spacer
spacer

PDBsum entry 1w7i

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Motor protein PDB id
1w7i

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
750 a.a. *
145 a.a. *
Ligands
ADP
Waters ×11
* Residue conservation analysis
PDB id:
1w7i
Name: Motor protein
Title: Crystal structure of myosin v motor without nucleotide soaked in 10 mm mgadp
Structure: Myosin va. Chain: a. Fragment: motor domain, residues 1-792. Synonym: myosin 5a, dilute myosin heavy chain, non-muscle, myosin heavy chain p190, myosin-v. Engineered: yes. Other_details: soaked mgadp. Myosin light chain 1, slow-twitch muscle a isoform. Chain: b.
Source: Gallus gallus. Chicken. Organism_taxid: 9031. Expressed in: spodoptera frugiperda. Expression_system_taxid: 7108. Expression_system_cell_line: sf9. Homo sapiens. Human. Organism_taxid: 9606.
Biol. unit: Dimer (from PDB file)
Resolution:
3.00Å     R-factor:   0.252     R-free:   0.318
Authors: P.-D.Coureux,H.L.Sweeney,A.Houdusse
Key ref:
P.D.Coureux et al. (2004). Three myosin V structures delineate essential features of chemo-mechanical transduction. EMBO J, 23, 4527-4537. PubMed id: 15510214 DOI: 10.1038/sj.emboj.7600458
Date:
03-Sep-04     Release date:   22-Feb-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q02440  (MYO5A_CHICK) -  Unconventional myosin-Va from Gallus gallus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1829 a.a.
750 a.a.*
Protein chain
Pfam   ArchSchema ?
P14649  (MYL6B_HUMAN) -  Myosin light chain 6B from Homo sapiens
Seq:
Struc:
208 a.a.
145 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 

 
DOI no: 10.1038/sj.emboj.7600458 EMBO J 23:4527-4537 (2004)
PubMed id: 15510214  
 
 
Three myosin V structures delineate essential features of chemo-mechanical transduction.
P.D.Coureux, H.L.Sweeney, A.Houdusse.
 
  ABSTRACT  
 
The molecular motor, myosin, undergoes conformational changes in order to convert chemical energy into force production. Based on kinetic and structural considerations, we assert that three crystal forms of the myosin V motor delineate the conformational changes that myosin motors undergo upon detachment from actin. First, a motor domain structure demonstrates that nucleotide-free myosin V adopts a specific state (rigor-like) that is not influenced by crystal packing. A second structure reveals an actomyosin state that favors rapid release of ADP, and differs from the rigor-like state by a P-loop rearrangement. Comparison of these structures with a third structure, a 2.0 angstroms resolution structure of the motor bound to an ATP analog, illuminates the structural features that provide communication between the actin interface and nucleotide-binding site. Paramount among these is a region we name the transducer, which is composed of the seven-stranded beta-sheet and associated loops and linkers. Reminiscent of the beta-sheet distortion of the F1-ATPase, sequential distortion of this transducer region likely controls sequential release of products from the nucleotide pocket during force generation.
 
  Selected figure(s)  
 
Figure 3.
Figure 3 Cleft closure. (A) The lower and upper 50 kDa subdomains of myosin V MDE have been pulled apart exposing the surface interactions allowing cleft closure. Note (in green on the right) the U50 highly conserved linker that interacts with the HW and HP helices (white on the left) of the L50 subdomain. Switch II (orange) and the strut (pink) are two connectors between the subdomains that help mediate the interactions between these two surfaces and they are shown on both sides. In particular, a hydrophobic residue of switch II (Y439, yellow ball and stick) is a serine or alanine in all myosin II isoforms. This difference may account in part for the difference in the kinetics of cleft closure for the two molecules. (B) A surface CPK representation of the residues involved in this interface is presented in the same orientation as in A). Depending on the conservation in the sequence of these residues in the myosin superfamily, different colors are used (absolutely conserved (green), conservative changes (pale green) and nonconserved (purple)). A yellow star indicates how to reposition the two surfaces to reconstruct the interface.
Figure 6.
Figure 6 The transducer. The transducer is the central region of the motor domain near the nucleotide-binding site that includes the last three strands of the seven-stranded -sheet that undergo distortion between the rigor-like and post-rigor states and the structural elements that accommodate this distortion. Among these elements are the previously studied loop, commonly referred to as loop 1 (residues 184 -191), and the -bulge (pale green) found at the end of the last two -strands. Another of these elements is a linker that follows the HO helix, which provides a pathway of communication to the actin interface. We thus refer to this linker as the HO linker (residues 424 -430); it leads to the fifth -strand that is followed by switch II. Switch I and the P-loop are connected via three parallel -helices that interact with the -sheet. Loop 1 connects the ends of two of these helices (HF and HG). When the -sheet undergoes distortion, these helices rotate and translate relative to each other.
 
  The above figures are reprinted from an Open Access publication published by Macmillan Publishers Ltd: EMBO J (2004, 23, 4527-4537) copyright 2004.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22426545 H.Schmidt, E.S.Gleave, and A.P.Carter (2012).
Insights into dynein motor domain function from a 3.3-Å crystal structure.
  Nat Struct Mol Biol, 19, 492.
PDB codes: 4ai6 4akg 4akh 4aki
21315083 D.J.Jacobs, D.Trivedi, C.David, and C.M.Yengo (2011).
Kinetics and thermodynamics of the rate-limiting conformational change in the actomyosin V mechanochemical cycle.
  J Mol Biol, 407, 716-730.  
21277856 N.Naber, A.Larson, S.Rice, R.Cooke, and E.Pate (2011).
Multiple conformations of the nucleotide site of Kinesin family motors in the triphosphate state.
  J Mol Biol, 408, 628-642.  
21518908 S.Kühner, and S.Fischer (2011).
Structural mechanism of the ATP-induced dissociation of rigor myosin from actin.
  Proc Natl Acad Sci U S A, 108, 7793-7798.  
21421313 S.Masuda, T.Tomohiro, and Y.Hatanaka (2011).
Rapidly photoactivatable ATP probes for specific labeling of tropomyosin within the actomyosin protein complex.
  Bioorg Med Chem Lett, 21, 2252-2254.  
20801044 A.Málnási-Csizmadia, and M.Kovács (2010).
Emerging complex pathways of the actomyosin powerstroke.
  Trends Biochem Sci, 35, 684-690.  
  20664766 G.Purushotham, K.Madhumohan, M.Anwaruddin, H.Nagarajaram, V.Hariram, C.Narasimhan, and M.D.Bashyam (2010).
The MYH7 p.R787H mutation causes hypertrophic cardiomyopathy in two unrelated families.
  Exp Clin Cardiol, 15, e1-e4.  
20192767 H.L.Sweeney, and A.Houdusse (2010).
Structural and functional insights into the Myosin motor mechanism.
  Annu Rev Biophys, 39, 539-557.  
21115842 H.Shi, and G.Blobel (2010).
UNC-45/CRO1/She4p (UCS) protein forms elongated dimer and joins two myosin heads near their actin binding region.
  Proc Natl Acad Sci U S A, 107, 21382-21387.
PDB code: 3opb
20094053 J.A.Spudich, and S.Sivaramakrishnan (2010).
Myosin VI: an innovative motor that challenged the swinging lever arm hypothesis.
  Nat Rev Mol Cell Biol, 11, 128-137.  
20338849 J.C.Gebhardt, Z.Okten, and M.Rief (2010).
The lever arm effects a mechanical asymmetry of the myosin-V-actin bond.
  Biophys J, 98, 277-281.  
20459085 J.J.Frye, V.A.Klenchin, C.R.Bagshaw, and I.Rayment (2010).
Insights into the importance of hydrogen bonding in the gamma-phosphate binding pocket of myosin: structural and functional studies of serine 236.
  Biochemistry, 49, 4897-4907.
PDB codes: 3myh 3myk 3myl
20418880 J.R.Sellers, and C.Veigel (2010).
Direct observation of the myosin-Va power stroke and its reversal.
  Nat Struct Mol Biol, 17, 590-595.  
20687691 K.Amano, T.Yoshidome, M.Iwaki, M.Suzuki, and M.Kinoshita (2010).
Entropic potential field formed for a linear-motor protein near a filament: Statistical-mechanical analyses using simple models.
  J Chem Phys, 133, 045103.  
