 |
PDBsum entry 1wbv
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Transferase
|
 |
|
Title:
|
 |
Identification of novel p38 alpha map kinase inhibitors using fragment-based lead generation.
|
|
Structure:
|
 |
Mitogen-activated protein kinase 14. Chain: a. Fragment: kinase domain, residues 1-360. Synonym: mitogen-activated protein kinase p38alpha, map kinase p38alpha, cytokine suppressive anti-inflammatory drug binding protein, csaid binding protein, csbp, max-interacting protein 2, map kinase mxi2, sapk2a. Engineered: yes
|
|
Source:
|
 |
Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 469008.
|
|
Resolution:
|
 |
|
2.00Å
|
R-factor:
|
0.180
|
R-free:
|
0.233
|
|
|
Authors:
|
 |
J.Tickle,A.Cleasby,L.A.Devine,H.Jhoti
|
|
Key ref:
|
 |
A.L.Gill
et al.
(2005).
Identification of novel p38alpha MAP kinase inhibitors using fragment-based lead generation.
J Med Chem,
48,
414-426.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
05-Nov-04
|
Release date:
|
03-Nov-05
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
Q16539
(MK14_HUMAN) -
Mitogen-activated protein kinase 14 from Homo sapiens
|
|
|
|
Seq: Struc:
|
 |
 |
 |
360 a.a.
352 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
PfamA domain |
 |
 |
 |
Secondary structure |
 |
 |
CATH domain |
 |
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.2.7.11.24
- mitogen-activated protein kinase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
|
1.
|
L-seryl-[protein] + ATP = O-phospho-L-seryl-[protein] + ADP + H+
|
|
2.
|
L-threonyl-[protein] + ATP = O-phospho-L-threonyl-[protein] + ADP + H+
|
|
 |
 |
 |
 |
 |
L-seryl-[protein]
|
+
|
ATP
|
=
|
O-phospho-L-seryl-[protein]
|
+
|
ADP
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
L-threonyl-[protein]
|
+
|
ATP
|
=
|
O-phospho-L-threonyl-[protein]
|
+
|
ADP
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
J Med Chem
48:414-426
(2005)
|
|
PubMed id:
|
|
|
|
|
| |
|
Identification of novel p38alpha MAP kinase inhibitors using fragment-based lead generation.
|
|
A.L.Gill,
M.Frederickson,
A.Cleasby,
S.J.Woodhead,
M.G.Carr,
A.J.Woodhead,
M.T.Walker,
M.S.Congreve,
L.A.Devine,
D.Tisi,
M.O'Reilly,
L.C.Seavers,
D.J.Davis,
J.Curry,
R.Anthony,
A.Padova,
C.W.Murray,
R.A.Carr,
H.Jhoti.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
We describe the structure-guided optimization of the molecular fragments
2-amino-3-benzyloxypyridine 1 (IC(50) 1.3 mM) and 3-(2-(4-pyridyl)ethyl)indole 2
(IC(50) 35 microM) identified using X-ray crystallographic screening of p38alpha
MAP kinase. Using two separate case studies, the article focuses on the key
compounds synthesized, the structure-activity relationships and the binding mode
observations made during this optimization process, resulting in two potent lead
series that demonstrate significant increases in activity. We describe the
process of compound elaboration either through the growing out from fragments
into adjacent pockets or through the conjoining of overlapping fragments and
demonstrate that we have exploited the mobile conserved activation loop,
consisting in part of Asp168-Phe169-Gly170 (DFG), to generate significant
improvements in potency and kinase selectivity.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.Yamano
(2010).
[Fragment-based screening by X-ray structure analysis].
|
| |
Yakugaku Zasshi,
130,
335-340.
|
 |
|
|
|
|
 |
C.S.Leung,
J.G.Zeevaart,
R.A.Domaoal,
M.Bollini,
V.V.Thakur,
K.A.Spasov,
K.S.Anderson,
and
W.L.Jorgensen
(2010).
Eastern extension of azoles as non-nucleoside inhibitors of HIV-1 reverse transcriptase; cyano group alternatives.
|
| |
Bioorg Med Chem Lett,
20,
2485-2488.
|
 |
|
|
|
|
 |
A.J.Smith,
X.Zhang,
A.G.Leach,
and
K.N.Houk
(2009).
Beyond picomolar affinities: quantitative aspects of noncovalent and covalent binding of drugs to proteins.
|
| |
J Med Chem,
52,
225-233.
|
 |
|
|
|
|
 |
G.E.de Kloe,
D.Bailey,
R.Leurs,
and
I.J.de Esch
(2009).
Transforming fragments into candidates: small becomes big in medicinal chemistry.
|
| |
Drug Discov Today,
14,
630-646.
|
 |
|
|
|
|
 |
M.H.Seifert
(2009).
Robust optimization of scoring functions for a target class.
|
| |
J Comput Aided Mol Des,
23,
633-644.
|
 |
|
|
|
|
 |
R.S.Armen,
J.Chen,
and
C.L.Brooks
(2009).
An Evaluation of Explicit Receptor Flexibility in Molecular Docking Using Molecular Dynamics and Torsion Angle Molecular Dynamics.
|
| |
J Chem Theory Comput,
5,
2909-2923.
|
 |
|
|
|
|
 |
A.C.Dar,
M.S.Lopez,
and
K.M.Shokat
(2008).
Small molecule recognition of c-Src via the Imatinib-binding conformation.
|
| |
Chem Biol,
15,
1015-1022.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.D.Marsden,
and
S.Knapp
(2008).
Doing more than just the structure-structural genomics in kinase drug discovery.
|
| |
Curr Opin Chem Biol,
12,
40-45.
|
 |
|
|
|
|
 |
D.Chen,
M.Misra,
L.Sower,
J.W.Peterson,
G.E.Kellogg,
and
C.H.Schein
(2008).
Novel inhibitors of anthrax edema factor.
|
| |
Bioorg Med Chem,
16,
7225-7233.
|
 |
|
|
|
|
 |
J.A.Lewis,
E.P.Lebois,
and
C.W.Lindsley
(2008).
Allosteric modulation of kinases and GPCRs: design principles and structural diversity.
|
| |
Curr Opin Chem Biol,
12,
269-280.
|
 |
|
|
|
|
 |
R.E.Hubbard
(2008).
Fragment approaches in structure-based drug discovery.
|
| |
J Synchrotron Radiat,
15,
227-230.
|
 |
|
|
|
|
 |
P.J.Hajduk,
and
J.Greer
(2007).
A decade of fragment-based drug design: strategic advances and lessons learned.
|
| |
Nat Rev Drug Discov,
6,
211-219.
|
 |
|
|
|
|
 |
D.A.Erlanson
(2006).
Fragment-based lead discovery: a chemical update.
|
| |
Curr Opin Biotechnol,
17,
643-652.
|
 |
|
|
|
|
 |
D.E.Danley
(2006).
Crystallization to obtain protein-ligand complexes for structure-aided drug design.
|
| |
Acta Crystallogr D Biol Crystallogr,
62,
569-575.
|
 |
|
|
|
|
 |
D.W.Heinz,
M.S.Weiss,
and
K.U.Wendt
(2006).
Biomacromolecular interactions, assemblies and machines: a structural view.
|
| |
Chembiochem,
7,
203-208.
|
 |
|
|
|
|
 |
G.M.Keseru,
and
G.M.Makara
(2006).
Hit discovery and hit-to-lead approaches.
|
| |
Drug Discov Today,
11,
741-748.
|
 |
|
|
|
|
 |
G.Wagner,
and
S.Laufer
(2006).
Small molecular anti-cytokine agents.
|
| |
Med Res Rev,
26,
1.
|
 |
|
|
|
|
 |
I.Collins,
and
P.Workman
(2006).
New approaches to molecular cancer therapeutics.
|
| |
Nat Chem Biol,
2,
689-700.
|
 |
|
|
|
|
 |
J.S.Melnick,
J.Janes,
S.Kim,
J.Y.Chang,
D.G.Sipes,
D.Gunderson,
L.Jarnes,
J.T.Matzen,
M.E.Garcia,
T.L.Hood,
R.Beigi,
G.Xia,
R.A.Harig,
H.Asatryan,
S.F.Yan,
Y.Zhou,
X.J.Gu,
A.Saadat,
V.Zhou,
F.J.King,
C.M.Shaw,
A.I.Su,
R.Downs,
N.S.Gray,
P.G.Schultz,
M.Warmuth,
and
J.S.Caldwell
(2006).
An efficient rapid system for profiling the cellular activities of molecular libraries.
|
| |
Proc Natl Acad Sci U S A,
103,
3153-3158.
|
 |
|
|
|
|
 |
M.Vogtherr,
K.Saxena,
S.Hoelder,
S.Grimme,
M.Betz,
U.Schieborr,
B.Pescatore,
M.Robin,
L.Delarbre,
T.Langer,
K.U.Wendt,
and
H.Schwalbe
(2006).
NMR characterization of kinase p38 dynamics in free and ligand-bound forms.
|
| |
Angew Chem Int Ed Engl,
45,
993-997.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.L.Blundell,
B.L.Sibanda,
R.W.Montalvão,
S.Brewerton,
V.Chelliah,
C.L.Worth,
N.J.Harmer,
O.Davies,
and
D.Burke
(2006).
Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery.
|
| |
Philos Trans R Soc Lond B Biol Sci,
361,
413-423.
|
 |
|
|
|
|
 |
W.T.Mooij,
M.J.Hartshorn,
I.J.Tickle,
A.J.Sharff,
M.L.Verdonk,
and
H.Jhoti
(2006).
Automated protein-ligand crystallography for structure-based drug design.
|
| |
ChemMedChem,
1,
827-838.
|
 |
|
|
|
|
 |
Y.Liu,
and
N.S.Gray
(2006).
Rational design of inhibitors that bind to inactive kinase conformations.
|
| |
Nat Chem Biol,
2,
358-364.
|
 |
|
|
|
|
 |
A.Gill,
A.Cleasby,
and
H.Jhoti
(2005).
The discovery of novel protein kinase inhibitors by using fragment-based high-throughput x-ray crystallography.
|
| |
Chembiochem,
6,
506-512.
|
 |
|
|
|
|
 |
E.R.Zartler,
and
M.J.Shapiro
(2005).
Fragonomics: fragment-based drug discovery.
|
| |
Curr Opin Chem Biol,
9,
366-370.
|
 |
|
|
|
|
 |
M.Congreve,
C.W.Murray,
and
T.L.Blundell
(2005).
Structural biology and drug discovery.
|
| |
Drug Discov Today,
10,
895-907.
|
 |
|
|
|
|
 |
S.P.Williams,
L.F.Kuyper,
and
K.H.Pearce
(2005).
Recent applications of protein crystallography and structure-guided drug design.
|
| |
Curr Opin Chem Biol,
9,
371-380.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |