spacer
spacer

PDBsum entry 1ugf

Go to PDB code: 
Top Page protein ligands metals links
Lyase PDB id
1ugf
Jmol
Contents
Protein chain
258 a.a.
Ligands
AZI
Metals
_HG
_ZN
Waters ×105

References listed in PDB file
Key reference
Title X-Ray crystallographic studies of alanine-65 variants of carbonic anhydrase ii reveal the structural basis of compromised proton transfer in catalysis.
Authors L.R.Scolnick, D.W.Christianson.
Ref. Biochemistry, 1996, 35, 16429-16434. [DOI no: 10.1021/bi9617872]
PubMed id 8987974
Abstract
The three-dimensional structures of A65F, A65L, A65H, A65T, A65S, and A65G human carbonic anhydrase II (CAII) variants have been solved by X-ray crystallographic methods to probe the importance of residue 65 and the structural implications of its evolutionary drift in the greater family of carbonic anhydrase isozymes. Structure-activity relationships in this series of CAII variants are correlated with those established for other carbonic anhydrase isozymes. We conclude that a bulky side chain at position 65 hinders the formation of an effective solvent bridge between zinc-bound water and H64 and thereby hinders solvent-mediated proton transfer between these two groups [Jackman, J. E., Merz, K. M., Jr., & Fierke, C. A. (1996) Biochemistry 35, 16421-16428]. Despite the introduction of a polar hydroxyl group at this position, smaller side chains such as serine or threonine substituted for A65 do not perturb the formation of a solvent bridge between H64 and zinc-bound solvent. Thus, the evolution of residue 65 size is one factor affecting the trajectory of catalytic proton transfer.
PROCHECK
Go to PROCHECK summary
 Headers