spacer
spacer

PDBsum entry 1udu

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Hydrolase PDB id
1udu

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
313 a.a. *
Ligands
CIA ×2
Metals
_ZN ×2
_MG ×2
* Residue conservation analysis
PDB id:
1udu
Name: Hydrolase
Title: Crystal structure of human phosphodiesterase 5 complexed with tadalafil(cialis)
Structure: Cgmp-specific 3',5'-cyclic phosphodiesterase. Chain: a, b. Fragment: catalytic domain. Synonym: phosphodiesterase 5. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
2.83Å     R-factor:   0.263     R-free:   0.374
Authors: B.-J.Sung,J.I.Lee,Y.-S.Heo,J.H.Kim,J.Moon,J.M.Yoon,Y.-L.Hyun,E.Kim, S.J.Eum,T.G.Lee,J.M.Cho,S.-Y.Park,J.-O.Lee,Y.H.Jeon,K.Y.Hwang,S.Ro
Key ref:
B.J.Sung et al. (2003). Structure of the catalytic domain of human phosphodiesterase 5 with bound drug molecules. Nature, 425, 98. PubMed id: 12955149 DOI: 10.1038/nature01914
Date:
06-May-03     Release date:   11-May-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
O76074  (PDE5A_HUMAN) -  cGMP-specific 3',5'-cyclic phosphodiesterase from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
875 a.a.
313 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.1.4.35  - 3',5'-cyclic-GMP phosphodiesterase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 3',5'-cyclic GMP + H2O = GMP + H+
3',5'-cyclic GMP
+ H2O
= GMP
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1038/nature01914 Nature 425:98 (2003)
PubMed id: 12955149  
 
 
Structure of the catalytic domain of human phosphodiesterase 5 with bound drug molecules.
B.J.Sung, K.Y.Hwang, Y.H.Jeon, J.I.Lee, Y.S.Heo, J.H.Kim, J.Moon, J.M.Yoon, Y.L.Hyun, E.Kim, S.J.Eum, S.Y.Park, J.O.Lee, T.G.Lee, S.Ro, J.M.Cho.
 
  ABSTRACT  
 
Phosphodiesterases (PDEs) are a superfamily of enzymes that degrade the intracellular second messengers cyclic AMP and cyclic GMP. As essential regulators of cyclic nucleotide signalling with diverse physiological functions, PDEs are drug targets for the treatment of various diseases, including heart failure, depression, asthma, inflammation and erectile dysfunction. Of the 12 PDE gene families, cGMP-specific PDE5 carries out the principal cGMP-hydrolysing activity in human corpus cavernosum tissue. It is well known as the target of sildenafil citrate (Viagra) and other similar drugs for the treatment of erectile dysfunction. Despite the pressing need to develop selective PDE inhibitors as therapeutic drugs, only the cAMP-specific PDE4 structures are currently available. Here we present the three-dimensional structures of the catalytic domain (residues 537-860) of human PDE5 complexed with the three drug molecules sildenafil, tadalafil (Cialis) and vardenafil (Levitra). These structures will provide opportunities to design potent and selective PDE inhibitors with improved pharmacological profiles.
 
  Selected figure(s)  
 
Figure 2.
Figure 2: Stereo view of the active site of the PDE5 -sildenafil complex. Sildenafil is shown as a stick model with carbon atoms coloured yellow. Metal- and inhibitor-binding residues of PDE5 are shown as stick models with carbon atoms coloured white. The zinc (the bigger CPK model) and magnesium ions are shown in orange and green, respectively. The amide moiety of the pyrazolopyrimidinone group of sildenafil forms a bidentate hydrogen bond with the -amide group of Gln 817, which is well ordered by a hydrogen bond relay involving Gln 817 to Gln 775, Gln 775 to Ala 767 and Gln 775 to Trp 853. The model orientation is the same as in Fig. 1a.
Figure 3.
Figure 3: Comparison of PDE5 and PDE4 active sites. a, Superimposed C traces of PDE5 (red) and PDE4 (blue)9 showing the difference between the two folds at the active site. Residues 304 -325 of PDE5 and 660 -680 of PDE4D are shown with deeper colours to emphasize the differences in this region. The stick model of sildenafil is shown in yellow and that of zardaverine^9 in green. b, Surface representation of active site pocket of PDE5. The molecular surface is coloured according to electrostatic potential (negative and positive in red and blue, respectively). Residues that form the active site pocket are shown in green. The bound sildenafil in PDE5 is shown as a stick model.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2003, 425, 98-0) copyright 2003.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21425347 M.Russwurm, C.Schlicker, M.Weyand, D.Koesling, and C.Steegborn (2011).
Crystal structure of the GAF-B domain from human phosphodiesterase 5.
  Proteins, 79, 1682-1687.
PDB code: 2xss
20818684 C.Roegler, and J.Lehmann (2010).
[Medicinal chemistry of nitrates and PDE5 inhibitors].
  Pharm Unserer Zeit, 39, 351-358.  
20862763 R.Raijmakers, P.Dadvar, S.Pelletier, J.Gouw, K.Rumpel, and A.J.Heck (2010).
Target profiling of a small library of phosphodiesterase 5 (PDE5) inhibitors using chemical proteomics.
  ChemMedChem, 5, 1927-1936.  
19733234 A.Bhattacharya, A.Biswas, and P.K.Das (2009).
Role of a differentially expressed cAMP phosphodiesterase in regulating the induction of resistance against oxidative damage in Leishmania donovani.
  Free Radic Biol Med, 47, 1494-1506.  
19798052 B.Barren, L.Gakhar, H.Muradov, K.K.Boyd, S.Ramaswamy, and N.O.Artemyev (2009).
Structural basis of phosphodiesterase 6 inhibition by the C-terminal region of the gamma-subunit.
  EMBO J, 28, 3613-3622.
PDB codes: 3jwq 3jwr
19887631 B.Chang, T.Grau, S.Dangel, R.Hurd, B.Jurklies, E.C.Sener, S.Andreasson, H.Dollfus, B.Baumann, S.Bolz, N.Artemyev, S.Kohl, J.Heckenlively, and B.Wissinger (2009).
A homologous genetic basis of the murine cpfl1 mutant and human achromatopsia linked to mutations in the PDE6C gene.
  Proc Natl Acad Sci U S A, 106, 19581-19586.  
19597523 C.Y.Chen, Y.H.Chang, D.T.Bau, H.J.Huang, F.J.Tsai, C.H.Tsai, and C.Y.Chen (2009).
Discovery of potent inhibitors for phosphodiesterase 5 by virtual screening and pharmacophore analysis.
  Acta Pharmacol Sin, 30, 1186-1194.  
18986324 H.A.Toque, F.B.Priviero, S.M.Zemse, E.Antunes, C.E.Teixeira, and R.C.Webb (2009).
Effect of the phosphodiesterase 5 inhibitors sildenafil, tadalafil and vardenafil on rat anococcygeus muscle: functional and biochemical aspects.
  Clin Exp Pharmacol Physiol, 36, 358-366.  
19996273 H.N.Tinsley, B.D.Gary, A.B.Keeton, W.Zhang, A.H.Abadi, R.C.Reynolds, and G.A.Piazza (2009).
Sulindac sulfide selectively inhibits growth and induces apoptosis of human breast tumor cells by phosphodiesterase 5 inhibition, elevation of cyclic GMP, and activation of protein kinase G.
  Mol Cancer Ther, 8, 3331-3340.  
19641165 J.L.Weeks, J.D.Corbin, and S.H.Francis (2009).
Interactions between cyclic nucleotide phosphodiesterase 11 catalytic site and substrates or tadalafil and role of a critical Gln-869 hydrogen bond.
  J Pharmacol Exp Ther, 331, 133-141.  
19828435 J.Pandit, M.D.Forman, K.F.Fennell, K.S.Dillman, and F.S.Menniti (2009).
Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct.
  Proc Natl Acad Sci U S A, 106, 18225-18230.
PDB codes: 3ibj 3itm 3itu
18849587 K.Sakamoto, M.McCluskey, T.G.Wensel, J.K.Naggert, and P.M.Nishina (2009).
New mouse models for recessive retinitis pigmentosa caused by mutations in the Pde6a gene.
  Hum Mol Genet, 18, 178-192.  
19760692 P.Dadvar, D.Kovanich, G.E.Folkers, K.Rumpel, R.Raijmakers, and A.J.Heck (2009).
Phosphatidylethanolamine-binding proteins, including RKIP, exhibit affinity for phosphodiesterase-5 inhibitors.
  Chembiochem, 10, 2654-2662.  
19714704 S.Ahn, J.Y.Hong, M.K.Hong, Y.P.Jang, M.S.Oh, J.H.Jung, and J.Hong (2009).
Structural determination of sildenafil and its analogues in dietary supplements by fast-atom bombardment collision-induced dissociation tandem mass spectrometry.
  Rapid Commun Mass Spectrom, 23, 3158-3166.  
18534985 C.C.Heikaus, J.R.Stout, M.R.Sekharan, C.M.Eakin, P.Rajagopal, P.S.Brzovic, J.A.Beavo, and R.E.Klevit (2008).
Solution structure of the cGMP binding GAF domain from phosphodiesterase 5: insights into nucleotide specificity, dimerization, and cGMP-dependent conformational change.
  J Biol Chem, 283, 22749-22759.
PDB code: 2k31
  19281073 D.M.Halpin (2008).
ABCD of the phosphodiesterase family: interaction and differential activity in COPD.
  Int J Chron Obstruct Pulmon Dis, 3, 543-561.  
18346713 G.Chen, H.Wang, H.Robinson, J.Cai, Y.Wan, and H.Ke (2008).
An insight into the pharmacophores of phosphodiesterase-5 inhibitors from synthetic and crystal structural studies.
  Biochem Pharmacol, 75, 1717-1728.
PDB code: 3bjc
17959709 H.Wang, M.Ye, H.Robinson, S.H.Francis, and H.Ke (2008).
Conformational variations of both phosphodiesterase-5 and inhibitors provide the structural basis for the physiological effects of vardenafil and sildenafil.
  Mol Pharmacol, 73, 104-110.
PDB code: 3b2r
18069986 M.Totrov (2008).
Atomic property fields: generalized 3D pharmacophoric potential for automated ligand superposition, pharmacophore elucidation and 3D QSAR.
  Chem Biol Drug Des, 71, 15-27.  
18614542 S.E.Martinez, C.C.Heikaus, R.E.Klevit, and J.A.Beavo (2008).
The structure of the GAF A domain from phosphodiesterase 6C reveals determinants of cGMP binding, a conserved binding surface, and a large cGMP-dependent conformational change.
  J Biol Chem, 283, 25913-25919.
PDB code: 3dba
18757755 S.Liu, M.N.Mansour, K.S.Dillman, J.R.Perez, D.E.Danley, P.A.Aeed, S.P.Simons, P.K.Lemotte, and F.S.Menniti (2008).
Structural basis for the catalytic mechanism of human phosphodiesterase 9.
  Proc Natl Acad Sci U S A, 105, 13309-13314.
PDB codes: 3dy8 3dyl 3dyn 3dyq 3dys
18161687 Y.Xiong, H.T.Lu, and C.G.Zhan (2008).
Dynamic structures of phosphodiesterase-5 active site by combined molecular dynamics simulations and hybrid quantum mechanical/molecular mechanical calculations.
  J Comput Chem, 29, 1259-1267.  
17389385 H.Wang, Y.Liu, J.Hou, M.Zheng, H.Robinson, and H.Ke (2007).
Structural insight into substrate specificity of phosphodiesterase 10.
  Proc Natl Acad Sci U S A, 104, 5782-5787.
PDB codes: 2oun 2oup 2ouq 2our 2ous 2ouu 2ouv 2ouy
17376027 M.Conti, and J.Beavo (2007).
Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling.
  Annu Rev Biochem, 76, 481-511.  
16443277 G.Cirino, F.Fusco, C.Imbimbo, and V.Mirone (2006).
Pharmacology of erectile dysfunction in man.
  Pharmacol Ther, 111, 400-423.  
16735511 H.Wang, Y.Liu, Q.Huai, J.Cai, R.Zoraghi, S.H.Francis, J.D.Corbin, H.Robinson, Z.Xin, G.Lin, and H.Ke (2006).
Multiple conformations of phosphodiesterase-5: implications for enzyme function and drug development.
  J Biol Chem, 281, 21469-21479.
PDB codes: 2h40 2h42 2h44
16281046 J.Corbin, S.Francis, and R.Zoraghi (2006).
Tyrosine-612 in PDE5 contributes to higher affinity for vardenafil over sildenafil.
  Int J Impot Res, 18, 251-257.  
16539372 Q.Huai, Y.Sun, H.Wang, D.Macdonald, R.Aspiotis, H.Robinson, Z.Huang, and H.Ke (2006).
Enantiomer discrimination illustrated by the high resolution crystal structures of type 4 phosphodiesterase.
  J Med Chem, 49, 1867-1873.
PDB codes: 2fm0 2fm5
16407275 R.Zoraghi, J.D.Corbin, and S.H.Francis (2006).
Phosphodiesterase-5 Gln817 is critical for cGMP, vardenafil, or sildenafil affinity: its orientation impacts cGMP but not cAMP affinity.
  J Biol Chem, 281, 5553-5558.  
16912214 Y.Xiong, H.T.Lu, Y.Li, G.F.Yang, and C.G.Zhan (2006).
Characterization of a catalytic ligand bridging metal ions in phosphodiesterases 4 and 5 by molecular dynamics simulations and hybrid quantum mechanical/molecular mechanical calculations.
  Biophys J, 91, 1858-1867.  
16042713 C.C.Carson, and T.F.Lue (2005).
Phosphodiesterase type 5 inhibitors for erectile dysfunction.
  BJU Int, 96, 257-280.  
15812788 D.Shin, Y.S.Heo, K.J.Lee, C.M.Kim, J.M.Yoon, J.I.Lee, Y.L.Hyun, Y.H.Jeon, T.G.Lee, J.M.Cho, and S.Ro (2005).
Structural chemoproteomics and drug discovery.
  Biopolymers, 80, 258-263.  
16236070 E.Carosa, F.Lombardo, P.Martini, F.Brandetti, and E.A.Jannini (2005).
The therapeutic dilemma: how to use tadalafil.
  Int J Androl, 28, 74-80.  
15994308 H.Wang, Y.Liu, Y.Chen, H.Robinson, and H.Ke (2005).
Multiple elements jointly determine inhibitor selectivity of cyclic nucleotide phosphodiesterases 4 and 7.
  J Biol Chem, 280, 30949-30955.
PDB code: 1zkl
15955067 L.I.Castro, C.Hermsen, J.E.Schultz, and J.U.Linder (2005).
Adenylyl cyclase Rv0386 from Mycobacterium tuberculosis H37Rv uses a novel mode for substrate selection.
  FEBS J, 272, 3085-3092.  
15677448 R.Zoraghi, E.P.Bessay, J.D.Corbin, and S.H.Francis (2005).
Structural and functional features in human PDE5A1 regulatory domain that provide for allosteric cGMP binding, dimerization, and regulation.
  J Biol Chem, 280, 12051-12063.  
16123402 X.Zhang, Q.Feng, and R.H.Cote (2005).
Efficacy and selectivity of phosphodiesterase-targeted drugs in inhibiting photoreceptor phosphodiesterase (PDE6) in retinal photoreceptors.
  Invest Ophthalmol Vis Sci, 46, 3060-3066.  
15541215 A.McCullough (2004).
Phosphodiesterase-5 inhibitors: clinical market and basic science comparative studies.
  Curr Urol Rep, 5, 451-459.  
15355456 E.Carosa, P.Martini, F.Brandetti, S.M.Di Stasi, F.Lombardo, A.Lenzi, and E.A.Jannini (2004).
Type V phosphodiesterase inhibitor treatments for erectile dysfunction increase testosterone levels.
  Clin Endocrinol (Oxf), 61, 382-386.  
15576036 G.L.Card, B.P.England, Y.Suzuki, D.Fong, B.Powell, B.Lee, C.Luu, M.Tabrizizad, S.Gillette, P.N.Ibrahim, D.R.Artis, G.Bollag, M.V.Milburn, S.H.Kim, J.Schlessinger, and K.Y.Zhang (2004).
Structural basis for the activity of drugs that inhibit phosphodiesterases.
  Structure, 12, 2233-2247.
PDB codes: 1xlx 1xlz 1xm4 1xm6 1xmu 1xmy 1xn0 1xom 1xon 1xoq 1xor 1xos 1xot 1xoz 1xp0
15019272 J.M.O'Donnell, and H.T.Zhang (2004).
Antidepressant effects of inhibitors of cAMP phosphodiesterase (PDE4).
  Trends Pharmacol Sci, 25, 158-163.  
14662775 K.E.Broderick, L.Kean, J.A.Dow, N.J.Pyne, and S.A.Davies (2004).
Ectopic expression of bovine type 5 phosphodiesterase confers a renal phenotype in Drosophila.
  J Biol Chem, 279, 8159-8168.  
15260978 K.Y.Zhang, G.L.Card, Y.Suzuki, D.R.Artis, D.Fong, S.Gillette, D.Hsieh, J.Neiman, B.L.West, C.Zhang, M.V.Milburn, S.H.Kim, J.Schlessinger, and G.Bollag (2004).
A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases.
  Mol Cell, 15, 279-286.
PDB codes: 1t9r 1t9s 1taz 1tb5 1tb7 1tbb 1tbf
15210993 Q.Huai, H.Wang, W.Zhang, R.W.Colman, H.Robinson, and H.Ke (2004).
Crystal structure of phosphodiesterase 9 shows orientation variation of inhibitor 3-isobutyl-1-methylxanthine binding.
  Proc Natl Acad Sci U S A, 101, 9624-9629.
PDB codes: 1tbm 2hd1
14668322 Q.Huai, Y.Liu, S.H.Francis, J.D.Corbin, and H.Ke (2004).
Crystal structures of phosphodiesterases 4 and 5 in complex with inhibitor 3-isobutyl-1-methylxanthine suggest a conformation determinant of inhibitor selectivity.
  J Biol Chem, 279, 13095-13101.
PDB codes: 1rko 1rkp 1zkn
14728691 S.Kunz, T.Kloeckner, L.O.Essen, T.Seebeck, and M.Boshart (2004).
TbPDE1, a novel class I phosphodiesterase of Trypanosoma brucei.
  Eur J Biochem, 271, 637-647.  
14551206 T.Yoshimura, I.Sagami, Y.Sasakura, and T.Shimizu (2003).
Relationships between heme incorporation, tetramer formation, and catalysis of a heme-regulated phosphodiesterase from Escherichia coli: a study of deletion and site-directed mutants.
  J Biol Chem, 278, 53105-53111.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer