|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
98 a.a.
|
 |
|
|
|
|
|
|
|
79 a.a.
|
 |
|
|
|
|
|
|
|
106 a.a.
|
 |
|
|
|
|
|
|
|
93 a.a.
|
 |
|
|
|
|
|
|
|
83 a.a.
|
 |
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Structural protein/DNA
|
 |
|
Title:
|
 |
Crystal structure of the nucleosome core particle containing the histone domain of macroh2a
|
|
Structure:
|
 |
Alpha-satellite DNA. Chain: i, j. Engineered: yes. Histone h3.1. Chain: a, e. Synonym: h3/a, h3/c, h3/d, h3/f, h3/h, h3/i, h3/j, h3/k, h3/l. Engineered: yes. Hist1h4i protein. Chain: b, f.
|
|
Source:
|
 |
Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562. Mus musculus. House mouse. Organism_taxid: 10090. Gene: h3fa, h3fc, h3fd, h3ff, h3fh, h3fi, h3fj, h3fk, h3fl.
|
|
Biol. unit:
|
 |
Decamer (from
)
|
|
Resolution:
|
 |
|
3.00Å
|
R-factor:
|
0.206
|
R-free:
|
0.260
|
|
|
Authors:
|
 |
S.Chakravarthy,S.K.Gundimella,C.Caron,P.Y.Perche,J.R.Pehrson, S.Khochbin,K.Luger
|
|
Key ref:
|
 |
S.Chakravarthy
et al.
(2005).
Structural characterization of the histone variant macroH2A.
Mol Cell Biol,
25,
7616-7624.
PubMed id:
|
 |
|
Date:
|
 |
|
20-Jul-04
|
Release date:
|
27-Sep-05
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P68433
(H31_MOUSE) -
Histone H3.1 from Mus musculus
|
|
|
|
Seq: Struc:
|
 |
 |
 |
136 a.a.
98 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P62806
(H4_MOUSE) -
Histone H4 from Mus musculus
|
|
|
|
Seq: Struc:
|
 |
 |
 |
103 a.a.
79 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
O75367
(H2AY_HUMAN) -
Core histone macro-H2A.1 from Homo sapiens
|
|
|
|
Seq: Struc:
|
 |
 |
 |
369 a.a.
106 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
Mol Cell Biol
25:7616-7624
(2005)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structural characterization of the histone variant macroH2A.
|
|
S.Chakravarthy,
S.K.Gundimella,
C.Caron,
P.Y.Perche,
J.R.Pehrson,
S.Khochbin,
K.Luger.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
macroH2A is an H2A variant with a highly unusual structural organization. It has
a C-terminal domain connected to the N-terminal histone domain by a linker.
Crystallographic and biochemical studies show that changes in the L1 loop in the
histone fold region of macroH2A impact the structure and potentially the
function of nucleosomes. The 1.6-A X-ray structure of the nonhistone region
reveals an alpha/beta fold which has previously been found in a functionally
diverse group of proteins. This region associates with histone deacetylases and
affects the acetylation status of nucleosomes containing macroH2A. Thus, the
unusual domain structure of macroH2A integrates independent functions that are
instrumental in establishing a structurally and functionally unique chromatin
domain.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.Marathe,
and
M.Bansal
(2011).
An ensemble of B-DNA dinucleotide geometries lead to characteristic nucleosomal DNA structure and provide plasticity required for gene expression.
|
| |
BMC Struct Biol,
11,
1.
|
 |
|
|
|
|
 |
N.Friedman,
M.Barzily-Rokni,
S.Isaac,
and
A.Eden
(2011).
The Histone H2A Variant MacroH2A1 Does Not Localize to the Centrosome.
|
| |
PLoS One,
6,
e17262.
|
 |
|
|
|
|
 |
S.Tan,
and
C.A.Davey
(2011).
Nucleosome structural studies.
|
| |
Curr Opin Struct Biol,
21,
128-136.
|
 |
|
|
|
|
 |
C.C.Chang,
S.Gao,
L.Y.Sung,
G.N.Corry,
Y.Ma,
Z.P.Nagy,
X.C.Tian,
and
T.P.Rasmussen
(2010).
Rapid elimination of the histone variant MacroH2A from somatic cell heterochromatin after nuclear transfer.
|
| |
Cell Reprogram,
12,
43-53.
|
 |
|
|
|
|
 |
I.Araya,
G.Nardocci,
J.Morales,
M.Vera,
A.Molina,
and
M.Alvarez
(2010).
MacroH2A subtypes contribute antagonistically to the transcriptional regulation of the ribosomal cistron during seasonal acclimatization of the carp fish.
|
| |
Epigenetics Chromatin,
3,
14.
|
 |
|
|
|
|
 |
M.J.Gamble,
K.M.Frizzell,
C.Yang,
R.Krishnakumar,
and
W.L.Kraus
(2010).
The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing.
|
| |
Genes Dev,
24,
21-32.
|
 |
|
|
|
|
 |
A.A.Thambirajah,
A.Li,
T.Ishibashi,
and
J.Ausió
(2009).
New developments in post-translational modifications and functions of histone H2A variants.
|
| |
Biochem Cell Biol,
87,
7.
|
 |
|
|
|
|
 |
A.Chatterjee,
M.A.Johnson,
P.Serrano,
B.Pedrini,
J.S.Joseph,
B.W.Neuman,
K.Saikatendu,
M.J.Buchmeier,
P.Kuhn,
and
K.Wüthrich
(2009).
Nuclear magnetic resonance structure shows that the severe acute respiratory syndrome coronavirus-unique domain contains a macrodomain fold.
|
| |
J Virol,
83,
1823-1836.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.Park,
and
D.E.Griffin
(2009).
The nsP3 macro domain is important for Sindbis virus replication in neurons and neurovirulence in mice.
|
| |
Virology,
388,
305-314.
|
 |
|
|
|
|
 |
H.Malet,
B.Coutard,
S.Jamal,
H.Dutartre,
N.Papageorgiou,
M.Neuvonen,
T.Ahola,
N.Forrester,
E.A.Gould,
D.Lafitte,
F.Ferron,
J.Lescar,
A.E.Gorbalenya,
X.de Lamballerie,
and
B.Canard
(2009).
The crystal structures of Chikungunya and Venezuelan equine encephalitis virus nsP3 macro domains define a conserved adenosine binding pocket.
|
| |
J Virol,
83,
6534-6545.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Tan,
C.Vonrhein,
O.S.Smart,
G.Bricogne,
M.Bollati,
Y.Kusov,
G.Hansen,
J.R.Mesters,
C.L.Schmidt,
and
R.Hilgenfeld
(2009).
The SARS-Unique Domain (SUD) of SARS Coronavirus Contains Two Macrodomains That Bind G-Quadruplexes.
|
| |
PLoS Pathog,
5,
e1000428.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Buschbeck,
I.Uribesalgo,
I.Wibowo,
P.Rué,
D.Martin,
A.Gutierrez,
L.Morey,
R.Guigó,
H.López-Schier,
and
L.Di Croce
(2009).
The histone variant macroH2A is an epigenetic regulator of key developmental genes.
|
| |
Nat Struct Mol Biol,
16,
1074-1079.
|
 |
|
|
|
|
 |
Y.Piotrowski,
G.Hansen,
A.L.Boomaars-van der Zanden,
E.J.Snijder,
A.E.Gorbalenya,
and
R.Hilgenfeld
(2009).
Crystal structures of the X-domains of a Group-1 and a Group-3 coronavirus reveal that ADP-ribose-binding may not be a conserved property.
|
| |
Protein Sci,
18,
6.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.R.Clapier,
S.Chakravarthy,
C.Petosa,
C.Fernández-Tornero,
K.Luger,
and
C.W.Müller
(2008).
Structure of the Drosophila nucleosome core particle highlights evolutionary constraints on the H2A-H2B histone dimer.
|
| |
Proteins,
71,
1-7.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.C.Bishop
(2008).
Geometry of the nucleosomal DNA superhelix.
|
| |
Biophys J,
95,
1007-1017.
|
 |
|
|
|
|
 |
D.A.Nusinow,
J.A.Sharp,
A.Morris,
S.Salas,
K.Plath,
and
B.Panning
(2007).
The histone domain of macroH2A1 contains several dispersed elements that are each sufficient to direct enrichment on the inactive X chromosome.
|
| |
J Mol Biol,
371,
11-18.
|
 |
|
|
|
|
 |
C.L.Woodcock
(2006).
Chromatin architecture.
|
| |
Curr Opin Struct Biol,
16,
213-220.
|
 |
|
|
|
|
 |
C.M.Doyen,
W.An,
D.Angelov,
V.Bondarenko,
F.Mietton,
V.M.Studitsky,
A.Hamiche,
R.G.Roeder,
P.Bouvet,
and
S.Dimitrov
(2006).
Mechanism of polymerase II transcription repression by the histone variant macroH2A.
|
| |
Mol Cell Biol,
26,
1156-1164.
|
 |
|
|
|
|
 |
K.Luger
(2006).
Dynamic nucleosomes.
|
| |
Chromosome Res,
14,
5.
|
 |
|
|
|
|
 |
K.Ouararhni,
R.Hadj-Slimane,
S.Ait-Si-Ali,
P.Robin,
F.Mietton,
A.Harel-Bellan,
S.Dimitrov,
and
A.Hamiche
(2006).
The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity.
|
| |
Genes Dev,
20,
3324-3336.
|
 |
|
|
|
|
 |
L.N.Changolkar,
and
J.R.Pehrson
(2006).
macroH2A1 histone variants are depleted on active genes but concentrated on the inactive X chromosome.
|
| |
Mol Cell Biol,
26,
4410-4420.
|
 |
|
|
|
|
 |
M.Agelopoulos,
and
D.Thanos
(2006).
Epigenetic determination of a cell-specific gene expression program by ATF-2 and the histone variant macroH2A.
|
| |
EMBO J,
25,
4843-4853.
|
 |
|
|
|
|
 |
M.Ducasse,
and
M.A.Brown
(2006).
Epigenetic aberrations and cancer.
|
| |
Mol Cancer,
5,
60.
|
 |
|
|
|
|
 |
S.A.Grigoryev,
Y.A.Bulynko,
and
E.Y.Popova
(2006).
The end adjusts the means: heterochromatin remodelling during terminal cell differentiation.
|
| |
Chromosome Res,
14,
53-69.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
| |