20616041 M.Lorenz, and K.C.Holmes (2010).
The actin-myosin interface.
  Proc Natl Acad Sci U S A, 107, 12529-12534.  
20399184 R.Tehver, and D.Thirumalai (2010).
Rigor to post-rigor transition in myosin V: link between the dynamics and the supporting architecture.
  Structure, 18, 471-481.  
  20844746 S.Wu, J.Liu, M.C.Reedy, R.T.Tregear, H.Winkler, C.Franzini-Armstrong, H.Sasaki, C.Lucaveche, Y.E.Goldman, M.K.Reedy, and K.A.Taylor (2010).
Electron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions.
  PLoS One, 5, 0.
PDB codes: 2w49 2w4a 2w4g 2w4t
20226094 T.P.Burghardt, K.L.Neff, E.D.Wieben, and K.Ajtai (2010).
Myosin individualized: single nucleotide polymorphisms in energy transduction.
  BMC Genomics, 11, 172.  
19853615 V.Ovchinnikov, B.L.Trout, and M.Karplus (2010).
Mechanical coupling in myosin V: a simulation study.
  J Mol Biol, 395, 815-833.  
20228794 Y.Oguchi, S.V.Mikhailenko, T.Ohki, A.O.Olivares, E.M.De La Cruz, and S.Ishiwata (2010).
Robust processivity of myosin V under off-axis loads.
  Nat Chem Biol, 6, 300-305.  
20585540 Y.Togashi, T.Yanagida, and A.S.Mikhailov (2010).
Nonlinearity of mechanochemical motions in motor proteins.
  PLoS Comput Biol, 6, e1000814.  
20428469 D.Parker, Z.Bryant, and S.L.Delp (2009).
Coarse-Grained Structural Modeling of Molecular Motors Using Multibody Dynamics.
  Cell Mol Bioeng, 2, 366-374.  
19008235 E.Forgacs, T.Sakamoto, S.Cartwright, B.Belknap, M.Kovács, J.Tóth, M.R.Webb, J.R.Sellers, and H.D.White (2009).
Switch 1 Mutation S217A Converts Myosin V into a Low Duty Ratio Motor.
  J Biol Chem, 284, 2138-2149.  
19658764 H.Mahara, K.Okada, A.Nomura, H.Miike, and T.Sakurai (2009).
Chemical activity induces dynamical force with global structure in a reaction-diffusion-convection system.
  Phys Rev E Stat Nonlin Soft Matter Phys, 80, 015306.  
19581439 H.Onishi (2009).
Yuji Tonomura: a pioneer in the field of energy transduction in muscle contraction.
  J Biochem, 146, 7.  
19308324 K.Teilum, J.G.Olsen, and B.B.Kragelund (2009).
Functional aspects of protein flexibility.
  Cell Mol Life Sci, 66, 2231-2247.  
19134468 T.Komori, S.Nishikawa, T.Ariga, A.H.Iwane, and T.Yanagida (2009).
Simultaneous measurement of nucleotide occupancy and mechanical displacement in Myosin-v, a processive molecular motor.
  Biophys J, 96, L4-L6.  
19289039 W.Zheng, and D.Thirumalai (2009).
Coupling between normal modes drives protein conformational dynamics: illustrations using allosteric transitions in myosin II.
  Biophys J, 96, 2128-2137.  
19607837 Y.Sugimoto, O.Sato, S.Watanabe, R.Ikebe, M.Ikebe, and K.Wakabayashi (2009).
Reverse conformational changes of the light chain-binding domain of myosin V and VI processive motor heads during and after hydrolysis of ATP by small-angle X-ray solution scattering.
  J Mol Biol, 392, 420-435.  
18045988 A.Cammarato, C.M.Dambacher, A.F.Knowles, W.A.Kronert, R.Bodmer, K.Ocorr, and S.I.Bernstein (2008).
Myosin transducer mutations differentially affect motor function, myofibril structure, and the performance of skeletal and cardiac muscles.
  Mol Biol Cell, 19, 553-562.  
18725645 J.C.Klein, A.R.Burr, B.Svensson, D.J.Kennedy, J.Allingham, M.A.Titus, I.Rayment, and D.D.Thomas (2008).
Actin-binding cleft closure in myosin II probed by site-directed spin labeling and pulsed EPR.
  Proc Natl Acad Sci U S A, 105, 12867-12872.  
18046460 J.Ménétrey, P.Llinas, J.Cicolari, G.Squires, X.Liu, A.Li, H.L.Sweeney, and A.Houdusse (2008).
The post-rigor structure of myosin VI and implications for the recovery stroke.
  EMBO J, 27, 244-252.
PDB codes: 2vas 2vb6
18239852 K.M.Trybus (2008).
Myosin V from head to tail.
  Cell Mol Life Sci, 65, 1378-1389.  
18202824 L.A.Amos (2008).
Molecular motors: not quite like clockwork.
  Cell Mol Life Sci, 65, 509-515.  
18704171 M.Cecchini, A.Houdusse, and M.Karplus (2008).
Allosteric communication in myosin V: from small conformational changes to large directed movements.
  PLoS Comput Biol, 4, e1000129.  
18650439 M.H.Taft, F.K.Hartmann, A.Rump, H.Keller, I.Chizhov, D.J.Manstein, and G.Tsiavaliaris (2008).
Dictyostelium Myosin-5b is a conditional processive motor.
  J Biol Chem, 283, 26902-26910.  
18552179 M.Sun, M.B.Rose, S.K.Ananthanarayanan, D.J.Jacobs, and C.M.Yengo (2008).
Characterization of the pre-force-generation state in the actomyosin cross-bridge cycle.
  Proc Natl Acad Sci U S A, 105, 8631-8636.  
18833301 R.Hertzano, E.Shalit, A.K.Rzadzinska, A.A.Dror, L.Song, U.Ron, J.T.Tan, A.S.Shitrit, H.Fuchs, T.Hasson, N.Ben-Tal, H.L.Sweeney, M.H.de Angelis, K.P.Steel, and K.B.Avraham (2008).
A Myo6 mutation destroys coordination between the myosin heads, revealing new functions of myosin VI in the stereocilia of mammalian inner ear hair cells.
  PLoS Genet, 4, e1000207.  
17957392 S.A.Gabel, and R.E.London (2008).
Ternary borate-nucleoside complex stabilization by ribonuclease A demonstrates phosphate mimicry.
  J Biol Inorg Chem, 13, 207-217.  
18700726 S.Watanabe, N.Umeki, R.Ikebe, and M.Ikebe (2008).
Impacts of Usher syndrome type IB mutations on human myosin VIIa motor function.
  Biochemistry, 47, 9505-9513.  
18216256 X.D.Li, H.S.Jung, Q.Wang, R.Ikebe, R.Craig, and M.Ikebe (2008).
The globular tail domain puts on the brake to stop the ATPase cycle of myosin Va.
  Proc Natl Acad Sci U S A, 105, 1140-1145.  
18201966 Y.Takagi, Y.Yang, I.Fujiwara, D.Jacobs, R.E.Cheney, J.R.Sellers, and M.Kovács (2008).
Human myosin Vc is a low duty ratio, nonprocessive molecular motor.
  J Biol Chem, 283, 8527-8537.  
17213877 B.Kintses, M.Gyimesi, D.S.Pearson, M.A.Geeves, W.Zeng, C.R.Bagshaw, and A.Málnási-Csizmadia (2007).
Reversible movement of switch 1 loop of myosin determines actin interaction.
  EMBO J, 26, 265-274.  
17635994 B.Morriswood, G.Ryzhakov, C.Puri, S.D.Arden, R.Roberts, C.Dendrou, J.Kendrick-Jones, and F.Buss (2007).
T6BP and NDP52 are myosin VI binding partners with potential roles in cytokine signalling and cell adhesion.
  J Cell Sci, 120, 2574-2585.  
17848543 C.Cohen, and C.Cohen (2007).
Seeing and knowing in structural biology.
  J Biol Chem, 282, 32529-32538.  
17640901 H.Onishi, and M.F.Morales (2007).
A closer look at energy transduction in muscle.
  Proc Natl Acad Sci U S A, 104, 12714-12719.  
17291159 H.Yu, L.Ma, Y.Yang, and Q.Cui (2007).
Mechanochemical coupling in the myosin motor domain. I. Insights from equilibrium active-site simulations.
  PLoS Comput Biol, 3, e21.  
17305418 H.Yu, L.Ma, Y.Yang, and Q.Cui (2007).
Mechanochemical coupling in the myosin motor domain. II. Analysis of critical residues.
  PLoS Comput Biol, 3, e23.  
17628590 J.Bosch, S.Turley, C.M.Roach, T.M.Daly, L.W.Bergman, and W.G.Hol (2007).
The closed MTIP-myosin A-tail complex from the malaria parasite invasion machinery.
  J Mol Biol, 372, 77-88.
PDB code: 2qac
18427938 J.R.Sellers, and P.J.Knight (2007).
Folding and regulation in myosins II and V.
  J Muscle Res Cell Motil, 28, 363-370.  
17562702 K.M.Trybus, M.I.Gushchin, H.Lui, L.Hazelwood, E.B.Krementsova, N.Volkmann, and D.Hanein (2007).
Effect of calcium on calmodulin bound to the IQ motifs of myosin V.
  J Biol Chem, 282, 23316-23325.  
17525343 K.Shiroguchi, and K.Kinosita (2007).
Myosin V walks by lever action and Brownian motion.
  Science, 316, 1208-1212.  
17028139 N.Naber, T.J.Purcell, E.Pate, and R.Cooke (2007).
Dynamics of the nucleotide pocket of myosin measured by spin-labeled nucleotides.
  Biophys J, 92, 172-184.  
17987111 N.Volkmann, H.Lui, L.Hazelwood, K.M.Trybus, S.Lowey, and D.Hanein (2007).
The R403Q Myosin Mutation Implicated in Familial Hypertrophic Cardiomyopathy Causes Disorder at the Actomyosin Interface.
  PLoS ONE, 2, e1123.  
17900617 S.Tang, J.C.Liao, A.R.Dunn, R.B.Altman, J.A.Spudich, and J.P.Schmidt (2007).
Predicting allosteric communication in myosin via a pathway of conserved residues.
  J Mol Biol, 373, 1361-1373.  
18158894 Y.Sun, H.W.Schroeder, J.F.Beausang, K.Homma, M.Ikebe, and Y.E.Goldman (2007).
Myosin VI walks "wiggly" on actin with large and variable tilting.
  Mol Cell, 28, 954-964.  
17502101 Y.Yang, S.Gourinath, M.Kovács, L.Nyitray, R.Reutzel, D.M.Himmel, E.O'Neall-Hennessey, L.Reshetnikova, A.G.Szent-Györgyi, J.H.Brown, and C.Cohen (2007).
Rigor-like structures from muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor.
  Structure, 15, 553-564.
PDB codes: 2ec6 2ekv 2ekw 2os8 2otg 2ovk 2oy6 3i5f 3i5g 3i5h 3i5i
16907132 B.Geislinger, and R.Kawai (2006).
Brownian molecular motors driven by rotation-translation coupling.
  Phys Rev E Stat Nonlin Soft Matter Phys, 74, 011912.  
16963511 G.Lan, and S.X.Sun (2006).
Flexible light-chain and helical structure of F-actin explain the movement and step size of myosin-VI.
  Biophys J, 91, 4002-4013.  
16741830 G.Offer (2006).
Fifty years on: where have we reached?
  J Muscle Res Cell Motil, 27, 205-213.  
16731631 J.C.Gebhardt, A.E.Clemen, J.Jaud, and M.Rief (2006).
Myosin-V is a mechanical ratchet.
  Proc Natl Acad Sci U S A, 103, 8680-8685.  
16625208 J.Liu, D.W.Taylor, E.B.Krementsova, K.M.Trybus, and K.A.Taylor (2006).
Three-dimensional structure of the myosin V inhibited state by cryoelectron tomography.
  Nature, 442, 208-211.
PDB code: 2dfs
16378722 J.R.Sellers, and C.Veigel (2006).
Walking with myosin V.
  Curr Opin Cell Biol, 18, 68-73.  
16838021 K.Thirumurugan, T.Sakamoto, J.A.Hammer, J.R.Sellers, and P.J.Knight (2006).
The cargo-binding domain regulates structure and activity of myosin 5.
  Nature, 442, 212-215.  
16377637 M.Sun, J.L.Oakes, S.K.Ananthanarayanan, K.H.Hawley, R.Y.Tsien, S.R.Adams, and C.M.Yengo (2006).
Dynamics of the upper 50-kDa domain of myosin V examined with fluorescence resonance energy transfer.
  J Biol Chem, 281, 5711-5717.  
16698928 N.R.Guydosh, and S.M.Block (2006).
Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain.
  Proc Natl Acad Sci U S A, 103, 8054-8059.  
16493654 P.Radivojac, S.Vucetic, T.R.O'Connor, V.N.Uversky, Z.Obradovic, and A.K.Dunker (2006).
Calmodulin signaling: analysis and prediction of a disorder-dependent molecular recognition.
  Proteins, 63, 398-410.  
16450056 S.Fujita-Becker, T.F.Reubold, and K.C.Holmes (2006).
The actin-binding cleft: functional characterisation of myosin II with a strut mutation.
  J Muscle Res Cell Motil, 27, 115-123.  
16601691 S.Syed, G.E.Snyder, C.Franzini-Armstrong, P.R.Selvin, and Y.E.Goldman (2006).
Adaptability of myosin V studied by simultaneous detection of position and orientation.
  EMBO J, 25, 1795-1803.  
16757473 X.D.Li, H.S.Jung, K.Mabuchi, R.Craig, and M.Ikebe (2006).
The globular tail domain of myosin Va functions as an inhibitor of the myosin Va motor.
  J Biol Chem, 281, 21789-21798.  
15951390 C.I.Robertson, D.P.Gaffney, L.R.Chrin, and C.L.Berger (2005).
Structural rearrangements in the active site of smooth-muscle myosin.
  Biophys J, 89, 1882-1892.  
16100513 C.Veigel, S.Schmitz, F.Wang, and J.R.Sellers (2005).
Load-dependent kinetics of myosin-V can explain its high processivity.
  Nat Cell Biol, 7, 861-869.  
15944696 J.Ménétrey, A.Bahloul, A.L.Wells, C.M.Yengo, C.A.Morris, H.L.Sweeney, and A.Houdusse (2005).
The structure of the myosin VI motor reveals the mechanism of directionality reversal.
  Nature, 435, 779-785.
PDB codes: 2bkh 2bki
15750603 J.S.Allingham, R.Smith, and I.Rayment (2005).
The structural basis of blebbistatin inhibition and specificity for myosin II.
  Nat Struct Mol Biol, 12, 378-379.
PDB code: 1yv3
15980429 J.Tóth, M.Kovács, F.Wang, L.Nyitray, and J.R.Sellers (2005).
Myosin V from Drosophila reveals diversity of motor mechanisms within the myosin V family.
  J Biol Chem, 280, 30594-30603.  
16137617 N.Volkmann, H.Liu, L.Hazelwood, E.B.Krementsova, S.Lowey, K.M.Trybus, and D.Hanein (2005).
The structural basis of myosin V processive movement as revealed by electron cryomicroscopy.
  Mol Cell, 19, 595-605.  
15980431 R.Clark, M.A.Ansari, S.Dash, M.A.Geeves, and L.M.Coluccio (2005).
Loop 1 of transducer region in mammalian class I myosin, Myo1b, modulates actin affinity, ATPase activity, and nucleotide access.
  J Biol Chem, 280, 30935-30942.  
15863618 S.Fischer, B.Windshügel, D.Horak, K.C.Holmes, and J.C.Smith (2005).
Structural mechanism of the recovery stroke in the myosin molecular motor.
  Proc Natl Acad Sci U S A, 102, 6873-6878.  
15579901 S.S.Rosenfeld, A.Houdusse, and H.L.Sweeney (2005).
Magnesium regulates ADP dissociation from myosin V.
  J Biol Chem, 280, 6072-6079.  
16141317 T.F.Reubold, S.Eschenburg, A.Becker, M.Leonard, S.L.Schmid, R.B.Vallee, F.J.Kull, and D.J.Manstein (2005).
Crystal structure of the GTPase domain of rat dynamin 1.
  Proc Natl Acad Sci U S A, 102, 13093-13098.
PDB code: 2aka
15647159 H.L.Sweeney, and A.Houdusse (2004).
The motor mechanism of myosin V: insights for muscle contraction.
  Philos Trans R Soc Lond B Biol Sci, 359, 1829-1841.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer