim Biophys Acta,
1763,
45-56.
|
 |
|
|
|
|
 |
T.Takahashi,
K.Takahashi,
R.L.Mernaugh,
N.Tsuboi,
H.Liu,
and
T.O.Daniel
(2006).
A monoclonal antibody against CD148, a receptor-like tyrosine phosphatase, inhibits endothelial-cell growth and angiogenesis.
|
| |
Blood,
108,
1234-1242.
|
 |
|
|
|
|
 |
Y.Xie,
S.M.Massa,
S.E.Ensslen-Craig,
D.L.Major,
T.Yang,
M.A.Tisi,
V.D.Derevyanny,
W.O.Runge,
B.P.Mehta,
L.A.Moore,
S.M.Brady-Kalnay,
and
F.M.Longo
(2006).
Protein-tyrosine phosphatase (PTP) wedge domain peptides: a novel approach for inhibition of PTP function and augmentation of protein-tyrosine kinase function.
|
| |
J Biol Chem,
281,
16482-16492.
|
 |
|
|
|
|
 |
A.Groen,
S.Lemeer,
T.van der Wijk,
J.Overvoorde,
A.J.Heck,
A.Ostman,
D.Barford,
M.Slijper,
and
J.den Hertog
(2005).
Differential oxidation of protein-tyrosine phosphatases.
|
| |
J Biol Chem,
280,
10298-10304.
|
 |
|
|
|
|
 |
C.Grundner,
H.L.Ng,
and
T.Alber
(2005).
Mycobacterium tuberculosis protein tyrosine phosphatase PtpB structure reveals a diverged fold and a buried active site.
|
| |
Structure,
13,
1625-1634.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Madhurantakam,
E.Rajakumara,
P.A.Mazumdar,
B.Saha,
D.Mitra,
H.G.Wiker,
R.Sankaranarayanan,
and
A.K.Das
(2005).
Crystal structure of low-molecular-weight protein tyrosine phosphatase from Mycobacterium tuberculosis at 1.9-A resolution.
|
| |
J Bacteriol,
187,
2175-2181.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
F.Villa,
M.Deak,
G.B.Bloomberg,
D.R.Alessi,
and
D.M.van Aalten
(2005).
Crystal structure of the PTPL1/FAP-1 human tyrosine phosphatase mutated in colorectal cancer: evidence for a second phosphotyrosine substrate recognition pocket.
|
| |
J Biol Chem,
280,
8180-8187.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.J.Nam,
F.Poy,
H.Saito,
and
C.A.Frederick
(2005).
Structural basis for the function and regulation of the receptor protein tyrosine phosphatase CD45.
|
| |
J Exp Med,
201,
441-452.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.L.Hermiston,
A.L.Tan,
V.A.Gupta,
R.Majeti,
and
A.Weiss
(2005).
The juxtamembrane wedge negatively regulates CD45 function in B cells.
|
| |
Immunity,
23,
635-647.
|
 |
|
|
|
|
 |
R.L.Del Vecchio,
and
N.K.Tonks
(2005).
The conserved immunoglobulin domain controls the subcellular localization of the homophilic adhesion receptor protein-tyrosine phosphatase mu.
|
| |
J Biol Chem,
280,
1603-1612.
|
 |
|
|
|
|
 |
W.H.Lee,
A.Raas-Rotschild,
M.A.Miteva,
G.Bolasco,
A.Rein,
D.Gillis,
D.Vidaud,
M.Vidaud,
B.O.Villoutreix,
and
B.Parfait
(2005).
Noonan syndrome type I with PTPN11 3 bp deletion: structure-function implications.
|
| |
Proteins,
58,
7.
|
 |
|
|
|
|
 |
X.Geng,
R.H.Tang,
S.K.Law,
and
S.M.Tan
(2005).
Integrin CD11a cytoplasmic tail interacts with the CD45 membrane-proximal protein tyrosine phosphatase domain 1.
|
| |
Immunology,
115,
347-357.
|
 |
|
|
|
|
 |
A.Alonso,
S.Burkhalter,
J.Sasin,
L.Tautz,
J.Bogetz,
H.Huynh,
M.C.Bremer,
L.J.Holsinger,
A.Godzik,
and
T.Mustelin
(2004).
The minimal essential core of a cysteine-based protein-tyrosine phosphatase revealed by a novel 16-kDa VH1-like phosphatase, VHZ.
|
| |
J Biol Chem,
279,
35768-35774.
|
 |
|
|
|
|
 |
A.K.Pedersen,
G.H.Peters G,
K.B.Møller,
L.F.Iversen,
and
J.S.Kastrup
(2004).
Water-molecule network and active-site flexibility of apo protein tyrosine phosphatase 1B.
|
| |
Acta Crystallogr D Biol Crystallogr,
60,
1527-1534.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.Lubyova,
M.J.Kellum,
A.J.Frisancho,
and
P.M.Pitha
(2004).
Kaposi's sarcoma-associated herpesvirus-encoded vIRF-3 stimulates the transcriptional activity of cellular IRF-3 and IRF-7.
|
| |
J Biol Chem,
279,
7643-7654.
|
 |
|
|
|
|
 |
C.Persson,
T.Sjöblom,
A.Groen,
K.Kappert,
U.Engström,
U.Hellman,
C.H.Heldin,
J.den Hertog,
and
A.Ostman
(2004).
Preferential oxidation of the second phosphatase domain of receptor-like PTP-alpha revealed by an antibody against oxidized protein tyrosine phosphatases.
|
| |
Proc Natl Acad Sci U S A,
101,
1886-1891.
|
 |
|
|
|
|
 |
D.F.McCain,
L.Wu,
P.Nickel,
M.U.Kassack,
A.Kreimeyer,
A.Gagliardi,
D.C.Collins,
and
Z.Y.Zhang
(2004).
Suramin derivatives as inhibitors and activators of protein-tyrosine phosphatases.
|
| |
J Biol Chem,
279,
14713-14725.
|
 |
|
|
|
|
 |
M.J.Chagnon,
N.Uetani,
and
M.L.Tremblay
(2004).
Functional significance of the LAR receptor protein tyrosine phosphatase family in development and diseases.
|
| |
Biochem Cell Biol,
82,
664-675.
|
 |
|
|
|
|
 |
N.Muja,
G.Lovas,
E.Romm,
D.Machleder,
M.Ranjan,
V.Gallo,
and
L.D.Hudson
(2004).
Expression of a catalytically inactive transmembrane protein tyrosine phosphatase epsilon (tm-PTP epsilon) delays optic nerve myelination.
|
| |
Glia,
48,
278-297.
|
 |
|
|
|
|
 |
S.Müller,
K.Lamszus,
K.Nikolich,
and
M.Westphal
(2004).
Receptor protein tyrosine phosphatase zeta as a therapeutic target for glioblastoma therapy.
|
| |
Expert Opin Ther Targets,
8,
211-220.
|
 |
|
|
|
|
 |
T.van der Wijk,
J.Overvoorde,
and
J.den Hertog
(2004).
H2O2-induced intermolecular disulfide bond formation between receptor protein-tyrosine phosphatases.
|
| |
J Biol Chem,
279,
44355-44361.
|
 |
|
|
|
|
 |
V.B.Cismasiu,
S.A.Denes,
H.Reiländer,
H.Michel,
and
S.E.Szedlacsek
(2004).
The MAM (meprin/A5-protein/PTPmu) domain is a homophilic binding site promoting the lateral dimerization of receptor-like protein-tyrosine phosphatase mu.
|
| |
J Biol Chem,
279,
26922-26931.
|
 |
|
|
|
|
 |
A.B.Huber,
A.L.Kolodkin,
D.D.Ginty,
and
J.F.Cloutier
(2003).
Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance.
|
| |
Annu Rev Neurosci,
26,
509-563.
|
 |
|
|
|
|
 |
A.Oganesian,
M.Poot,
G.Daum,
S.A.Coats,
M.B.Wright,
R.A.Seifert,
and
D.F.Bowen-Pope
(2003).
Protein tyrosine phosphatase RQ is a phosphatidylinositol phosphatase that can regulate cell survival and proliferation.
|
| |
Proc Natl Acad Sci U S A,
100,
7563-7568.
|
 |
|
|
|
|
 |
G.Liu,
A.Bafico,
V.K.Harris,
and
S.A.Aaronson
(2003).
A novel mechanism for Wnt activation of canonical signaling through the LRP6 receptor.
|
| |
Mol Cell Biol,
23,
5825-5835.
|
 |
|
|
|
|
 |
H.Toledano-Katchalski,
Z.Tiran,
T.Sines,
G.Shani,
S.Granot-Attas,
J.den Hertog,
and
A.Elson
(2003).
Dimerization in vivo and inhibition of the nonreceptor form of protein tyrosine phosphatase epsilon.
|
| |
Mol Cell Biol,
23,
5460-5471.
|
 |
|
|
|
|
 |
M.L.Hermiston,
Z.Xu,
and
A.Weiss
(2003).
CD45: a critical regulator of signaling thresholds in immune cells.
|
| |
Annu Rev Immunol,
21,
107-137.
|
 |
|
|
|
|
 |
N.X.Krueger,
R.S.Reddy,
K.Johnson,
J.Bateman,
N.Kaufmann,
D.Scalice,
D.Van Vactor,
and
H.Saito
(2003).
Functions of the ectodomain and cytoplasmic tyrosine phosphatase domains of receptor protein tyrosine phosphatase Dlar in vivo.
|
| |
Mol Cell Biol,
23,
6909-6921.
|
 |
|
|
|
|
 |
T.van der Wijk,
C.Blanchetot,
J.Overvoorde,
and
J.den Hertog
(2003).
Redox-regulated rotational coupling of receptor protein-tyrosine phosphatase alpha dimers.
|
| |
J Biol Chem,
278,
13968-13974.
|
 |
|
|
|
|
 |
C.Blanchetot,
L.G.Tertoolen,
J.Overvoorde,
and
J.den Hertog
(2002).
Intra- and intermolecular interactions between intracellular domains of receptor protein-tyrosine phosphatases.
|
| |
J Biol Chem,
277,
47263-47269.
|
 |
|
|
|
|
 |
C.Blanchetot,
L.G.Tertoolen,
and
J.den Hertog
(2002).
Regulation of receptor protein-tyrosine phosphatase alpha by oxidative stress.
|
| |
EMBO J,
21,
493-503.
|
 |
|
|
|
|
 |
G.Lei,
S.Xue,
N.Chéry,
Q.Liu,
J.Xu,
C.L.Kwan,
Y.P.Fu,
Y.M.Lu,
M.Liu,
K.W.Harder,
and
X.M.Yu
(2002).
Gain control of N-methyl-D-aspartate receptor activity by receptor-like protein tyrosine phosphatase alpha.
|
| |
EMBO J,
21,
2977-2989.
|
 |
|
|
|
|
 |
L.F.Iversen,
K.B.Moller,
A.K.Pedersen,
G.H.Peters,
A.S.Petersen,
H.S.Andersen,
S.Branner,
S.B.Mortensen,
and
N.P.Moller
(2002).
Structure determination of T cell protein-tyrosine phosphatase.
|
| |
J Biol Chem,
277,
19982-19990.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Gross,
C.Blanchetot,
J.Schepens,
S.Albet,
R.Lammers,
J.den Hertog,
and
W.Hendriks
(2002).
Multimerization of the protein-tyrosine phosphatase (PTP)-like insulin-dependent diabetes mellitus autoantigens IA-2 and IA-2beta with receptor PTPs (RPTPs). Inhibition of RPTPalpha enzymatic activity.
|
| |
J Biol Chem,
277,
48139-48145.
|
 |
|
|
|
|
 |
T.P.Shanley
(2002).
Phosphatases: counterregulatory role in inflammatory cell signaling.
|
| |
Crit Care Med,
30,
S80-S88.
|
 |
|
|
|
|
 |
J.A.Besco,
A.Frostholm,
M.C.Popesco,
A.H.Burghes,
and
A.Rotter
(2001).
Genomic organization and alternative splicing of the human and mouse RPTPrho genes.
|
| |
BMC Genomics,
2,
1.
|
 |
|
|
|
|
 |
L.G.Tertoolen,
C.Blanchetot,
G.Jiang,
J.Overvoorde,
T.W.Gadella,
T.Hunter,
and
J.den Hertog
(2001).
Dimerization of receptor protein-tyrosine phosphatase alpha in living cells.
|
| |
BMC Cell Biol,
2,
8.
|
 |
|
|
|
|
 |
N.K.Tonks,
and
B.G.Neel
(2001).
Combinatorial control of the specificity of protein tyrosine phosphatases.
|
| |
Curr Opin Cell Biol,
13,
182-195.
|
 |
|
|
|
|
 |
X.M.Zheng,
and
D.Shalloway
(2001).
Two mechanisms activate PTPalpha during mitosis.
|
| |
EMBO J,
20,
6037-6049.
|
 |
|
|
|
|
 |
B.K.Mueller,
M.M.Ledig,
and
S.Wahl
(2000).
The receptor tyrosine phosphatase CRYPalpha affects growth cone morphology.
|
| |
J Neurobiol,
44,
204-218.
|
 |
|
|
|
|
 |
C.Blanchetot,
and
J.den Hertog
(2000).
Multiple interactions between receptor protein-tyrosine phosphatase (RPTP) alpha and membrane-distal protein-tyrosine phosphatase domains of various RPTPs.
|
| |
J Biol Chem,
275,
12446-12452.
|
 |
|
|
|
|
 |
C.C.Fjeld,
A.E.Rice,
Y.Kim,
K.R.Gee,
and
J.M.Denu
(2000).
Mechanistic basis for catalytic activation of mitogen-activated protein kinase phosphatase 3 by extracellular signal-regulated kinase.
|
| |
J Biol Chem,
275,
6749-6757.
|
 |
|
|
|
|
 |
D.R.Alexander
(2000).
The CD45 tyrosine phosphatase: a positive and negative regulator of immune cell function.
|
| |
Semin Immunol,
12,
349-359.
|
 |
|
|
|
|
 |
E.Feiken,
I.van Etten,
M.F.Gebbink,
W.H.Moolenaar,
and
G.C.Zondag
(2000).
Intramolecular interactions between the juxtamembrane domain and phosphatase domains of receptor protein-tyrosine phosphatase RPTPmu. Regulation of catalytic activity.
|
| |
J Biol Chem,
275,
15350-15356.
|
 |
|
|
|
|
 |
G.Jiang,
J.den Hertog,
and
T.Hunter
(2000).
Receptor-like protein tyrosine phosphatase alpha homodimerizes on the cell surface.
|
| |
Mol Cell Biol,
20,
5917-5929.
|
 |
|
|
|
|
 |
H.Avraham,
S.Avraham,
and
Y.Taniguchi
(2000).
Receptor protein tyrosine phosphatases in hematopoietic cells.
|
| |
J Hematother Stem Cell Res,
9,
425-432.
|
 |
|
|
|
|
 |
K.Meng,
A.Rodriguez-Peña,
T.Dimitrov,
W.Chen,
M.Yamin,
M.Noda,
and
T.F.Deuel
(2000).
Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta.
|
| |
Proc Natl Acad Sci U S A,
97,
2603-2608.
|
 |
|
|
|
|
 |
L.F.Iversen,
H.S.Andersen,
S.Branner,
S.B.Mortensen,
G.H.Peters,
K.Norris,
O.H.Olsen,
C.B.Jeppesen,
B.F.Lundt,
W.Ripka,
K.B.Møller,
and
N.P.Møller
(2000).
Structure-based design of a low molecular weight, nonphosphorus, nonpeptide, and highly selective inhibitor of protein-tyrosine phosphatase 1B.
|
| |
J Biol Chem,
275,
10300-10307.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Li,
and
J.E.Dixon
(2000).
Form, function, and regulation of protein tyrosine phosphatases and their involvement in human diseases.
|
| |
Semin Immunol,
12,
75-84.
|
 |
|
|
|
|
 |
N.R.Glover,
and
A.S.Tracey
(2000).
The phosphatase domains of LAR, CD45, and PTP1B: structural correlations with peptide-based inhibitors.
|
| |
Biochem Cell Biol,
78,
39-50.
|
 |
|
|
|
|
 |
S.Wang,
L.Tabernero,
M.Zhang,
E.Harms,
R.L.Van Etten,
and
C.V.Stauffacher
(2000).
Crystal structures of a low-molecular weight protein tyrosine phosphatase from Saccharomyces cerevisiae and its complex with the substrate p-nitrophenyl phosphate.
|
| |
Biochemistry,
39,
1903-1914.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Hunter
(2000).
Signaling--2000 and beyond.
|
| |
Cell,
100,
113-127.
|
 |
|
|
|
|
 |
X.M.Zheng,
R.J.Resnick,
and
D.Shalloway
(2000).
A phosphotyrosine displacement mechanism for activation of Src by PTPalpha.
|
| |
EMBO J,
19,
964-978.
|
 |
|
|
|
|
 |
A.Angers-Loustau,
J.F.Côté,
and
M.L.Tremblay
(1999).
Roles of protein tyrosine phosphatases in cell migration and adhesion.
|
| |
Biochem Cell Biol,
77,
493-505.
|
 |
|
|
|
|
 |
A.Buist,
Y.L.Zhang,
Y.F.Keng,
L.Wu,
Z.Y.Zhang,
and
J.den Hertog
(1999).
Restoration of potent protein-tyrosine phosphatase activity into the membrane-distal domain of receptor protein-tyrosine phosphatase alpha.
|
| |
Biochemistry,
38,
914-922.
|
 |
|
|
|
|
 |
H.J.Nam,
F.Poy,
N.X.Krueger,
H.Saito,
and
C.A.Frederick
(1999).
Crystal structure of the tandem phosphatase domains of RPTP LAR.
|
| |
Cell,
97,
449-457.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.L.Evans,
and
B.Jallal
(1999).
Protein tyrosine phosphatases: their role in insulin action and potential as drug targets.
|
| |
Expert Opin Investig Drugs,
8,
139-160.
|
 |
|
|
|
|
 |
L.Burýsek,
W.S.Yeow,
B.Lubyová,
M.Kellum,
S.L.Schafer,
Y.Q.Huang,
and
P.M.Pitha
(1999).
Functional analysis of human herpesvirus 8-encoded viral interferon regulatory factor 1 and its association with cellular interferon regulatory factors and p300.
|
| |
J Virol,
73,
7334-7342.
|
 |
|
|
|
|
 |
M.Taing,
Y.F.Keng,
K.Shen,
L.Wu,
D.S.Lawrence,
and
Z.Y.Zhang
(1999).
Potent and highly selective inhibitors of the protein tyrosine phosphatase 1B.
|
| |
Biochemistry,
38,
3793-3803.
|
 |
|
|
|
|
 |
P.A.Garrity,
C.H.Lee,
I.Salecker,
H.C.Robertson,
C.J.Desai,
K.Zinn,
and
S.L.Zipursky
(1999).
Retinal axon target selection in Drosophila is regulated by a receptor protein tyrosine phosphatase.
|
| |
Neuron,
22,
707-717.
|
 |
|
|
|
|
 |
W.Tsai,
A.D.Morielli,
T.G.Cachero,
and
E.G.Peralta
(1999).
Receptor protein tyrosine phosphatase alpha participates in the m1 muscarinic acetylcholine receptor-dependent regulation of Kv1.2 channel activity.
|
| |
EMBO J,
18,
109-118.
|
 |
|
|
|
|
 |
Y.Wang,
W.Guo,
L.Liang,
and
W.J.Esselman
(1999).
Phosphorylation of CD45 by casein kinase 2. Modulation of activity and mutational analysis.
|
| |
J Biol Chem,
274,
7454-7461.
|
 |
|
|
|
|
 |
A.Stoker,
and
R.Dutta
(1998).
Protein tyrosine phosphatases and neural development.
|
| |
Bioessays,
20,
463-472.
|
 |
|
|
|
|
 |
A.Weiss,
and
J.Schlessinger
(1998).
Switching signals on or off by receptor dimerization.
|
| |
Cell,
94,
277-280.
|
 |
|
|
|
|
 |
D.Barford,
A.K.Das,
and
M.P.Egloff
(1998).
The structure and mechanism of protein phosphatases: insights into catalysis and regulation.
|
| |
Annu Rev Biophys Biomol Struct,
27,
133-164.
|
 |
|
|
|
|
 |
D.Barford,
and
B.G.Neel
(1998).
Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2.
|
| |
Structure,
6,
249-254.
|
 |
|
|
|
|
 |
D.Van Vactor
(1998).
Protein tyrosine phosphatases in the developing nervous system.
|
| |
Curr Opin Cell Biol,
10,
174-181.
|
 |
|
|
|
|
 |
D.Van Vactor,
A.M.O'Reilly,
and
B.G.Neel
(1998).
Genetic analysis of protein tyrosine phosphatases.
|
| |
Curr Opin Genet Dev,
8,
112-126.
|
 |
|
|
|
|
 |
E.Peles,
J.Schlessinger,
and
M.Grumet
(1998).
Multi-ligand interactions with receptor-like protein tyrosine phosphatase beta: implications for intercellular signaling.
|
| |
Trends Biochem Sci,
23,
121-124.
|
 |
|
|
|
|
 |
G.H.Peters,
T.M.Frimurer,
and
O.H.Olsen
(1998).
Electrostatic evaluation of the signature motif (H/V)CX5R(S/T) in protein-tyrosine phosphatases.
|
| |
Biochemistry,
37,
5383-5393.
|
 |
|
|
|
|
 |
J.Felberg,
and
P.Johnson
(1998).
Characterization of recombinant CD45 cytoplasmic domain proteins. Evidence for intramolecular and intermolecular interactions.
|
| |
J Biol Chem,
273,
17839-17845.
|
 |
|
|
|
|
 |
J.M.Denu,
and
J.E.Dixon
(1998).
Protein tyrosine phosphatases: mechanisms of catalysis and regulation.
|
| |
Curr Opin Chem Biol,
2,
633-641.
|
 |
|
|
|
|
 |
J.Yang,
X.Liang,
T.Niu,
W.Meng,
Z.Zhao,
and
G.W.Zhou
(1998).
Crystal structure of the catalytic domain of protein-tyrosine phosphatase SHP-1.
|
| |
J Biol Chem,
273,
28199-28207.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.L.Lim,
P.R.Kolatkar,
K.P.Ng,
C.H.Ng,
and
C.J.Pallen
(1998).
Interconversion of the kinetic identities of the tandem catalytic domains of receptor-like protein-tyrosine phosphatase PTPalpha by two point mutations is synergistic and substrate-dependent.
|
| |
J Biol Chem,
273,
28986-28993.
|
 |
|
|
|
|
 |
M.B.Wright,
C.Hugo,
R.Seifert,
C.M.Disteche,
and
D.F.Bowen-Pope
(1998).
Proliferating and migrating mesangial cells responding to injury express a novel receptor protein-tyrosine phosphatase in experimental mesangial proliferative glomerulonephritis.
|
| |
J Biol Chem,
273,
23929-23937.
|
 |
|
|
|
|
 |
M.J.Wallace,
C.Fladd,
J.Batt,
and
D.Rotin
(1998).
The second catalytic domain of protein tyrosine phosphatase delta (PTP delta) binds to and inhibits the first catalytic domain of PTP sigma.
|
| |
Mol Cell Biol,
18,
2608-2616.
|
 |
|
|
|
|
 |
M.J.Wishart,
and
J.E.Dixon
(1998).
Gathering STYX: phosphatase-like form predicts functions for unique protein-interaction domains.
|
| |
Trends Biochem Sci,
23,
301-306.
|
 |
|
|
|
|
 |
M.Kokel,
C.Z.Borland,
L.DeLong,
H.R.Horvitz,
and
M.J.Stern
(1998).
clr-1 encodes a receptor tyrosine phosphatase that negatively regulates an FGF receptor signaling pathway in Caenorhabditis elegans.
|
| |
Genes Dev,
12,
1425-1437.
|
 |
|
|
|
|
 |
M.Muda,
A.Theodosiou,
C.Gillieron,
A.Smith,
C.Chabert,
M.Camps,
U.Boschert,
N.Rodrigues,
K.Davies,
A.Ashworth,
and
S.Arkinstall
(1998).
The mitogen-activated protein kinase phosphatase-3 N-terminal noncatalytic region is responsible for tight substrate binding and enzymatic specificity.
|
| |
J Biol Chem,
273,
9323-9329.
|
 |
|
|
|
|
 |
M.Zhang,
C.V.Stauffacher,
D.Lin,
and
R.L.Van Etten
(1998).
Crystal structure of a human low molecular weight phosphotyrosyl phosphatase. Implications for substrate specificity.
|
| |
J Biol Chem,
273,
21714-21720.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.Hof,
S.Pluskey,
S.Dhe-Paganon,
M.J.Eck,
and
S.E.Shoelson
(1998).
Crystal structure of the tyrosine phosphatase SHP-2.
|
| |
Cell,
92,
441-450.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Majeti,
A.M.Bilwes,
J.P.Noel,
T.Hunter,
and
A.Weiss
(1998).
Dimerization-induced inhibition of receptor protein tyrosine phosphatase function through an inhibitory wedge.
|
| |
Science,
279,
88-91.
|
 |
|
|
|
|
 |
S.D.Bell,
J.M.Denu,
J.E.Dixon,
and
A.D.Ellington
(1998).
RNA molecules that bind to and inhibit the active site of a tyrosine phosphatase.
|
| |
J Biol Chem,
273,
14309-14314.
|
 |
|
|
|
|
 |
T.Hunter
(1998).
The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease.
|
| |
Philos Trans R Soc Lond B Biol Sci,
353,
583-605.
|
 |
|
|
|
|
 |
T.R.Burke,
and
Z.Y.Zhang
(1998).
Protein-tyrosine phosphatases: structure, mechanism, and inhibitor discovery.
|
| |
Biopolymers,
47,
225-241.
|
 |
|
|
|
|
 |
B.G.Neel,
and
N.K.Tonks
(1997).
Protein tyrosine phosphatases in signal transduction.
|
| |
Curr Opin Cell Biol,
9,
193-204.
|
 |
|
|
|
|
 |
B.G.Neel
(1997).
Role of phosphatases in lymphocyte activation.
|
| |
Curr Opin Immunol,
9,
405-420.
|
 |
|
|
|
|
 |
F.S.Walsh,
and
P.Doherty
(1997).
Neural cell adhesion molecules of the immunoglobulin superfamily: role in axon growth and guidance.
|
| |
Annu Rev Cell Dev Biol,
13,
425-456.
|
 |
|
|
|
|
 |
G.S.Taylor,
Y.Liu,
C.Baskerville,
and
H.Charbonneau
(1997).
The activity of Cdc14p, an oligomeric dual specificity protein phosphatase from Saccharomyces cerevisiae, is required for cell cycle progression.
|
| |
J Biol Chem,
272,
24054-24063.
|
 |
|
|
|
|
 |
J.A.Frearson,
and
D.R.Alexander
(1997).
The role of phosphotyrosine phosphatases in haematopoietic cell signal transduction.
|
| |
Bioessays,
19,
417-427.
|
 |
|
|
|
|
 |
J.G.Altin,
and
E.K.Sloan
(1997).
The role of CD45 and CD45-associated molecules in T cell activation.
|
| |
Immunol Cell Biol,
75,
430-445.
|
 |
|
|
|
|
 |
K.M.Hoffmann,
N.K.Tonks,
and
D.Barford
(1997).
The crystal structure of domain 1 of receptor protein-tyrosine phosphatase mu.
|
| |
J Biol Chem,
272,
27505-27508.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Kang,
P.Liao,
D.A.Gage,
and
W.J.Esselman
(1997).
Identification of in vivo phosphorylation sites of CD45 protein-tyrosine phosphatase in 70Z/3.12 cells.
|
| |
J Biol Chem,
272,
11588-11596.
|
 |
|
|
|
|
 |
Y.A.Puius,
Y.Zhao,
M.Sullivan,
D.S.Lawrence,
S.C.Almo,
and
Z.Y.Zhang
(1997).
Identification of a second aryl phosphate-binding site in protein-tyrosine phosphatase 1B: a paradigm for inhibitor design.
|
| |
Proc Natl Acad Sci U S A,
94,
13420-13425.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.E.Koshland
(1996).
The structural basis of negative cooperativity: receptors and enzymes.
|
| |
Curr Opin Struct Biol,
6,
757-761.
|
 |
|
|
|
|
 |
E.B.Fauman,
and
M.A.Saper
(1996).
Structure and function of the protein tyrosine phosphatases.
|
| |
Trends Biochem Sci,
21,
413-417.
|
 |
|
|
|
|
 |
J.M.Denu,
J.A.Stuckey,
M.A.Saper,
and
J.E.Dixon
(1996).
Form and function in protein dephosphorylation.
|
| |
Cell,
87,
361-364.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |