|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Complex (gtp-binding/gtpase activation)
|
 |
|
Title:
|
 |
Ras-rasgap complex
|
|
Structure:
|
 |
H-ras. Chain: r. Fragment: catalytic domain, residues 1 - 166. Synonym: p21ras, ras, harvey-ras. Engineered: yes. P120gap. Chain: g. Fragment: catalytic domain, residues 714 - 1047. Synonym: gap-334, gapette.
|
|
Source:
|
 |
Homo sapiens. Human. Organism_taxid: 9606. Organ: placenta. Gene: h-ras-1. Expressed in: escherichia coli. Expression_system_taxid: 562. Cellular_location: cytosol. Gene: gene fragment of p120gap posi.
|
|
Biol. unit:
|
 |
Dimer (from
)
|
|
Resolution:
|
 |
|
2.50Å
|
R-factor:
|
0.233
|
R-free:
|
0.319
|
|
|
Authors:
|
 |
K.Scheffzek,M.R.Ahmadian,W.Kabsch,L.Wiesmueller,A.Lautwein,F.Schmitz, A.Wittinghofer
|
Key ref:
|
 |
K.Scheffzek
et al.
(1997).
The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants.
Science,
277,
333-338.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
03-Jul-97
|
Release date:
|
15-Jul-98
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
Chain R:
E.C.3.6.5.2
- small monomeric GTPase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
GTP + H2O = GDP + phosphate + H+
|
 |
 |
 |
 |
 |
GTP
|
+
|
H2O
|
=
|
GDP
Bound ligand (Het Group name = )
corresponds exactly
|
+
|
phosphate
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Science
277:333-338
(1997)
|
|
PubMed id:
|
|
|
|
|
| |
|
The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants.
|
|
K.Scheffzek,
M.R.Ahmadian,
W.Kabsch,
L.Wiesmüller,
A.Lautwein,
F.Schmitz,
A.Wittinghofer.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The three-dimensional structure of the complex between human H-Ras bound to
guanosine diphosphate and the guanosine triphosphatase (GTPase)-activating
domain of the human GTPase-activating protein p120GAP (GAP-334) in the presence
of aluminum fluoride was solved at a resolution of 2.5 angstroms. The structure
shows the partly hydrophilic and partly hydrophobic nature of the communication
between the two molecules, which explains the sensitivity of the interaction
toward both salts and lipids. An arginine side chain (arginine-789) of GAP-334
is supplied into the active site of Ras to neutralize developing charges in the
transition state. The switch II region of Ras is stabilized by GAP-334, thus
allowing glutamine-61 of Ras, mutation of which activates the oncogenic
potential, to participate in catalysis. The structural arrangement in the active
site is consistent with a mostly associative mechanism of phosphoryl transfer
and provides an explanation for the activation of Ras by glycine-12 and
glutamine-61 mutations. Glycine-12 in the transition state mimic is within van
der Waals distance of both arginine-789 of GAP-334 and glutamine-61 of Ras, and
even its mutation to alanine would disturb the arrangements of residues in the
transition state.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Fig. 1. Stereo view of a segment of the 2F[o] F[c]
electron density map (contoured at 1.2 ) covering
the active site region in the^ complex, with Ras in blue,
GAP-334 in red, and waters in light blue.
|
 |
Figure 2.
Fig. 2. The complex between GAP-334 and Ras. (A) Ribbon
representation of the complex model drawn with Molscript (52)
and^ Raster3D (53) according to the assignment of secondary
structure^ elements obtained with the program DSSP (54). The
extra and^ catalytic domains of GAP-334 are shown in green and
red (respectively), regions of GAP contacting Ras in light
brown, Ras in yellow, and^ GDP and AlF[3] as ball-and-stick
models. Regions involved in the^ interface are labeled, Sw I and
Sw II indicating the switch regions, C the COOH-terminal, and N
the NH[2]-terminal. (B) Schematic^ drawing with selected
interactions. Polar interactions between individual residues of
GAP-334 and Ras are shown as red lines for interactions of side
chains, and as red arrows for contacts from side chain to main
chain atoms, where the arrowhead marks the residue contributing
the main chain group. Yellow lines indicate^ van der Waals or
hydrophobic interactions. Some water molecules (marked W) from
the interface region are included. Residues belonging to the
interacting regions of Ras indicated in (A) are denoted^ with
specified boxes, as indicated. Interaction between Lys88 and
Thr791 is shown by a dashed arrow, because the electron density
in this region is presently not of sufficient quality to
unambiguously define the contact. Amino acid abbreviations are
in (55).
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from the AAAs:
Science
(1997,
277,
333-338)
copyright 1997.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
R.Baker,
S.M.Lewis,
A.T.Sasaki,
E.M.Wilkerson,
J.W.Locasale,
L.C.Cantley,
B.Kuhlman,
H.G.Dohlman,
and
S.L.Campbell
(2013).
Site-specific monoubiquitination activates Ras by impeding GTPase-activating protein function.
|
| |
Nat Struct Mol Biol,
20,
46-52.
|
 |
|
|
|
|
 |
I.M.Ahearn,
K.Haigis,
D.Bar-Sagi,
and
M.R.Philips
(2012).
Regulating the regulator: post-translational modification of RAS.
|
| |
Nat Rev Mol Cell Biol,
13,
39-51.
|
 |
|
|
|
|
 |
P.K.Vogt
(2012).
Retroviral oncogenes: a historical primer.
|
| |
Nat Rev Cancer,
12,
639-648.
|
 |
|
|
|
|
 |
E.Chung,
and
M.Kondo
(2011).
Role of Ras/Raf/MEK/ERK signaling in physiological hematopoiesis and leukemia development.
|
| |
Immunol Res,
49,
248-268.
|
 |
|
|
|
|
 |
E.Vakiani,
and
D.B.Solit
(2011).
KRAS and BRAF: drug targets and predictive biomarkers.
|
| |
J Pathol,
223,
219-229.
|
 |
|
|
|
|
 |
G.Bange,
N.Kümmerer,
P.Grudnik,
R.Lindner,
G.Petzold,
D.Kressler,
E.Hurt,
K.Wild,
and
I.Sinning
(2011).
Structural basis for the molecular evolution of SRP-GTPase activation by protein.
|
| |
Nat Struct Mol Biol,
18,
1376-1380.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.E.Niemela,
L.Lu,
T.A.Fleisher,
J.Davis,
I.Caminha,
M.Natter,
L.A.Beer,
K.C.Dowdell,
S.Pittaluga,
M.Raffeld,
V.K.Rao,
and
J.B.Oliveira
(2011).
Somatic KRAS mutations associated with a human nonmalignant syndrome of autoimmunity and abnormal leukocyte homeostasis.
|
| |
Blood,
117,
2883-2886.
|
 |
|
|
|
|
 |
L.Gremer,
T.Merbitz-Zahradnik,
R.Dvorsky,
I.C.Cirstea,
C.P.Kratz,
M.Zenker,
A.Wittinghofer,
and
M.R.Ahmadian
(2011).
Germline KRAS mutations cause aberrant biochemical and physical properties leading to developmental disorders.
|
| |
Hum Mutat,
32,
33-43.
|
 |
|
|
|
|
 |
N.Pawlowski,
A.Khaminets,
J.P.Hunn,
N.Papic,
A.Schmidt,
R.C.Uthaiah,
R.Lange,
G.Vopper,
S.Martens,
E.Wolf,
and
J.C.Howard
(2011).
The activation mechanism of Irga6, an interferon-inducible GTPase contributing to mouse resistance against Toxoplasma gondii.
|
| |
BMC Biol,
9,
7.
|
 |
|
|
|
|
 |
S.Y.Lu,
Y.J.Jiang,
J.W.Zou,
and
T.X.Wu
(2011).
Dissection of the difference between the group I metal ions in inhibiting GSK3β: a computational study.
|
| |
Phys Chem Chem Phys,
13,
7014-7023.
|
 |
|
|
|
|
 |
Y.Pylayeva-Gupta,
E.Grabocka,
and
D.Bar-Sagi
(2011).
RAS oncogenes: weaving a tumorigenic web.
|
| |
Nat Rev Cancer,
11,
761-774.
|
 |
|
|
|
|
 |
A.F.Neuwald
(2010).
Bayesian classification of residues associated with protein functional divergence: Arf and Arf-like GTPases.
|
| |
Biol Direct,
5,
66.
|
 |
|
|
|
|
 |
A.Kerstan,
T.Ladnorg,
C.Grunwald,
T.Vöpel,
D.Zacher,
C.Herrmann,
and
C.Wöll
(2010).
Human guanylate-binding protein 1 as a model system investigated by several surface techniques.
|
| |
Biointerphases,
5,
131-138.
|
 |
|
|
|
|
 |
A.Yamagata,
H.Mimura,
Y.Sato,
M.Yamashita,
A.Yoshikawa,
and
S.Fukai
(2010).
Structural insight into the membrane insertion of tail-anchored proteins by Get3.
|
| |
Genes Cells,
15,
29-41.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.A.Wilson,
and
M.Ho
(2010).
Recent insights into Pasteurella multocida toxin and other G-protein-modulating bacterial toxins.
|
| |
Future Microbiol,
5,
1185-1201.
|
 |
|
|
|
|
 |
B.Anand,
P.Surana,
and
B.Prakash
(2010).
Deciphering the catalytic machinery in 30S ribosome assembly GTPase YqeH.
|
| |
PLoS One,
5,
e9944.
|
 |
|
|
|
|
 |
B.Huang,
H.Wu,
N.Hao,
F.Blombach,
J.van der Oost,
X.Li,
X.C.Zhang,
and
Z.Rao
(2010).
Functional study on GTP hydrolysis by the GTP-binding protein from Sulfolobus solfataricus, a member of the HflX family.
|
| |
J Biochem,
148,
103-113.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.Sot,
C.Kötting,
D.Deaconescu,
Y.Suveyzdis,
K.Gerwert,
and
A.Wittinghofer
(2010).
Unravelling the mechanism of dual-specificity GAPs.
|
| |
EMBO J,
29,
1205-1214.
|
 |
|
|
|
|
 |
C.Zhao,
E.A.Matveeva,
Q.Ren,
and
S.W.Whiteheart
(2010).
Dissecting the N-ethylmaleimide-sensitive factor: required elements of the N and D1 domains.
|
| |
J Biol Chem,
285,
761-772.
|
 |
|
|
|
|
 |
D.Vigil,
J.Cherfils,
K.L.Rossman,
and
C.J.Der
(2010).
Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy?
|
| |
Nat Rev Cancer,
10,
842-857.
|
 |
|
|
|
|
 |
E.A.Niskanen,
T.O.Ihalainen,
O.Kalliolinna,
M.M.Häkkinen,
and
M.Vihinen-Ranta
(2010).
Effect of ATP binding and hydrolysis on dynamics of canine parvovirus NS1.
|
| |
J Virol,
84,
5391-5403.
|
 |
|
|
|
|
 |
G.Buhrman,
G.Holzapfel,
S.Fetics,
and
C.Mattos
(2010).
Allosteric modulation of Ras positions Q61 for a direct role in catalysis.
|
| |
Proc Natl Acad Sci U S A,
107,
4931-4936.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Gremer,
A.De Luca,
T.Merbitz-Zahradnik,
B.Dallapiccola,
S.Morlot,
M.Tartaglia,
K.Kutsche,
M.R.Ahmadian,
and
G.Rosenberger
(2010).
Duplication of Glu37 in the switch I region of HRAS impairs effector/GAP binding and underlies Costello syndrome by promoting enhanced growth factor-dependent MAPK and AKT activation.
|
| |
Hum Mol Genet,
19,
790-802.
|
 |
|
|
|
|
 |
L.L.Krens,
J.M.Baas,
H.Gelderblom,
and
H.J.Guchelaar
(2010).
Therapeutic modulation of k-ras signaling in colorectal cancer.
|
| |
Drug Discov Today,
15,
502-516.
|
 |
|
|
|
|
 |
M.Gu,
and
C.M.Rice
(2010).
Three conformational snapshots of the hepatitis C virus NS3 helicase reveal a ratchet translocation mechanism.
|
| |
Proc Natl Acad Sci U S A,
107,
521-528.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.A.Ismail,
I.R.Vetter,
B.Sot,
and
A.Wittinghofer
(2010).
The structure of an Arf-ArfGAP complex reveals a Ca2+ regulatory mechanism.
|
| |
Cell,
141,
812-821.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Jancík,
J.Drábek,
D.Radzioch,
and
M.Hajdúch
(2010).
Clinical relevance of KRAS in human cancers.
|
| |
J Biomed Biotechnol,
2010,
150960.
|
 |
|
|
|
|
 |
S.Karassek,
C.Berghaus,
M.Schwarten,
C.G.Goemans,
N.Ohse,
G.Kock,
K.Jockers,
S.Neumann,
S.Gottfried,
C.Herrmann,
R.Heumann,
and
R.Stoll
(2010).
Ras homolog enriched in brain (Rheb) enhances apoptotic signaling.
|
| |
J Biol Chem,
285,
33979-33991.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.L.Rowland,
C.L.DePersis,
R.M.Torres,
and
R.Pelanda
(2010).
Ras activation of Erk restores impaired tonic BCR signaling and rescues immature B cell differentiation.
|
| |
J Exp Med,
207,
607-621.
|
 |
|
|
|
|
 |
S.Leonardy,
M.Miertzschke,
I.Bulyha,
E.Sperling,
A.Wittinghofer,
and
L.Søgaard-Andersen
(2010).
Regulation of dynamic polarity switching in bacteria by a Ras-like G-protein and its cognate GAP.
|
| |
EMBO J,
29,
2276-2289.
|
 |
|
|
|
|
 |
T.S.Niault,
and
M.Baccarini
(2010).
Targets of Raf in tumorigenesis.
|
| |
Carcinogenesis,
31,
1165-1174.
|
 |
|
|
|
|
 |
A.S.Al-Zahrani,
K.Kondabagil,
S.Gao,
N.Kelly,
M.Ghosh-Kumar,
and
V.B.Rao
(2009).
The small terminase, gp16, of bacteriophage T4 is a regulator of the DNA packaging motor.
|
| |
J Biol Chem,
284,
24490-24500.
|
 |
|
|
|
|
 |
C.J.Suloway,
J.W.Chartron,
M.Zaslaver,
and
W.M.Clemons
(2009).
Model for eukaryotic tail-anchored protein binding based on the structure of Get3.
|
| |
Proc Natl Acad Sci U S A,
106,
14849-14854.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Tu,
X.Zhou,
J.E.Tropea,
B.P.Austin,
D.S.Waugh,
D.L.Court,
and
X.Ji
(2009).
Structure of ERA in complex with the 3' end of 16S rRNA: implications for ribosome biogenesis.
|
| |
Proc Natl Acad Sci U S A,
106,
14843-14848.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.C.Rees,
E.Johnson,
and
O.Lewinson
(2009).
ABC transporters: the power to change.
|
| |
Nat Rev Mol Cell Biol,
10,
218-227.
|
 |
|
|
|
|
 |
D.Padovani,
and
R.Banerjee
(2009).
A G-protein editor gates coenzyme B12 loading and is corrupted in methylmalonic aciduria.
|
| |
Proc Natl Acad Sci U S A,
106,
21567-21572.
|
 |
|
|
|
|
 |
F.Jelen,
P.Lachowicz,
W.Apostoluk,
A.Mateja,
Z.S.Derewenda,
and
J.Otlewski
(2009).
Dissecting the thermodynamics of GAP-RhoA interactions.
|
| |
J Struct Biol,
165,
10-18.
|
 |
|
|
|
|
 |
G.Rosenberger,
S.Meien,
and
K.Kutsche
(2009).
Oncogenic HRAS mutations cause prolonged PI3K signaling in response to epidermal growth factor in fibroblasts of patients with Costello syndrome.
|
| |
Hum Mutat,
30,
352-362.
|
 |
|
|
|
|
 |
H.He,
T.Yang,
J.R.Terman,
and
X.Zhang
(2009).
Crystal structure of the plexin A3 intracellular region reveals an autoinhibited conformation through active site sequestration.
|
| |
Proc Natl Acad Sci U S A,
106,
15610-15615.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.S.Chappie,
S.Acharya,
Y.W.Liu,
M.Leonard,
T.J.Pucadyil,
and
S.L.Schmid
(2009).
An intramolecular signaling element that modulates dynamin function in vitro and in vivo.
|
| |
Mol Biol Cell,
20,
3561-3571.
|
 |
|
|
|
|
 |
K.H.Nielsen,
H.Chamieh,
C.B.Andersen,
F.Fredslund,
K.Hamborg,
H.Le Hir,
and
G.R.Andersen
(2009).
Mechanism of ATP turnover inhibition in the EJC.
|
| |
RNA,
15,
67-75.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.S.Kim,
J.Song,
and
C.Park
(2009).
Determining protein stability in cell lysates by pulse proteolysis and Western blotting.
|
| |
Protein Sci,
18,
1051-1059.
|
 |
|
|
|
|
 |
M.Sajish,
S.Kalayil,
S.K.Verma,
V.K.Nandicoori,
and
B.Prakash
(2009).
The significance of EXDD and RXKD motif conservation in Rel proteins.
|
| |
J Biol Chem,
284,
9115-9123.
|
 |
|
|
|
|
 |
S.Chimnaronk,
T.Suzuki,
T.Manita,
Y.Ikeuchi,
M.Yao,
T.Suzuki,
and
I.Tanaka
(2009).
RNA helicase module in an acetyltransferase that modifies a specific tRNA anticodon.
|
| |
EMBO J,
28,
1362-1373.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Kupzig,
D.Bouyoucef-Cherchalli,
S.Yarwood,
R.Sessions,
and
P.J.Cullen
(2009).
The ability of GAP1IP4BP to function as a Rap1 GTPase-activating protein (GAP) requires its Ras GAP-related domain and an arginine finger rather than an asparagine thumb.
|
| |
Mol Cell Biol,
29,
3929-3940.
|
 |
|
|
|
|
 |
T.McAvoy,
M.M.Zhou,
P.Greengard,
and
A.C.Nairn
(2009).
Phosphorylation of Rap1GAP, a striatally enriched protein, by protein kinase A controls Rap1 activity and dendritic spine morphology.
|
| |
Proc Natl Acad Sci U S A,
106,
3531-3536.
|
 |
|
|
|
|
 |
V.B.Kurella,
J.M.Richard,
C.L.Parke,
L.F.Lecour,
H.D.Bellamy,
and
D.K.Worthylake
(2009).
Crystal structure of the GTPase-activating protein-related domain from IQGAP1.
|
| |
J Biol Chem,
284,
14857-14865.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.W.Gautier,
L.Gu,
N.O'Donoghue,
S.Pennington,
N.Sheehy,
and
W.W.Hall
(2009).
In vitro nuclear interactome of the HIV-1 Tat protein.
|
| |
Retrovirology,
6,
47.
|
 |
|
|
|
|
 |
Y.H.Lo,
K.L.Tsai,
Y.J.Sun,
W.T.Chen,
C.Y.Huang,
and
C.D.Hsiao
(2009).
The crystal structure of a replicative hexameric helicase DnaC and its complex with single-stranded DNA.
|
| |
Nucleic Acids Res,
37,
804-814.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Tong,
P.K.Hota,
J.Y.Penachioni,
M.B.Hamaneh,
S.Kim,
R.S.Alviani,
L.Shen,
H.He,
W.Tempel,
L.Tamagnone,
H.W.Park,
and
M.Buck
(2009).
Structure and function of the intracellular region of the plexin-b1 transmembrane receptor.
|
| |
J Biol Chem,
284,
35962-35972.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.E.Karnoub,
and
R.A.Weinberg
(2008).
Ras oncogenes: split personalities.
|
| |
Nat Rev Mol Cell Biol,
9,
517-531.
|
 |
|
|
|
|
 |
A.Scrima,
C.Thomas,
D.Deaconescu,
and
A.Wittinghofer
(2008).
The Rap-RapGAP complex: GTP hydrolysis without catalytic glutamine and arginine residues.
|
| |
EMBO J,
27,
1145-1153.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Kötting,
A.Kallenbach,
Y.Suveyzdis,
A.Wittinghofer,
and
K.Gerwert
(2008).
The GAP arginine finger movement into the catalytic site of Ras increases the activation entropy.
|
| |
Proc Natl Acad Sci U S A,
105,
6260-6265.
|
 |
|
|
|
|
 |
D.Abankwa,
A.A.Gorfe,
and
J.F.Hancock
(2008).
Mechanisms of Ras membrane organization and signalling: Ras on a rocker.
|
| |
Cell Cycle,
7,
2667-2673.
|
 |
|
|
|
|
 |
J.Martin,
L.Regad,
C.Etchebest,
and
A.C.Camproux
(2008).
Taking advantage of local structure descriptors to analyze interresidue contacts in protein structures and protein complexes.
|
| |
Proteins,
73,
672-689.
|
 |
|
|
|
|
 |
J.Milić,
R.Seidel,
C.F.Becker,
R.S.Goody,
and
M.Engelhard
(2008).
Semisynthesis of H-Ras with a glutamic acid methylester at position 61.
|
| |
Biopolymers,
90,
399-405.
|
 |
|
|
|
|
 |
L.Gremer,
B.Gilsbach,
M.R.Ahmadian,
and
A.Wittinghofer
(2008).
Fluoride complexes of oncogenic Ras mutants to study the Ras-RasGap interaction.
|
| |
Biol Chem,
389,
1163-1171.
|
 |
|
|
|
|
 |
L.Harispe,
C.Portela,
C.Scazzocchio,
M.A.Peñalva,
and
L.Gorfinkiel
(2008).
Ras GTPase-activating protein regulation of actin cytoskeleton and hyphal polarity in Aspergillus nidulans.
|
| |
Eukaryot Cell,
7,
141-153.
|
 |
|
|
|
|
 |
M.Grunt,
V.Zárský,
and
F.Cvrcková
(2008).
Roots of angiosperm formins: the evolutionary history of plant FH2 domain-containing proteins.
|
| |
BMC Evol Biol,
8,
115.
|
 |
|
|
|
|
 |
M.I.Monine,
and
J.M.Haugh
(2008).
Signal transduction at point-blank range: analysis of a spatial coupling mechanism for pathway crosstalk.
|
| |
Biophys J,
95,
2172-2182.
|
 |
|
|
|
|
 |
M.Soundararajan,
A.Turnbull,
O.Fedorov,
C.Johansson,
and
D.A.Doyle
(2008).
RhoB can adopt a Mg2+ free conformation prior to GEF binding.
|
| |
Proteins,
72,
498-505.
|
 |
|
|
|
|
 |
N.Kannan,
and
S.S.Taylor
(2008).
Rethinking pseudokinases.
|
| |
Cell,
133,
204-205.
|
 |
|
|
|
|
 |
P.Koenig,
M.Oreb,
A.Höfle,
S.Kaltofen,
K.Rippe,
I.Sinning,
E.Schleiff,
and
I.Tews
(2008).
The GTPase cycle of the chloroplast import receptors Toc33/Toc34: implications from monomeric and dimeric structures.
|
| |
Structure,
16,
585-596.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.A.Forbes,
G.Bhamra,
S.Bamford,
E.Dawson,
C.Kok,
J.Clements,
A.Menzies,
J.W.Teague,
P.A.Futreal,
and
M.R.Stratton
(2008).
The Catalogue of Somatic Mutations in Cancer (COSMIC).
|
| |
Curr Protoc Hum Genet,
(),
Unit 10.11.
|
 |
|
|
|
|
 |
S.Veltel,
R.Gasper,
E.Eisenacher,
and
A.Wittinghofer
(2008).
The retinitis pigmentosa 2 gene product is a GTPase-activating protein for Arf-like 3.
|
| |
Nat Struct Mol Biol,
15,
373-380.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
V.Pena,
M.Hothorn,
A.Eberth,
N.Kaschau,
A.Parret,
L.Gremer,
F.Bonneau,
M.R.Ahmadian,
and
K.Scheffzek
(2008).
The C2 domain of SynGAP is essential for stimulation of the Rap GTPase reaction.
|
| |
EMBO Rep,
9,
350-355.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Z.Chen,
H.Yang,
and
N.P.Pavletich
(2008).
Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures.
|
| |
Nature,
453,
489-484.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.Fischer,
M.Marinov,
and
A.Arcaro
(2007).
Targeting receptor tyrosine kinase signalling in small cell lung cancer (SCLC): what have we learned so far?
|
| |
Cancer Treat Rev,
33,
391-406.
|
 |
|
|
|
|
 |
B.L.Grigorenko,
A.V.Nemukhin,
M.S.Shadrina,
I.A.Topol,
and
S.K.Burt
(2007).
Mechanisms of guanosine triphosphate hydrolysis by Ras and Ras-GAP proteins as rationalized by ab initio QM/MM simulations.
|
| |
Proteins,
66,
456-466.
|
 |
|
|
|
|
 |
C.Kötting,
A.Kallenbach,
Y.Suveyzdis,
C.Eichholz,
and
K.Gerwert
(2007).
Surface change of Ras enabling effector binding monitored in real time at atomic resolution.
|
| |
Chembiochem,
8,
781-787.
|
 |
|
|
|
|
 |
D.Barillà,
E.Carmelo,
and
F.Hayes
(2007).
The tail of the ParG DNA segregation protein remodels ParF polymers and enhances ATP hydrolysis via an arginine finger-like motif.
|
| |
Proc Natl Acad Sci U S A,
104,
1811-1816.
|
 |
|
|
|
|
 |
D.Monleón,
M.Martínez-Vicente,
V.Esteve,
L.Yim,
S.Prado,
M.E.Armengod,
and
B.Celda
(2007).
Structural insights into the GTPase domain of Escherichia coli MnmE protein.
|
| |
Proteins,
66,
726-739.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.Bange,
K.Wild,
and
I.Sinning
(2007).
Protein translocation: checkpoint role for SRP GTPase activation.
|
| |
Curr Biol,
17,
R980-R982.
|
 |
|
|
|
|
 |
G.Buhrman,
G.Wink,
and
C.Mattos
(2007).
Transformation efficiency of RasQ61 mutants linked to structural features of the switch regions in the presence of Raf.
|
| |
Structure,
15,
1618-1629.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Ren,
S.X.Dou,
P.Rigolet,
Y.Yang,
P.Y.Wang,
M.Amor-Gueret,
and
X.G.Xi
(2007).
The arginine finger of the Bloom syndrome protein: its structural organization and its role in energy coupling.
|
| |
Nucleic Acids Res,
35,
6029-6041.
|
 |
|
|
|
|
 |
J.L.Bos,
H.Rehmann,
and
A.Wittinghofer
(2007).
GEFs and GAPs: critical elements in the control of small G proteins.
|
| |
Cell,
129,
865-877.
|
 |
|
|
|
|
 |
K.C.Chen,
Y.Zhou,
W.Zhang,
and
M.F.Lou
(2007).
Control of PDGF-induced reactive oxygen species (ROS) generation and signal transduction in human lens epithelial cells.
|
| |
Mol Vis,
13,
374-387.
|
 |
|
|
|
|
 |
M.R.Singleton,
M.S.Dillingham,
and
D.B.Wigley
(2007).
Structure and mechanism of helicases and nucleic acid translocases.
|
| |
Annu Rev Biochem,
76,
23-50.
|
 |
|
|
|
|
 |
P.Wendler,
J.Shorter,
C.Plisson,
A.G.Cashikar,
S.Lindquist,
and
H.R.Saibil
(2007).
Atypical AAA+ subunit packing creates an expanded cavity for disaggregation by the protein-remodeling factor Hsp104.
|
| |
Cell,
131,
1366-1377.
|
 |
|
|
|
|
 |
S.Gras,
V.Chaumont,
B.Fernandez,
P.Carpentier,
F.Charrier-Savournin,
S.Schmitt,
C.Pineau,
D.Flament,
A.Hecker,
P.Forterre,
J.Armengaud,
and
D.Housset
(2007).
Structural insights into a new homodimeric self-activated GTPase family.
|
| |
EMBO Rep,
8,
569-575.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Schubbert,
K.Shannon,
and
G.Bollag
(2007).
Hyperactive Ras in developmental disorders and cancer.
|
| |
Nat Rev Cancer,
7,
295-308.
|
 |
|
|
|
|
 |
W.B.Bowne,
J.Michl,
M.H.Bluth,
M.E.Zenilman,
and
M.R.Pincus
(2007).
Novel peptides from the RAS-p21 and p53 proteins for the treatment of cancer.
|
| |
Cancer Ther,
5,
331-344.
|
 |
|
|
|
|
 |
A.B.Trovó-Marqui,
and
E.H.Tajara
(2006).
Neurofibromin: a general outlook.
|
| |
Clin Genet,
70,
1.
|
 |
|
|
|
|
 |
A.Ghosh,
G.J.Praefcke,
L.Renault,
A.Wittinghofer,
and
C.Herrmann
(2006).
How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP.
|
| |
Nature,
440,
101-104.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Scrima,
and
A.Wittinghofer
(2006).
Dimerisation-dependent GTPase reaction of MnmE: how potassium acts as GTPase-activating element.
|
| |
EMBO J,
25,
2940-2951.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Seybert,
M.R.Singleton,
N.Cook,
D.R.Hall,
and
D.B.Wigley
(2006).
Communication between subunits within an archaeal clamp-loader complex.
|
| |
EMBO J,
25,
2209-2218.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Wittinghofer
(2006).
Phosphoryl transfer in Ras proteins, conclusive or elusive?
|
| |
Trends Biochem Sci,
31,
20-23.
|
 |
|
|
|
|
 |
B.Ford,
V.Hornak,
H.Kleinman,
and
N.Nassar
(2006).
Structure of a transient intermediate for GTP hydrolysis by ras.
|
| |
Structure,
14,
427-436.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Kötting,
M.Blessenohl,
Y.Suveyzdis,
R.S.Goody,
A.Wittinghofer,
and
K.Gerwert
(2006).
A phosphoryl transfer intermediate in the GTPase reaction of Ras in complex with its GTPase-activating protein.
|
| |
Proc Natl Acad Sci U S A,
103,
13911-13916.
|
 |
|
|
|
|
 |
F.Chiaradonna,
E.Sacco,
R.Manzoni,
M.Giorgio,
M.Vanoni,
and
L.Alberghina
(2006).
Ras-dependent carbon metabolism and transformation in mouse fibroblasts.
|
| |
Oncogene,
25,
5391-5404.
|
 |
|
|
|
|
 |
G.Rumbaugh,
J.P.Adams,
J.H.Kim,
and
R.L.Huganir
(2006).
SynGAP regulates synaptic strength and mitogen-activated protein kinases in cultured neurons.
|
| |
Proc Natl Acad Sci U S A,
103,
4344-4351.
|
 |
|
|
|
|
 |
J.A.Walker,
A.V.Tchoudakova,
P.T.McKenney,
S.Brill,
D.Wu,
G.S.Cowley,
I.K.Hariharan,
and
A.Bernards
(2006).
Reduced growth of Drosophila neurofibromatosis 1 mutants reflects a non-cell-autonomous requirement for GTPase-Activating Protein activity in larval neurons.
|
| |
Genes Dev,
20,
3311-3323.
|
 |
|
|
|
|
 |
J.Bonet,
G.Caltabiano,
A.K.Khan,
M.A.Johnston,
C.Corbí,
A.Gómez,
X.Rovira,
J.Teyra,
and
J.Villà-Freixa
(2006).
The role of residue stability in transient protein-protein interactions involved in enzymatic phosphate hydrolysis. A computational study.
|
| |
Proteins,
63,
65-77.
|
 |
|
|
|
|
 |
M.E.Beiner,
H.Niv,
R.Haklai,
G.Elad-Sfadia,
Y.Kloog,
and
G.Ben-Baruch
(2006).
Ras antagonist inhibits growth and chemosensitizes human epithelial ovarian cancer cells.
|
| |
Int J Gynecol Cancer,
16,
200-206.
|
 |
|
|
|
|
 |
S.Chen,
J.T.Do,
Q.Zhang,
S.Yao,
F.Yan,
E.C.Peters,
H.R.Schöler,
P.G.Schultz,
and
S.Ding
(2006).
Self-renewal of embryonic stem cells by a small molecule.
|
| |
Proc Natl Acad Sci U S A,
103,
17266-17271.
|
 |
|
|
|
|
 |
S.Kupzig,
D.Deaconescu,
D.Bouyoucef,
S.A.Walker,
Q.Liu,
C.L.Polte,
O.Daumke,
T.Ishizaki,
P.J.Lockyer,
A.Wittinghofer,
and
P.J.Cullen
(2006).
GAP1 family members constitute bifunctional Ras and Rap GTPase-activating proteins.
|
| |
J Biol Chem,
281,
9891-9900.
|
 |
|
|
|
|
 |
T.Sengoku,
O.Nureki,
A.Nakamura,
S.Kobayashi,
and
S.Yokoyama
(2006).
Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa.
|
| |
Cell,
125,
287-300.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
U.Ashery,
O.Yizhar,
B.Rotblat,
G.Elad-Sfadia,
B.Barkan,
R.Haklai,
and
Y.Kloog
(2006).
Spatiotemporal organization of Ras signaling: rasosomes and the galectin switch.
|
| |
Cell Mol Neurobiol,
26,
471-495.
|
 |
|
|
|
|
 |
X.Pan,
S.Eathiraj,
M.Munson,
and
D.G.Lambright
(2006).
TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism.
|
| |
Nature,
442,
303-306.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Eberth,
R.Dvorsky,
C.F.Becker,
A.Beste,
R.S.Goody,
and
M.R.Ahmadian
(2005).
Monitoring the real-time kinetics of the hydrolysis reaction of guanine nucleotide-binding proteins.
|
| |
Biol Chem,
386,
1105-1114.
|
 |
|
|
|
|
 |
A.Y.Goldstein,
Y.N.Jan,
and
L.Luo
(2005).
Function and regulation of Tumbleweed (RacGAP50C) in neuroblast proliferation and neuronal morphogenesis.
|
| |
Proc Natl Acad Sci U S A,
102,
3834-3839.
|
 |
|
|
|
|
 |
B.L.Grigorenko,
A.V.Nemukhin,
I.A.Topol,
R.E.Cachau,
and
S.K.Burt
(2005).
QM/MM modeling the Ras-GAP catalyzed hydrolysis of guanosine triphosphate.
|
| |
Proteins,
60,
495-503.
|
 |
|
|
|
|
 |
B.L.Grigorenko,
A.V.Nemukhin,
R.E.Cachau,
I.A.Topol,
and
S.K.Burt
(2005).
Computational study of a transition state analog of phosphoryl transfer in the Ras-RasGAP complex: AlF(x) versus MgF3-.
|
| |
J Mol Model,
11,
503-508.
|
 |
|
|
|
|
 |
C.Kötting,
and
K.Gerwert
(2005).
Proteins in action monitored by time-resolved FTIR spectroscopy.
|
| |
Chemphyschem,
6,
881-888.
|
 |
|
|
|
|
 |
D.Segal,
and
M.Eisenstein
(2005).
The effect of resolution-dependent global shape modifications on rigid-body protein-protein docking.
|
| |
Proteins,
59,
580-591.
|
 |
|
|
|
|
 |
E.Gyan,
M.Frew,
D.Bowen,
C.Beldjord,
C.Preudhomme,
C.Lacombe,
P.Mayeux,
F.Dreyfus,
F.Porteu,
and
M.Fontenay
(2005).
Mutation in RAP1 is a rare event in myelodysplastic syndromes.
|
| |
Leukemia,
19,
1678-1680.
|
 |
|
|
|
|
 |
G.A.Khan,
G.Bhattacharya,
P.C.Mailander,
J.L.Meza,
L.A.Hansen,
and
D.Chakravarti
(2005).
Harvey-ras gene expression and epidermal cell proliferation in dibenzo[a,l]pyrene-treated early preneoplastic SENCAR mouse skin.
|
| |
J Invest Dermatol,
125,
567-574.
|
 |
|
|
|
|
 |
K.Du,
and
P.N.Tsichlis
(2005).
Regulation of the Akt kinase by interacting proteins.
|
| |
Oncogene,
24,
7401-7409.
|
 |
|
|
|
|
 |
K.Giehl
(2005).
Oncogenic Ras in tumour progression and metastasis.
|
| |
Biol Chem,
386,
193-205.
|
 |
|
|
|
|
 |
M.Klähn,
S.Braun-Sand,
E.Rosta,
and
A.Warshel
(2005).
On possible pitfalls in ab initio quantum mechanics/molecular mechanics minimization approaches for studies of enzymatic reactions.
|
| |
J Phys Chem B,
109,
15645-15650.
|
 |
|
|
|
|
 |
M.Spoerner,
T.F.Prisner,
M.Bennati,
M.M.Hertel,
N.Weiden,
T.Schweins,
and
H.R.Kalbitzer
(2005).
Conformational states of human H-Ras detected by high-field EPR, ENDOR, and 31P NMR spectroscopy.
|
| |
Magn Reson Chem,
43,
S74-S83.
|
 |
|
|
|
|
 |
N.Mitin,
K.L.Rossman,
and
C.J.Der
(2005).
Signaling interplay in Ras superfamily function.
|
| |
Curr Biol,
15,
R563-R574.
|
 |
|
|
|
|
 |
P.I.Hanson,
and
S.W.Whiteheart
(2005).
AAA+ proteins: have engine, will work.
|
| |
Nat Rev Mol Cell Biol,
6,
519-529.
|
 |
|
|
|
|
 |
R.Blum,
and
Y.Kloog
(2005).
Tailoring Ras-pathway--inhibitor combinations for cancer therapy.
|
| |
Drug Resist Updat,
8,
369-380.
|
 |
|
|
|
|
 |
R.Mishra,
S.K.Gara,
S.Mishra,
and
B.Prakash
(2005).
Analysis of GTPases carrying hydrophobic amino acid substitutions in lieu of the catalytic glutamine: implications for GTP hydrolysis.
|
| |
Proteins,
59,
332-338.
|
 |
|
|
|
|
 |
S.Pasqualato,
and
J.Cherfils
(2005).
Crystallographic evidence for substrate-assisted GTP hydrolysis by a small GTP binding protein.
|
| |
Structure,
13,
533-540.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.F.Reubold,
S.Eschenburg,
A.Becker,
M.Leonard,
S.L.Schmid,
R.B.Vallee,
F.J.Kull,
and
D.J.Manstein
(2005).
Crystal structure of the GTPase domain of rat dynamin 1.
|
| |
Proc Natl Acad Sci U S A,
102,
13093-13098.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Berchanski,
B.Shapira,
and
M.Eisenstein
(2004).
Hydrophobic complementarity in protein-protein docking.
|
| |
Proteins,
56,
130-142.
|
 |
|
|
|
|
 |
A.Lammens,
A.Schele,
and
K.P.Hopfner
(2004).
Structural biochemistry of ATP-driven dimerization and DNA-stimulated activation of SMC ATPases.
|
| |
Curr Biol,
14,
1778-1782.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Shurki,
and
A.Warshel
(2004).
Why does the Ras switch "break" by oncogenic mutations?
|
| |
Proteins,
55,
1.
|
 |
|
|
|
|
 |
D.Gai,
R.Zhao,
D.Li,
C.V.Finkielstein,
and
X.S.Chen
(2004).
Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen.
|
| |
Cell,
119,
47-60.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.J.Crampton,
S.Guo,
D.E.Johnson,
and
C.C.Richardson
(2004).
The arginine finger of bacteriophage T7 gene 4 helicase: role in energy coupling.
|
| |
Proc Natl Acad Sci U S A,
101,
4373-4378.
|
 |
|
|
|
|
 |
E.J.Helmreich
(2004).
Structural flexibility of small GTPases. Can it explain their functional versatility?
|
| |
Biol Chem,
385,
1121-1136.
|
 |
|
|
|
|
 |
E.W.Becker
(2004).
Relevance of the kinetic equilibrium of forces to the control of the cell cycle by Ras proteins.
|
| |
Biol Chem,
385,
41-47.
|
 |
|
|
|
|
 |
F.Bonneau,
I.D'Angelo,
S.Welti,
G.Stier,
J.Ylänne,
and
K.Scheffzek
(2004).
Expression, purification and preliminary crystallographic characterization of a novel segment from the neurofibromatosis type 1 protein.
|
| |
Acta Crystallogr D Biol Crystallogr,
60,
2364-2367.
|
 |
|
|
|
|
 |
F.S.Willard,
R.J.Kimple,
and
D.P.Siderovski
(2004).
Return of the GDI: the GoLoco motif in cell division.
|
| |
Annu Rev Biochem,
73,
925-951.
|
 |
|
|
|
|
 |
G.J.Praefcke,
and
H.T.McMahon
(2004).
The dynamin superfamily: universal membrane tubulation and fission molecules?
|
| |
Nat Rev Mol Cell Biol,
5,
133-147.
|
 |
|
|
|
|
 |
H.Fensterer,
K.Giehl,
M.Buchholz,
V.Ellenrieder,
A.Buck,
H.A.Kestler,
G.Adler,
P.Gierschik,
and
T.M.Gress
(2004).
Expression profiling of the influence of RAS mutants on the TGFB1-induced phenotype of the pancreatic cancer cell line PANC-1.
|
| |
Genes Chromosomes Cancer,
39,
224-235.
|
 |
|
|
|
|
 |
K.L.Norman,
K.Hirasawa,
A.D.Yang,
M.A.Shields,
and
P.W.Lee
(2004).
Reovirus oncolysis: the Ras/RalGEF/p38 pathway dictates host cell permissiveness to reovirus infection.
|
| |
Proc Natl Acad Sci U S A,
101,
11099-11104.
|
 |
|
|
|
|
 |
M.A.Oliva,
S.C.Cordell,
and
J.Löwe
(2004).
Structural insights into FtsZ protofilament formation.
|
| |
Nat Struct Mol Biol,
11,
1243-1250.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.Gresh,
and
G.B.Shi
(2004).
Conformation-dependent intermolecular interaction energies of the triphosphate anion with divalent metal cations. Application to the ATP-binding site of a binuclear bacterial enzyme. A parallel quantum chemical and polarizable molecular mechanics investigation.
|
| |
J Comput Chem,
25,
160-168.
|
 |
|
|
|
|
 |
O.Daumke,
M.Weyand,
P.P.Chakrabarti,
I.R.Vetter,
and
A.Wittinghofer
(2004).
The GTPase-activating protein Rap1GAP uses a catalytic asparagine.
|
| |
Nature,
429,
197-201.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.J.Focia,
H.Alam,
T.Lu,
U.D.Ramirez,
and
D.M.Freymann
(2004).
Novel protein and Mg2+ configurations in the Mg2+GDP complex of the SRP GTPase ffh.
|
| |
Proteins,
54,
222-230.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Hishida,
Y.W.Han,
S.Fujimoto,
H.Iwasaki,
and
H.Shinagawa
(2004).
Direct evidence that a conserved arginine in RuvB AAA+ ATPase acts as an allosteric effector for the ATPase activity of the adjacent subunit in a hexamer.
|
| |
Proc Natl Acad Sci U S A,
101,
9573-9577.
|
 |
|
|
|
|
 |
X.Du,
G.E.Black,
P.Lecchi,
F.P.Abramson,
and
S.R.Sprang
(2004).
Kinetic isotope effects in Ras-catalyzed GTP hydrolysis: evidence for a loose transition state.
|
| |
Proc Natl Acad Sci U S A,
101,
8858-8863.
|
 |
|
|
|
|
 |
Y.Li,
K.Inoki,
and
K.L.Guan
(2004).
Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity.
|
| |
Mol Cell Biol,
24,
7965-7975.
|
 |
|
|
|
|
 |
A.Bernards
(2003).
GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila.
|
| |
Biochim Biophys Acta,
1603,
47-82.
|
 |
|
|
|
|
 |
C.Chaudhry,
G.W.Farr,
M.J.Todd,
H.S.Rye,
A.T.Brunger,
P.D.Adams,
A.L.Horwich,
and
P.B.Sigler
(2003).
Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics.
|
| |
EMBO J,
22,
4877-4887.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Xia,
W.Ma,
L.J.Stafford,
C.Liu,
L.Gong,
J.F.Martin,
and
M.Liu
(2003).
GGAPs, a new family of bifunctional GTP-binding and GTPase-activating proteins.
|
| |
Mol Cell Biol,
23,
2476-2488.
|
 |
|
|
|
|
 |
D.Li,
R.Zhao,
W.Lilyestrom,
D.Gai,
R.Zhang,
J.A.DeCaprio,
E.Fanning,
A.Jochimiak,
G.Szakonyi,
and
X.S.Chen
(2003).
Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen.
|
| |
Nature,
423,
512-518.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Shohami,
I.Yatsiv,
A.Alexandrovich,
R.Haklai,
G.Elad-Sfadia,
R.Grossman,
A.Biegon,
and
Y.Kloog
(2003).
The Ras inhibitor S-trans, trans-farnesylthiosalicylic acid exerts long-lasting neuroprotection in a mouse closed head injury model.
|
| |
J Cereb Blood Flow Metab,
23,
728-738.
|
 |
|
|
|
|
 |
G.Buhrman,
V.de Serrano,
and
C.Mattos
(2003).
Organic solvents order the dynamic switch II in Ras crystals.
|
| |
Structure,
11,
747-751.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.R.Andersen,
P.Nissen,
and
J.Nyborg
(2003).
Elongation factors in protein biosynthesis.
|
| |
Trends Biochem Sci,
28,
434-441.
|
 |
|
|
|
|
 |
H.Kettenberger,
K.J.Armache,
and
P.Cramer
(2003).
Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage.
|
| |
Cell,
114,
347-357.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Wu,
and
S.M.King
(2003).
Backbone dynamics of dynein light chains.
|
| |
Cell Motil Cytoskeleton,
54,
267-273.
|
 |
|
|
|
|
 |
M.Malumbres,
and
M.Barbacid
(2003).
RAS oncogenes: the first 30 years.
|
| |
Nat Rev Cancer,
3,
459-465.
|
 |
|
|
|
|
 |
R.A.Sperling,
J.F.Bates,
E.F.Chua,
A.J.Cocchiarella,
D.M.Rentz,
B.R.Rosen,
D.L.Schacter,
and
M.S.Albert
(2003).
fMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease.
|
| |
J Neurol Neurosurg Psychiatry,
74,
44-50.
|
 |
|
|
|
|
 |
S.Lee,
M.E.Sowa,
Y.H.Watanabe,
P.B.Sigler,
W.Chiu,
M.Yoshida,
and
F.T.Tsai
(2003).
The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state.
|
| |
Cell,
115,
229-240.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.O.Shan,
and
P.Walter
(2003).
Induced nucleotide specificity in a GTPase.
|
| |
Proc Natl Acad Sci U S A,
100,
4480-4485.
|
 |
|
|
|
|
 |
S.Vorobiev,
B.Strokopytov,
D.G.Drubin,
C.Frieden,
S.Ono,
J.Condeelis,
P.A.Rubenstein,
and
S.C.Almo
(2003).
The structure of nonvertebrate actin: implications for the ATP hydrolytic mechanism.
|
| |
Proc Natl Acad Sci U S A,
100,
5760-5765.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Schwartz,
and
G.Blobel
(2003).
Structural basis for the function of the beta subunit of the eukaryotic signal recognition particle receptor.
|
| |
Cell,
112,
793-803.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
W.K.Wang,
V.Tereshko,
P.Boccuni,
D.MacGrogan,
S.D.Nimer,
and
D.J.Patel
(2003).
Malignant brain tumor repeats: a three-leaved propeller architecture with ligand/peptide binding pockets.
|
| |
Structure,
11,
775-789.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Feng,
S.Yu,
T.K.Lasell,
A.P.Jadhav,
E.Macia,
P.Chardin,
P.Melancon,
M.Roth,
T.Mitchison,
and
T.Kirchhausen
(2003).
Exo1: a new chemical inhibitor of the exocytic pathway.
|
| |
Proc Natl Acad Sci U S A,
100,
6469-6474.
|
 |
|
|
|
|
 |
Y.Ohba,
K.Kurokawa,
and
M.Matsuda
(2003).
Mechanism of the spatio-temporal regulation of Ras and Rap1.
|
| |
EMBO J,
22,
859-869.
|
 |
|
|
|
|
 |
A.Cook,
E.D.Lowe,
E.D.Chrysina,
V.T.Skamnaki,
N.G.Oikonomakos,
and
L.N.Johnson
(2002).
Structural studies on phospho-CDK2/cyclin A bound to nitrate, a transition state analogue: implications for the protein kinase mechanism.
|
| |
Biochemistry,
41,
7301-7311.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.G.Evdokimov,
J.E.Tropea,
K.M.Routzahn,
and
D.S.Waugh
(2002).
Crystal structure of the Yersinia pestis GTPase activator YopE.
|
| |
Protein Sci,
11,
401-408.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.L.Davidson
(2002).
Mechanism of coupling of transport to hydrolysis in bacterial ATP-binding cassette transporters.
|
| |
J Bacteriol,
184,
1225-1233.
|
 |
|
|
|
|
 |
D.Jeruzalmi,
M.O'Donnell,
and
J.Kuriyan
(2002).
Clamp loaders and sliding clamps.
|
| |
Curr Opin Struct Biol,
12,
217-224.
|
 |
|
|
|
|
 |
D.L.Ippolito,
P.A.Temkin,
S.L.Rogalski,
and
C.Chavkin
(2002).
N-terminal tyrosine residues within the potassium channel Kir3 modulate GTPase activity of Galphai.
|
| |
J Biol Chem,
277,
32692-32696.
|
 |
|
|
|
|
 |
I.Kosztin,
R.Bruinsma,
P.O'Lague,
and
K.Schulten
(2002).
Mechanical force generation by G proteins.
|
| |
Proc Natl Acad Sci U S A,
99,
3575-3580.
|
 |
|
|
|
|
 |
J.J.Zhu,
Y.Qin,
M.Zhao,
L.Van Aelst,
and
R.Malinow
(2002).
Ras and Rap control AMPA receptor trafficking during synaptic plasticity.
|
| |
Cell,
110,
443-455.
|
 |
|
|
|
|
 |
J.Kuhlmann,
A.Tebbe,
M.Völkert,
M.Wagner,
K.Uwai,
and
H.Waldmann
(2002).
Photoactivatable synthetic Ras proteins: "baits" for the identification of plasma-membrane-bound binding partners of Ras.
|
| |
Angew Chem Int Ed Engl,
41,
2546-2550.
|
 |
|
|
|
|
 |
M.Schaich,
and
T.Illmer
(2002).
Mdr1 gene expression and mutations in Ras proto-oncogenes in acute myeloid leukemia.
|
| |
Leuk Lymphoma,
43,
1345-1354.
|
 |
|
|
|
|
 |
P.J.O'Brien,
and
D.Herschlag
(2002).
Alkaline phosphatase revisited: hydrolysis of alkyl phosphates.
|
| |
Biochemistry,
41,
3207-3225.
|
 |
|
|
|
|
 |
R.Krall,
J.Sun,
K.J.Pederson,
and
J.T.Barbieri
(2002).
In vivo rho GTPase-activating protein activity of Pseudomonas aeruginosa cytotoxin ExoS.
|
| |
Infect Immun,
70,
360-367.
|
 |
|
|
|
|
 |
R.Zhao,
E.J.Collins,
R.B.Bourret,
and
R.E.Silversmith
(2002).
Structure and catalytic mechanism of the E. coli chemotaxis phosphatase CheZ.
|
| |
Nat Struct Biol,
9,
570-575.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Liu,
R.A.Cerione,
and
J.Clardy
(2002).
Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity.
|
| |
Proc Natl Acad Sci U S A,
99,
2743-2747.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Walentinsson,
and
G.Levan
(2001).
Ras gene mutations in 7,12-dimethylbenz[a]anthracene (DMBA)-induced rat sarcomas.
|
| |
Cancer Lett,
166,
47-53.
|
 |
|
|
|
|
 |
C.Allin,
and
K.Gerwert
(2001).
Ras catalyzes GTP hydrolysis by shifting negative charges from gamma- to beta-phosphate as revealed by time-resolved FTIR difference spectroscopy.
|
| |
Biochemistry,
40,
3037-3046.
|
 |
|
|
|
|
 |
C.Allin,
M.R.Ahmadian,
A.Wittinghofer,
and
K.Gerwert
(2001).
Monitoring the GAP catalyzed H-Ras GTPase reaction at atomic resolution in real time.
|
| |
Proc Natl Acad Sci U S A,
98,
7754-7759.
|
 |
|
|
|
|
 |
H.Resat,
T.P.Straatsma,
D.A.Dixon,
and
J.H.Miller
(2001).
The arginine finger of RasGAP helps Gln-61 align the nucleophilic water in GAP-stimulated hydrolysis of GTP.
|
| |
Proc Natl Acad Sci U S A,
98,
6033-6038.
|
 |
|
|
|
|
 |
I.Callebaut,
J.de Gunzburg,
B.Goud,
and
J.P.Mornon
(2001).
RUN domains: a new family of domains involved in Ras-like GTPase signaling.
|
| |
Trends Biochem Sci,
26,
79-83.
|
 |
|
|
|
|
 |
J.Chen,
S.Sharma,
F.A.Quiocho,
and
A.L.Davidson
(2001).
Trapping the transition state of an ATP-binding cassette transporter: evidence for a concerted mechanism of maltose transport.
|
| |
Proc Natl Acad Sci U S A,
98,
1525-1530.
|
 |
|
|
|
|
 |
K.C.Chang,
and
N.N.Chuang
(2001).
GTPase stimulation in shrimp Ras(Q(61)K) with geranylgeranyl pyrophosphate but not mammalian GAP.
|
| |
J Exp Zool,
290,
642-651.
|
 |
|
|
|
|
 |
K.D.Corbett,
and
T.Alber
(2001).
The many faces of Ras: recognition of small GTP-binding proteins.
|
| |
Trends Biochem Sci,
26,
710-716.
|
 |
|
|
|
|
 |
K.Scheffzek,
P.Grünewald,
S.Wohlgemuth,
W.Kabsch,
H.Tu,
M.Wigler,
A.Wittinghofer,
and
C.Herrmann
(2001).
The Ras-Byr2RBD complex: structural basis for Ras effector recognition in yeast.
|
| |
Structure,
9,
1043-1050.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Kosloff,
and
Z.Selinger
(2001).
Substrate assisted catalysis -- application to G proteins.
|
| |
Trends Biochem Sci,
26,
161-166.
|
 |
|
|
|
|
 |
M.Sakurai,
H.Adachi,
and
K.Sutoh
(2001).
Mutational analyses of Dictyostelium IQGAP-related protein GApa: possible interaction with small GTPases in cytokinesis.
|
| |
Biosci Biotechnol Biochem,
65,
1912-1916.
|
 |
|
|
|
|
 |
M.Völkert,
M.Wagner,
C.Peters,
and
H.Waldmann
(2001).
The chemical biology of Ras lipidation.
|
| |
Biol Chem,
382,
1133-1145.
|
 |
|
|
|
|
 |
N.Futatsugi,
and
M.Tsuda
(2001).
Molecular dynamics simulations of Gly-12-->Val mutant of p21(ras): dynamic inhibition mechanism.
|
| |
Biophys J,
81,
3483-3488.
|
 |
|
|
|
|
 |
R.Gail,
B.Costisella,
M.R.Ahmadian,
and
A.Wittinghofer
(2001).
Ras-mediated cleavage of a GTP analogue by a novel mechanism.
|
| |
Chembiochem,
2,
570-575.
|
 |
|
|
|
|
 |
R.Puertollano,
P.A.Randazzo,
J.F.Presley,
L.M.Hartnell,
and
J.S.Bonifacino
(2001).
The GGAs promote ARF-dependent recruitment of clathrin to the TGN.
|
| |
Cell,
105,
93.
|
 |
|
|
|
|
 |
S.Padmanabhan,
and
D.M.Freymann
(2001).
The conformation of bound GMPPNP suggests a mechanism for gating the active site of the SRP GTPase.
|
| |
Structure,
9,
859-867.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.A.Soares,
J.H.Miller,
and
T.P.Straatsma
(2001).
Revisiting the structural flexibility of the complex p21(ras)-GTP: the catalytic conformation of the molecular switch II.
|
| |
Proteins,
45,
297-312.
|
 |
|
|
|
|
 |
X.Zhu,
E.Kim,
A.L.Boman,
A.Hodel,
W.Cieplak,
and
R.A.Kahn
(2001).
ARF binds the C-terminal region of the Escherichia coli heat-labile toxin (LTA1) and competes for the binding of LTA2.
|
| |
Biochemistry,
40,
4560-4568.
|
 |
|
|
|
|
 |
A.Rak,
R.Fedorov,
K.Alexandrov,
S.Albert,
R.S.Goody,
D.Gallwitz,
and
A.J.Scheidig
(2000).
Crystal structure of the GAP domain of Gyp1p: first insights into interaction with Ypt/Rab proteins.
|
| |
EMBO J,
19,
5105-5113.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.Prakash,
L.Renault,
G.J.Praefcke,
C.Herrmann,
and
A.Wittinghofer
(2000).
Triphosphate structure of guanylate-binding protein 1 and implications for nucleotide binding and GTPase mechanism.
|
| |
EMBO J,
19,
4555-4564.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.E.Stebbins,
and
J.E.Galán
(2000).
Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1.
|
| |
Mol Cell,
6,
1449-1460.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.T.Farrar,
J.Ma,
D.J.Singel,
and
C.J.Halkides
(2000).
Structural changes induced in p21Ras upon GAP-334 complexation as probed by ESEEM spectroscopy and molecular-dynamics simulation.
|
| |
Structure,
8,
1279-1287.
|
 |
|
|
|
|
 |
D.Chattopadhyay,
G.Langsley,
M.Carson,
R.Recacha,
L.DeLucas,
and
C.Smith
(2000).
Structure of the nucleotide-binding domain of Plasmodium falciparum rab6 in the GDP-bound form.
|
| |
Acta Crystallogr D Biol Crystallogr,
56,
937-944.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Mohr,
W.Wintermeyer,
and
M.V.Rodnina
(2000).
Arginines 29 and 59 of elongation factor G are important for GTP hydrolysis or translocation on the ribosome.
|
| |
EMBO J,
19,
3458-3464.
|
 |
|
|
|
|
 |
D.S.Black,
and
J.B.Bliska
(2000).
The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence.
|
| |
Mol Microbiol,
37,
515-527.
|
 |
|
|
|
|
 |
E.M.Ross,
and
T.M.Wilkie
(2000).
GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins.
|
| |
Annu Rev Biochem,
69,
795-827.
|
 |
|
|
|
|
 |
G.Montoya,
K.Kaat,
R.Moll,
G.Schäfer,
and
I.Sinning
(2000).
The crystal structure of the conserved GTPase of SRP54 from the archaeon Acidianus ambivalens and its comparison with related structures suggests a model for the SRP-SRP receptor complex.
|
| |
Structure,
8,
515-525.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Song,
P.Mugnier,
A.K.Das,
H.M.Webb,
D.R.Evans,
M.F.Tuite,
B.A.Hemmings,
and
D.Barford
(2000).
The crystal structure of human eukaryotic release factor eRF1--mechanism of stop codon recognition and peptidyl-tRNA hydrolysis.
|
| |
Cell,
100,
311-321.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.S.Bertram
(2000).
The molecular biology of cancer.
|
| |
Mol Aspects Med,
21,
167-223.
|
 |
|
|
|
|
 |
K.Braig,
R.I.Menz,
M.G.Montgomery,
A.G.Leslie,
and
J.E.Walker
(2000).
Structure of bovine mitochondrial F(1)-ATPase inhibited by Mg(2+) ADP and aluminium fluoride.
|
| |
Structure,
8,
567-573.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Lener,
I.R.Horn,
A.Cardinale,
S.Messina,
U.B.Nielsen,
S.M.Rybak,
H.R.Hoogenboom,
A.Cattaneo,
and
S.Biocca
(2000).
Diverting a protein from its cellular location by intracellular antibodies. The case of p21Ras.
|
| |
Eur J Biochem,
267,
1196-1205.
|
 |
|
|
|
|
 |
M.R.Pincus,
P.W.Brandt-Rauf,
J.Michl,
R.P.Carty,
and
F.K.Friedman
(2000).
ras-p21-induced cell transformation: unique signal transduction pathways and implications for the design of new chemotherapeutic agents.
|
| |
Cancer Invest,
18,
39-50.
|
 |
|
|
|
|
 |
M.Sprinzl,
S.Brock,
Y.Huang,
P.Milovnik,
M.Nanninga,
M.Nesper-Brock,
H.Rütthard,
and
K.Szkaradkiewicz
(2000).
Regulation of GTPases in the bacterial translation machinery.
|
| |
Biol Chem,
381,
367-375.
|
 |
|
|
|
|
 |
M.V.Rodnina,
H.Stark,
A.Savelsbergh,
H.J.Wieden,
D.Mohr,
N.B.Matassova,
F.Peske,
T.Daviter,
C.O.Gualerzi,
and
W.Wintermeyer
(2000).
GTPases mechanisms and functions of translation factors on the ribosome.
|
| |
Biol Chem,
381,
377-387.
|
 |
|
|
|
|
 |
S.Nadanaciva,
J.Weber,
and
A.E.Senior
(2000).
New probes of the F1-ATPase catalytic transition state reveal that two of the three catalytic sites can assume a transition state conformation simultaneously.
|
| |
Biochemistry,
39,
9583-9590.
|
 |
|
|
|
|
 |
T.M.Glennon,
J.Villà,
and
A.Warshel
(2000).
How does GAP catalyze the GTPase reaction of Ras? A computer simulation study.
|
| |
Biochemistry,
39,
9641-9651.
|
 |
|
|
|
|
 |
Y.Kloog,
and
A.D.Cox
(2000).
RAS inhibitors: potential for cancer therapeutics.
|
| |
Mol Med Today,
6,
398-402.
|
 |
|
|
|
|
 |
A.J.Scheidig,
C.Burmester,
and
R.S.Goody
(1999).
The pre-hydrolysis state of p21(ras) in complex with GTP: new insights into the role of water molecules in the GTP hydrolysis reaction of ras-like proteins.
|
| |
Structure,
7,
1311-1324.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.M.van der Bliek
(1999).
Is dynamin a regular motor or a master regulator?
|
| |
Trends Cell Biol,
9,
253-254.
|
 |
|
|
|
|
 |
B.A.Posner,
S.Mukhopadhyay,
J.J.Tesmer,
A.G.Gilman,
and
E.M.Ross
(1999).
Modulation of the affinity and selectivity of RGS protein interaction with G alpha subunits by a conserved asparagine/serine residue.
|
| |
Biochemistry,
38,
7773-7779.
|
 |
|
|
|
|
 |
B.Weiss,
G.Bollag,
and
K.Shannon
(1999).
Hyperactive Ras as a therapeutic target in neurofibromatosis type 1.
|
| |
Am J Med Genet,
89,
14-22.
|
 |
|
|
|
|
 |
D.L.Graham,
J.F.Eccleston,
C.W.Chung,
and
P.N.Lowe
(1999).
Magnesium fluoride-dependent binding of small G proteins to their GTPase-activating proteins.
|
| |
Biochemistry,
38,
14981-14987.
|
 |
|
|
|
|
 |
D.L.Graham,
J.F.Eccleston,
and
P.N.Lowe
(1999).
The conserved arginine in rho-GTPase-activating protein is essential for efficient catalysis but not for complex formation with Rho.GDP and aluminum fluoride.
|
| |
Biochemistry,
38,
985-991.
|
 |
|
|
|
|
 |
F.Al-Mulla,
E.J.Milner-White,
J.J.Going,
and
G.D.Birnie
(1999).
Structural differences between valine-12 and aspartate-12 Ras proteins may modify carcinoma aggression.
|
| |
J Pathol,
187,
433-438.
|
 |
|
|
|
|
 |
F.Wieland,
and
C.Harter
(1999).
Mechanisms of vesicle formation: insights from the COP system.
|
| |
Curr Opin Cell Biol,
11,
440-446.
|
 |
|
|
|
|
 |
G.Elad,
A.Paz,
R.Haklai,
D.Marciano,
A.Cox,
and
Y.Kloog
(1999).
Targeting of K-Ras 4B by S-trans,trans-farnesyl thiosalicylic acid.
|
| |
Biochim Biophys Acta,
1452,
228-242.
|
 |
|
|
|
|
 |
I.R.Vetter,
A.Arndt,
U.Kutay,
D.Görlich,
and
A.Wittinghofer
(1999).
Structural view of the Ran-Importin beta interaction at 2.3 A resolution.
|
| |
Cell,
97,
635-646.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.Rubio,
U.Wittig,
C.Meyer,
R.Heinze,
D.Kadereit,
H.Waldmann,
J.Downward,
and
R.Wetzker
(1999).
Farnesylation of Ras is important for the interaction with phosphoinositide 3-kinase gamma.
|
| |
Eur J Biochem,
266,
70-82.
|
 |
|
|
|
|
 |
J.Goldberg
(1999).
Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis.
|
| |
Cell,
96,
893-902.
|
 |
|
|
|
|
 |
J.Ménétrey,
and
J.Cherfils
(1999).
Structure of the small G protein Rap2 in a non-catalytic complex with GTP.
|
| |
Proteins,
37,
465-473.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Wei,
and
T.S.Leyh
(1999).
Isomerization couples chemistry in the ATP sulfurylase-GTPase system.
|
| |
Biochemistry,
38,
6311-6316.
|
 |
|
|
|
|
 |
M.R.Ahmadian,
T.Zor,
D.Vogt,
W.Kabsch,
Z.Selinger,
A.Wittinghofer,
and
K.Scheffzek
(1999).
Guanosine triphosphatase stimulation of oncogenic Ras mutants.
|
| |
Proc Natl Acad Sci U S A,
96,
7065-7070.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.R.Sawaya,
S.Guo,
S.Tabor,
C.C.Richardson,
and
T.Ellenberger
(1999).
Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7.
|
| |
Cell,
99,
167-177.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Versele,
J.H.de Winde,
and
J.M.Thevelein
(1999).
A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2.
|
| |
EMBO J,
18,
5577-5591.
|
 |
|
|
|
|
 |
N.Futatsugi,
M.Hata,
T.Hoshino,
and
M.Tsuda
(1999).
Ab initio study of the role of lysine 16 for the molecular switching mechanism of Ras protein p21.
|
| |
Biophys J,
77,
3287-3292.
|
 |
|
|
|
|
 |
P.J.Goulder,
and
B.D.Walker
(1999).
The great escape - AIDS viruses and immune control.
|
| |
Nat Med,
5,
1233-1235.
|
 |
|
|
|
|
 |
P.J.Sheffield,
U.Derewenda,
J.Taylor,
T.J.Parsons,
and
Z.S.Derewenda
(1999).
Expression, purification and crystallization of a BH domain from the GTPase regulatory protein associated with focal adhesion kinase.
|
| |
Acta Crystallogr D Biol Crystallogr,
55,
356-359.
|
 |
|
|
|
|
 |
R.C.Hillig,
L.Renault,
I.R.Vetter,
T.Drell,
A.Wittinghofer,
and
J.Becker
(1999).
The crystal structure of rna1p: a new fold for a GTPase-activating protein.
|
| |
Mol Cell,
3,
781-791.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Russell,
A.Wali Karzai,
A.F.Mehl,
and
R.McMacken
(1999).
DnaJ dramatically stimulates ATP hydrolysis by DnaK: insight into targeting of Hsp70 proteins to polypeptide substrates.
|
| |
Biochemistry,
38,
4165-4176.
|
 |
|
|
|
|
 |
S.Albert,
E.Will,
and
D.Gallwitz
(1999).
Identification of the catalytic domains and their functionally critical arginine residues of two yeast GTPase-activating proteins specific for Ypt/Rab transport GTPases.
|
| |
EMBO J,
18,
5216-5225.
|
 |
|
|
|
|
 |
S.J.Admiraal,
B.Schneider,
P.Meyer,
J.Janin,
M.Véron,
D.Deville-Bonne,
and
D.Herschlag
(1999).
Nucleophilic activation by positioning in phosphoryl transfer catalyzed by nucleoside diphosphate kinase.
|
| |
Biochemistry,
38,
4701-4711.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Müller,
C.von Eichel-Streiber,
and
M.Moos
(1999).
Impact of amino acids 22-27 of Rho-subfamily GTPases on glucosylation by the large clostridial cytotoxins TcsL-1522, TcdB-1470 and TcdB-8864.
|
| |
Eur J Biochem,
266,
1073-1080.
|
 |
|
|
|
|
 |
S.Nadanaciva,
J.Weber,
and
A.E.Senior
(1999).
The role of beta-Arg-182, an essential catalytic site residue in Escherichia coli F1-ATPase.
|
| |
Biochemistry,
38,
7670-7677.
|
 |
|
|
|
|
 |
S.Nadanaciva,
J.Weber,
S.Wilke-Mounts,
and
A.E.Senior
(1999).
Importance of F1-ATPase residue alpha-Arg-376 for catalytic transition state stabilization.
|
| |
Biochemistry,
38,
15493-15499.
|
 |
|
|
|
|
 |
T.S.Vincent,
J.E.Fraylick,
E.M.McGuffie,
and
J.C.Olson
(1999).
ADP-ribosylation of oncogenic Ras proteins by pseudomonas aeruginosa exoenzyme S in vivo.
|
| |
Mol Microbiol,
32,
1054-1064.
|
 |
|
|
|
|
 |
V.Benard,
G.M.Bokoch,
and
B.A.Diebold
(1999).
Potential drug targets: small GTPases that regulate leukocyte function.
|
| |
Trends Pharmacol Sci,
20,
365-370.
|
 |
|
|
|
|
 |
V.Mandiyan,
J.Andreev,
J.Schlessinger,
and
S.R.Hubbard
(1999).
Crystal structure of the ARF-GAP domain and ankyrin repeats of PYK2-associated protein beta.
|
| |
EMBO J,
18,
6890-6898.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Egozi,
B.Weisz,
M.Gana-Weisz,
G.Ben-Baruch,
and
Y.Kloog
(1999).
Growth inhibition of ras-dependent tumors in nude mice by a potent ras-dislodging antagonist.
|
| |
Int J Cancer,
80,
911-918.
|
 |
|
|
|
|
 |
A.E.Stellwagen,
and
N.L.Craig
(1998).
Mobile DNA elements: controlling transposition with ATP-dependent molecular switches.
|
| |
Trends Biochem Sci,
23,
486-490.
|
 |
|
|
|
|
 |
A.Lavie,
N.Ostermann,
R.Brundiers,
R.S.Goody,
J.Reinstein,
M.Konrad,
and
I.Schlichting
(1998).
Structural basis for efficient phosphorylation of 3'-azidothymidine monophosphate by Escherichia coli thymidylate kinase.
|
| |
Proc Natl Acad Sci U S A,
95,
14045-14050.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Matte,
L.W.Tari,
and
L.T.Delbaere
(1998).
How do kinases transfer phosphoryl groups?
|
| |
Structure,
6,
413-419.
|
 |
|
|
|
|
 |
B.E.Bernstein,
and
W.G.Hol
(1998).
Crystal structures of substrates and products bound to the phosphoglycerate kinase active site reveal the catalytic mechanism.
|
| |
Biochemistry,
37,
4429-4436.
|
 |
|
|
|
|
 |
B.Zhang,
and
Y.Zheng
(1998).
Regulation of RhoA GTP hydrolysis by the GTPase-activating proteins p190, p50RhoGAP, Bcr, and 3BP-1.
|
| |
Biochemistry,
37,
5249-5257.
|
 |
|
|
|
|
 |
C.J.Richardson,
S.Jones,
R.J.Litt,
and
N.Segev
(1998).
GTP hydrolysis is not important for Ypt1 GTPase function in vesicular transport.
|
| |
Mol Cell Biol,
18,
827-838.
|
 |
|
|
|
|
 |
C.Lu,
J.Stricker,
and
H.P.Erickson
(1998).
FtsZ from Escherichia coli, Azotobacter vinelandii, and Thermotoga maritima--quantitation, GTP hydrolysis, and assembly.
|
| |
Cell Motil Cytoskeleton,
40,
71-86.
|
 |
|
|
|
|
 |
D.Barford,
A.K.Das,
and
M.P.Egloff
(1998).
The structure and mechanism of protein phosphatases: insights into catalysis and regulation.
|
| |
Annu Rev Biophys Biomol Struct,
27,
133-164.
|
 |
|
|
|
|
 |
D.Trusca,
S.Scott,
C.Thompson,
and
D.Bramhill
(1998).
Bacterial SOS checkpoint protein SulA inhibits polymerization of purified FtsZ cell division protein.
|
| |
J Bacteriol,
180,
3946-3953.
|
 |
|
|
|
|
 |
E.F.Pai
(1998).
The alpha and beta of turning on a molecular switch.
|
| |
Nat Struct Biol,
5,
259-263.
|
 |
|
|
|
|
 |
E.Mossessova,
J.M.Gulbis,
and
J.Goldberg
(1998).
Structure of the guanine nucleotide exchange factor Sec7 domain of human arno and analysis of the interaction with ARF GTPase.
|
| |
Cell,
92,
415-423.
|
 |
|
|
|
|
 |
E.Nogales,
K.H.Downing,
L.A.Amos,
and
J.Löwe
(1998).
Tubulin and FtsZ form a distinct family of GTPases.
|
| |
Nat Struct Biol,
5,
451-458.
|
 |
|
|
|
|
 |
H.Käck,
J.Sandmark,
K.J.Gibson,
G.Schneider,
and
Y.Lindqvist
(1998).
Crystal structure of two quaternary complexes of dethiobiotin synthetase, enzyme-MgADP-AlF3-diaminopelargonic acid and enzyme-MgADP-dethiobiotin-phosphate; implications for catalysis.
|
| |
Protein Sci,
7,
2560-2566.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Goldberg
(1998).
Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching.
|
| |
Cell,
95,
237-248.
|
 |
|
|
|
|
 |
J.H.Chang,
J.C.Pratt,
S.Sawasdikosol,
R.Kapeller,
and
S.J.Burakoff
(1998).
The small GTP-binding protein Rho potentiates AP-1 transcription in T cells.
|
| |
Mol Cell Biol,
18,
4986-4993.
|
 |
|
|
|
|
 |
J.H.Kim,
D.Liao,
L.F.Lau,
and
R.L.Huganir
(1998).
SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family.
|
| |
Neuron,
20,
683-691.
|
 |
|
|
|
|
 |
J.J.Dumas,
and
D.G.Lambright
(1998).
Gs alpha meets its target--shedding light on a key signal transduction event.
|
| |
Structure,
6,
407-411.
|
 |
|
|
|
|
 |
J.L.Bos
(1998).
All in the family? New insights and questions regarding interconnectivity of Ras, Rap1 and Ral.
|
| |
EMBO J,
17,
6776-6782.
|
 |
|
|
|
|
 |
J.Zhang,
and
C.R.Matthews
(1998).
Ligand binding is the principal determinant of stability for the p21(H)-ras protein.
|
| |
Biochemistry,
37,
14881-14890.
|
 |
|
|
|
|
 |
K.Ajtai,
F.Dai,
S.Park,
C.R.Zayas,
Y.M.Peyser,
A.Muhlrad,
and
T.P.Burghardt
(1998).
Near UV circular dichroism from biomimetic model compounds define the coordination geometry of vanadate centers in MeVi- and MeADPVi-rabbit myosin subfragment 1 complexes in solution.
|
| |
Biophys Chem,
71,
205-220.
|
 |
|
|
|
|
 |
K.Scheffzek,
M.R.Ahmadian,
and
A.Wittinghofer
(1998).
GTPase-activating proteins: helping hands to complement an active site.
|
| |
Trends Biochem Sci,
23,
257-262.
|
 |
|
|
|
|
 |
K.Scheffzek,
M.R.Ahmadian,
L.Wiesmüller,
W.Kabsch,
P.Stege,
F.Schmitz,
and
A.Wittinghofer
(1998).
Structural analysis of the GAP-related domain from neurofibromin and its implications.
|
| |
EMBO J,
17,
4313-4327.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.D.Feese,
H.R.Faber,
C.E.Bystrom,
D.W.Pettigrew,
and
S.J.Remington
(1998).
Glycerol kinase from Escherichia coli and an Ala65-->Thr mutant: the crystal structures reveal conformational changes with implications for allosteric regulation.
|
| |
Structure,
6,
1407-1418.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.Nassar,
G.R.Hoffman,
D.Manor,
J.C.Clardy,
and
R.A.Cerione
(1998).
Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP.
|
| |
Nat Struct Biol,
5,
1047-1052.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.F.Betz,
A.Schnuchel,
H.Wang,
E.T.Olejniczak,
R.P.Meadows,
B.P.Lipsky,
E.A.Harris,
D.E.Staunton,
and
S.W.Fesik
(1998).
Solution structure of the cytohesin-1 (B2-1) Sec7 domain and its interaction with the GTPase ADP ribosylation factor 1.
|
| |
Proc Natl Acad Sci U S A,
95,
7909-7914.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.J.Gamblin,
and
S.J.Smerdon
(1998).
GTPase-activating proteins and their complexes.
|
| |
Curr Opin Struct Biol,
8,
195-201.
|
 |
|
|
|
|
 |
S.Jones,
C.J.Richardson,
R.J.Litt,
and
N.Segev
(1998).
Identification of regulators for Ypt1 GTPase nucleotide cycling.
|
| |
Mol Biol Cell,
9,
2819-2837.
|
 |
|
|
|
|
 |
S.Vincent,
M.Brouns,
M.J.Hart,
and
J.Settleman
(1998).
Evidence for distinct mechanisms of transition state stabilization of GTPases by fluoride.
|
| |
Proc Natl Acad Sci U S A,
95,
2210-2215.
|
 |
|
|
|
|
 |
V.Cepus,
A.J.Scheidig,
R.S.Goody,
and
K.Gerwert
(1998).
Time-resolved FTIR studies of the GTPase reaction of H-ras p21 reveal a key role for the beta-phosphate.
|
| |
Biochemistry,
37,
10263-10271.
|
 |
|
|
|
|
 |
X.Liu,
H.Wang,
M.Eberstadt,
A.Schnuchel,
E.T.Olejniczak,
R.P.Meadows,
J.M.Schkeryantz,
D.A.Janowick,
J.E.Harlan,
E.A.Harris,
D.E.Staunton,
and
S.W.Fesik
(1998).
NMR structure and mutagenesis of the N-terminal Dbl homology domain of the nucleotide exchange factor Trio.
|
| |
Cell,
95,
269-277.
|
 |
|
|
|
|
 |
Y.Zhu,
L.M.Traub,
and
S.Kornfeld
(1998).
ADP-ribosylation factor 1 transiently activates high-affinity adaptor protein complex AP-1 binding sites on Golgi membranes.
|
| |
Mol Biol Cell,
9,
1323-1337.
|
 |
|
|
|
|
 |
A.Wittinghofer
(1997).
Signaling mechanistics: aluminum fluoride for molecule of the year.
|
| |
Curr Biol,
7,
R682-R685.
|
 |
|
|
|
|
 |
E.M.Hogan,
B.A.Davis,
and
W.F.Boron
(1997).
Intracellular Cl- dependence of Na-H exchange in barnacle muscle fibers under normotonic and hypertonic conditions.
|
| |
J Gen Physiol,
110,
629-639.
|
 |
|
|
|
|
 |
J.P.Noel
(1997).
Turning off the Ras switch with the flick of a finger.
|
| |
Nat Struct Biol,
4,
677-680.
|
 |
|
|
|
|
 |
K.M.Druey,
and
J.H.Kehrl
(1997).
Inhibition of regulator of G protein signaling function by two mutant RGS4 proteins.
|
| |
Proc Natl Acad Sci U S A,
94,
12851-12856.
|
 |
|
|
|
|
 |
M.Geyer,
and
A.Wittinghofer
(1997).
GEFs, GAPs, GDIs and effectors: taking a closer (3D) look at the regulation of Ras-related GTP-binding proteins.
|
| |
Curr Opin Struct Biol,
7,
786-792.
|
 |
|
|
|
|
 |
M.R.Ahmadian,
P.Stege,
K.Scheffzek,
and
A.Wittinghofer
(1997).
Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras.
|
| |
Nat Struct Biol,
4,
686-689.
|
 |
|
|
|
|
 |
S.R.Sprang
(1997).
G proteins, effectors and GAPs: structure and mechanism.
|
| |
Curr Opin Struct Biol,
7,
849-856.
|
 |
|
|
|
|
 |
Y.Liu,
A.E.Ruoho,
V.D.Rao,
and
J.H.Hurley
(1997).
Catalytic mechanism of the adenylyl and guanylyl cyclases: modeling and mutational analysis.
|
| |
Proc Natl Acad Sci U S A,
94,
13414-13419.
|
 |
|
PDB codes:
|
 |
|
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |