spacer
spacer

PDBsum entry 1tb6

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Hydrolase/blood clotting PDB id
1tb6

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
43 a.a. *
259 a.a. *
412 a.a. *
Ligands
NAG-NAG-FUC
GU3-GU2-GU6-GU1-
GU5-GU8-GU9-GU8-
GU9-GU8-GU9-GU8-
GU5-GU0-GU6-GU4
NAG-NAG-BMA-MAN-
MAN
NAG-NAG-BMA
MPD ×8
NAG
Waters ×146
* Residue conservation analysis
PDB id:
1tb6
Name: Hydrolase/blood clotting
Title: 2.5a crystal structure of the antithrombin-thrombin-heparin ternary complex
Structure: Thrombin. Chain: l. Fragment: thrombin light chain. Synonym: coagulation factor ii. Engineered: yes. Mutation: yes. Thrombin. Chain: h. Fragment: thrombin heavy chain, serine protease.
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: f2. Expressed in: cricetulus griseus. Expression_system_taxid: 10029. Gene: serpinc1, at3. Expression_system_taxid: 10029
Biol. unit: Trimer (from PQS)
Resolution:
2.50Å     R-factor:   0.208     R-free:   0.245
Authors: W.Li,D.J.Johnson,C.T.Esmon,J.A.Huntington
Key ref:
W.Li et al. (2004). Structure of the antithrombin-thrombin-heparin ternary complex reveals the antithrombotic mechanism of heparin. Nat Struct Mol Biol, 11, 857-862. PubMed id: 15311269 DOI: 10.1038/nsmb811
Date:
19-May-04     Release date:   17-Aug-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P00734  (THRB_HUMAN) -  Prothrombin from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
622 a.a.
43 a.a.
Protein chain
Pfam   ArchSchema ?
P00734  (THRB_HUMAN) -  Prothrombin from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
622 a.a.
259 a.a.*
Protein chain
Pfam   ArchSchema ?
P01008  (ANT3_HUMAN) -  Antithrombin-III from Homo sapiens
Seq:
Struc:
464 a.a.
412 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 4 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: Chains L, H: E.C.3.4.21.5  - thrombin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Preferential cleavage: Arg-|-Gly; activates fibrinogen to fibrin and releases fibrinopeptide A and B.

 

 
DOI no: 10.1038/nsmb811 Nat Struct Mol Biol 11:857-862 (2004)
PubMed id: 15311269  
 
 
Structure of the antithrombin-thrombin-heparin ternary complex reveals the antithrombotic mechanism of heparin.
W.Li, D.J.Johnson, C.T.Esmon, J.A.Huntington.
 
  ABSTRACT  
 
The maintenance of normal blood flow depends completely on the inhibition of thrombin by antithrombin, a member of the serpin family. Antithrombin circulates at a high concentration, but only becomes capable of efficient thrombin inhibition on interaction with heparin or related glycosaminoglycans. The anticoagulant properties of therapeutic heparin are mediated by its interaction with antithrombin, although the structural basis for this interaction is unclear. Here we present the crystal structure at a resolution of 2.5 A of the ternary complex between antithrombin, thrombin and a heparin mimetic (SR123781). The structure reveals a template mechanism with antithrombin and thrombin bound to the same heparin chain. A notably close contact interface, comprised of extensive active site and exosite interactions, explains, in molecular detail, the basis of the antithrombotic properties of therapeutic heparin.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Heparin catalysis of thrombin inhibition by antithrombin. (a) The binding of the specific heparin pentasaccharide to antithrombin induces a global conformational change involving the expulsion of the hinge region (circled) of the reactive center loop (RCL, yellow) from the central -sheet A (red), and extension (yellow) of the A and D helices (green and cyan, respectively). The expulsion of the hinge region increases the flexibility of the RCL and liberates the P1 Arg (green ball-and-stick). The flexibility of the C-terminal portion of the RCL (P' side) is limited, despite a three-residue insertion (orange), owing to a tight hydrogen-bonded turn. (b) Stereo representation of the crystal structure of the ternary complex between antithrombin (colored as above), thrombin (magenta) and heparin (ball-and-stick, with blue 2F[o] - F[c] electron density contoured at 1 ). Thrombin is docked toward the heparin-binding site of antithrombin, and makes several exosite interactions. The expulsion of the hinge region is not required to form this complex, but the P' side of the RCL (orange) has been elongated. (c) Density (calculated as in b) of the hinge region of antithrombin in its complex with thrombin and heparin (yellow) reveals the insertion of P15 Gly into -sheet A, and a larger opening between strands 3 and 5A than seen for pentasaccharide-bound antithrombin alone (gray). It has been shown that high-affinity binding is not inconsistent with a native-like hinge conformation, as demonstrated by the structure in PDB entry 1NQ9 (ref. 42) (brown). (d) A comparison of the conformations of the P' region of the RCL of pentasaccharide activated antithrombin (gray) to that of antithrombin in the complex with thrombin and heparin (yellow, oriented as in a and b) reveals the requirement for P' elongation through the breaking of hydrogen bonds.
Figure 3.
Figure 3. Thrombin exosite interactions. (a,b) Thrombin interacts closely with antithrombin by forming exosite interactions in the -loop (a) and the Na^+-binding region (b) (colored as in Fig. 2a). (c) The heparin mimetic (SR123781) used in crystallization is labeled from A on the nonreducing end to P on the reducing end. It is composed of a thrombin-binding site (ABC) and an antithrombin-binding site (LMNOP). The interactions with thrombin and antithrombin are indicated by lines, with solid lines indicating a salt bridge, dashed lines hydrogen bonds, dashed-dotted lines for water-mediated hydrogen bonds, and dotted lines for potential interactions (only for Lys240).
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Mol Biol (2004, 11, 857-862) copyright 2004.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20887194 C.T.Esmon, and N.L.Esmon (2011).
The link between vascular features and thrombosis.
  Annu Rev Physiol, 73, 503-514.  
  20835364 A.Raghuraman, P.D.Mosier, and U.R.Desai (2010).
Understanding Dermatan Sulfate-Heparin Cofactor II Interaction through Virtual Library Screening.
  ACS Med Chem Lett, 1, 281-285.  
20080729 D.J.Johnson, J.Langdown, and J.A.Huntington (2010).
Molecular basis of factor IXa recognition by heparin-activated antithrombin revealed by a 1.7-A structure of the ternary complex.
  Proc Natl Acad Sci U S A, 107, 645-650.
PDB code: 3kcg
20731544 J.A.Huntington, and J.C.Whisstock (2010).
Molecular contortionism - on the physical limits of serpin 'loop-sheet' polymers.
  Biol Chem, 391, 973-982.  
20823601 J.Dong, S.Yao, X.Zhou, L.Zhang, and Y.Xu (2010).
Synthesis of N-heteroaroyl aminosaccharide derivatives as fibroblast growth factor 2 signaling modulators.
  Chem Pharm Bull (Tokyo), 58, 1210-1215.  
21062218 L.Muszbek, Z.Bereczky, B.Kovács, and I.Komáromi (2010).
Antithrombin deficiency and its laboratory diagnosis.
  Clin Chem Lab Med, 48, S67-S78.  
20207734 M.Bekhouche, D.Kronenberg, S.Vadon-Le Goff, C.Bijakowski, N.H.Lim, B.Font, E.Kessler, A.Colige, H.Nagase, G.Murphy, D.J.Hulmes, and C.Moali (2010).
Role of the netrin-like domain of procollagen C-proteinase enhancer-1 in the control of metalloproteinase activity.
  J Biol Chem, 285, 15950-15959.  
20212142 S.O.Dahms, S.Hoefgen, D.Roeser, B.Schlott, K.H.Gührs, and M.E.Than (2010).
Structure and biochemical analysis of the heparin-induced E1 dimer of the amyloid precursor protein.
  Proc Natl Acad Sci U S A, 107, 5381-5386.
PDB code: 3ktm
19959474 W.J.Higgins, D.M.Fox, P.S.Kowalski, J.E.Nielsen, and D.M.Worrall (2010).
Heparin enhances serpin inhibition of the cysteine protease cathepsin L.
  J Biol Chem, 285, 3722-3729.  
19425011 A.Liang, A.Raghuraman, and U.R.Desai (2009).
Capillary electrophoretic study of small, highly sulfated, non-sugar molecules interacting with antithrombin.
  Electrophoresis, 30, 1544-1551.  
18996625 A.Raghuraman, A.Liang, C.Krishnasamy, T.Lauck, G.T.Gunnarsson, and U.R.Desai (2009).
On designing non-saccharide, allosteric activators of antithrombin.
  Eur J Med Chem, 44, 2626-2631.  
19452598 J.Langdown, K.J.Belzar, W.J.Savory, T.P.Baglin, and J.A.Huntington (2009).
The critical role of hinge-region expulsion in the induced-fit heparin binding mechanism of antithrombin.
  J Mol Biol, 386, 1278-1289.
PDB code: 3evj
19666466 M.A.Frese, F.Milz, M.Dick, W.C.Lamanna, and T.Dierks (2009).
Characterization of the human sulfatase Sulf1 and its high affinity heparin/heparan sulfate interaction domain.
  J Biol Chem, 284, 28033-28044.  
19401470 P.G.Gettins, and S.T.Olson (2009).
Exosite determinants of serpin specificity.
  J Biol Chem, 284, 20441-20445.  
18698617 P.P.Vicario, Z.Lu, I.Grigorian, Z.Wang, and T.Schottman (2009).
Cell adhesion and proliferation are reduced on stainless steel coated with polysaccharide-based polymeric formulations.
  J Biomed Mater Res B Appl Biomater, 89, 114-121.  
19656282 T.E.Adams, W.Li, and J.A.Huntington (2009).
Molecular basis of thrombomodulin activation of slow thrombin.
  J Thromb Haemost, 7, 1688-1695.
PDB code: 3gis
19172319 V.Chandrasekaran, C.J.Lee, P.Lin, R.E.Duke, and L.G.Pedersen (2009).
A computational modeling and molecular dynamics study of the Michaelis complex of human protein Z-dependent protease inhibitor (ZPI) and factor Xa (FXa).
  J Mol Model, 15, 897-911.  
18186617 A.E.Schmidt, M.F.Sun, T.Ogawa, S.P.Bajaj, and D.Gailani (2008).
Functional role of residue 193 (chymotrypsin numbering) in serine proteases: influence of side chain length and beta-branching on the catalytic activity of blood coagulation factor XIa.
  Biochemistry, 47, 1326-1335.  
18375953 B.Richard, R.Swanson, S.Schedin-Weiss, B.Ramirez, G.Izaguirre, P.G.Gettins, and S.T.Olson (2008).
Characterization of the conformational alterations, reduced anticoagulant activity, and enhanced antiangiogenic activity of prelatent antithrombin.
  J Biol Chem, 283, 14417-14429.  
18329094 E.Di Cera (2008).
Thrombin.
  Mol Aspects Med, 29, 203-254.  
18065761 K.Tan, M.Duquette, J.H.Liu, K.Shanmugasundaram, A.Joachimiak, J.T.Gallagher, A.C.Rigby, J.H.Wang, and J.Lawler (2008).
Heparin-induced cis- and trans-dimerization modes of the thrombospondin-1 N-terminal domain.
  J Biol Chem, 283, 3932-3941.
PDB codes: 2es3 2ouh 2ouj
18640975 M.Guerrini, S.Guglieri, B.Casu, G.Torri, P.Mourier, C.Boudier, and C.Viskov (2008).
Antithrombin-binding octasaccharides and role of extensions of the active pentasaccharide sequence in the specificity and strength of interaction. Evidence for very high affinity induced by an unusual glucuronic acid residue.
  J Biol Chem, 283, 26662-26675.  
18204328 M.Lafargue, O.Joannes-Boyau, P.M.Honoré, B.Gauche, H.Grand, C.Fleureau, H.Rozé, and G.Janvier (2008).
Acquired deficit of antithrombin and role of supplementation in septic patients during continuous veno-venous hemofiltration.
  ASAIO J, 54, 124-128.  
18985012 M.Lepretti, S.Costantini, G.Ammirato, G.Giuberti, M.Caraglia, A.M.Facchiano, S.Metafora, and P.Stiuso (2008).
The N-terminal 1-16 peptide derived in vivo from protein seminal vesicle protein IV modulates alpha-thrombin activity: potential clinical implications.
  Exp Mol Med, 40, 541-549.  
19090915 N.S.Gandhi, and R.L.Mancera (2008).
The structure of glycosaminoglycans and their interactions with proteins.
  Chem Biol Drug Des, 72, 455-482.  
18971322 S.B.Long, M.B.Long, R.R.White, and B.A.Sullenger (2008).
Crystal structure of an RNA aptamer bound to thrombin.
  RNA, 14, 2504-2512.
PDB code: 3dd2
18060440 T.H.Roberts, and J.Hejgaard (2008).
Serpins in plants and green algae.
  Funct Integr Genomics, 8, 1.  
18974053 W.Li, and J.A.Huntington (2008).
The Heparin Binding Site of Protein C Inhibitor Is Protease-dependent.
  J Biol Chem, 283, 36039-36045.
PDB code: 3dy0
18362344 W.Li, T.E.Adams, J.Nangalia, C.T.Esmon, and J.A.Huntington (2008).
Molecular basis of thrombin recognition by protein C inhibitor revealed by the 1.6-A structure of the heparin-bridged complex.
  Proc Natl Acad Sci U S A, 105, 4661-4666.
PDB code: 3b9f
18068092 A.R.Bizzarri, and S.Cannistraro (2007).
SERS detection of thrombin by protein recognition using functionalized gold nanoparticles.
  Nanomedicine, 3, 306-310.  
17405864 C.Kannemeier, A.Shibamiya, F.Nakazawa, H.Trusheim, C.Ruppert, P.Markart, Y.Song, E.Tzima, E.Kennerknecht, M.Niepmann, M.L.von Bruehl, D.Sedding, S.Massberg, A.Günther, B.Engelmann, and K.T.Preissner (2007).
Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation.
  Proc Natl Acad Sci U S A, 104, 6388-6393.  
17347701 E.Di Cera, M.J.Page, A.Bah, L.A.Bush-Pelc, and L.C.Garvey (2007).
Thrombin allostery.
  Phys Chem Chem Phys, 9, 1291-1306.  
17635727 E.Di Cera (2007).
Thrombin as procoagulant and anticoagulant.
  J Thromb Haemost, 5, 196-202.  
17875649 G.Izaguirre, R.Swanson, S.M.Raja, A.R.Rezaie, and S.T.Olson (2007).
Mechanism by which exosites promote the inhibition of blood coagulation proteases by heparin-activated antithrombin.
  J Biol Chem, 282, 33609-33622.  
17340000 H.Yu, and X.Chen (2007).
Carbohydrate post-glycosylational modifications.
  Org Biomol Chem, 5, 865-872.  
17131147 J.Liu, and L.C.Pedersen (2007).
Anticoagulant heparan sulfate: structural specificity and biosynthesis.
  Appl Microbiol Biotechnol, 74, 263-272.  
17635715 J.T.Crawley, S.Zanardelli, C.K.Chion, and D.A.Lane (2007).
The central role of thrombin in hemostasis.
  J Thromb Haemost, 5, 95.  
17898368 K.A.Tanaka, F.Szlam, H.Y.Sun, T.Taketomi, and J.H.Levy (2007).
Thrombin generation assay and viscoelastic coagulation monitors demonstrate differences in the mode of thrombin inhibition between unfractionated heparin and bivalirudin.
  Anesth Analg, 105, 933.  
17488724 L.Beinrohr, V.Harmat, J.Dobó, Z.Lörincz, P.Gál, and P.Závodszky (2007).
C1 inhibitor serpin domain structure reveals the likely mechanism of heparin potentiation and conformational disease.
  J Biol Chem, 282, 21100-21109.
PDB code: 2oay
17492649 M.Kyotani, K.Okumura, A.Takagi, T.Murate, K.Yamamoto, T.Matsushita, M.Sugimura, N.Kanayama, T.Kobayashi, H.Saito, and T.Kojima (2007).
Molecular basis of antithrombin deficiency in four Japanese patients with antithrombin gene abnormalities including two novel mutations.
  Am J Hematol, 82, 702-705.  
17923478 P.C.Ong, S.McGowan, M.C.Pearce, J.A.Irving, W.T.Kan, S.A.Grigoryev, B.Turk, G.A.Silverman, K.Brix, S.P.Bottomley, J.C.Whisstock, and R.N.Pike (2007).
DNA accelerates the inhibition of human cathepsin v by serpins.
  J Biol Chem, 282, 36980-36986.  
17905675 P.R.Gonzales, T.D.Walston, L.O.Camacho, D.M.Kielar, F.C.Church, A.R.Rezaie, and S.T.Cooper (2007).
Mutation of the H-helix in antithrombin decreases heparin stimulation of protease inhibition.
  Biochim Biophys Acta, 1774, 1431-1437.  
17145752 S.Glerup, S.Kløverpris, L.S.Laursen, F.Dagnaes-Hansen, S.Thiel, C.A.Conover, and C.Oxvig (2007).
Cell surface detachment of pregnancy-associated plasma protein-A requires the formation of intermolecular proteinase-inhibitor disulfide bonds and glycosaminoglycan covalently bound to the inhibitor.
  J Biol Chem, 282, 1769-1778.  
17982317 T.Taketomi, F.Szlam, J.Vinten-Johansen, J.H.Levy, and K.A.Tanaka (2007).
Thrombin-activated thrombelastography for evaluation of thrombin interaction with thrombin inhibitors.
  Blood Coagul Fibrinolysis, 18, 761-767.  
17337440 W.Li, T.E.Adams, M.Kjellberg, J.Stenflo, and J.A.Huntington (2007).
Structure of native protein C inhibitor provides insight into its multiple functions.
  J Biol Chem, 282, 13759-13768.
PDB codes: 2hi9 2ol2
17635698 Y.M.Fortenberry, H.C.Whinna, S.T.Cooper, T.Myles, L.L.Leung, and F.C.Church (2007).
Essential thrombin residues for inhibition by protein C inhibitor with the cofactors heparin and thrombomodulin.
  J Thromb Haemost, 5, 1486-1492.  
18077410 Y.Wu, C.Eigenbrot, W.C.Liang, S.Stawicki, S.Shia, B.Fan, R.Ganesan, M.T.Lipari, and D.Kirchhofer (2007).
Structural insight into distinct mechanisms of protease inhibition by antibodies.
  Proc Natl Acad Sci U S A, 104, 19784-19789.
PDB codes: 2r0k 2r0l
17088529 A.Beenken, and M.Mohammadi (2006).
Hedgehogs like it sweet, too.
  Proc Natl Acad Sci U S A, 103, 17069-17070.  
16321984 A.Dementiev, J.Dobó, and P.G.Gettins (2006).
Active site distortion is sufficient for proteinase inhibition by serpins: structure of the covalent complex of alpha1-proteinase inhibitor with porcine pancreatic elastase.
  J Biol Chem, 281, 3452-3457.
PDB code: 2d26
16759098 A.Raghuraman, P.D.Mosier, and U.R.Desai (2006).
Finding a needle in a haystack: development of a combinatorial virtual screening approach for identifying high specificity heparin/heparan sulfate sequence(s).
  J Med Chem, 49, 3553-3562.  
16973611 D.J.Johnson, J.Langdown, W.Li, S.A.Luis, T.P.Baglin, and J.A.Huntington (2006).
Crystal structure of monomeric native antithrombin reveals a novel reactive center loop conformation.
  J Biol Chem, 281, 35478-35486.
PDB codes: 1t1f 2b5t 2beh
16619025 D.J.Johnson, W.Li, T.E.Adams, and J.A.Huntington (2006).
Antithrombin-S195A factor Xa-heparin structure reveals the allosteric mechanism of antithrombin activation.
  EMBO J, 25, 2029-2037.
PDB code: 2gd4
16517611 G.Izaguirre, and S.T.Olson (2006).
Residues Tyr253 and Glu255 in strand 3 of beta-sheet C of antithrombin are key determinants of an exosite made accessible by heparin activation to promote rapid inhibition of factors Xa and IXa.
  J Biol Chem, 281, 13424-13432.  
16820297 J.A.Huntington (2006).
Shape-shifting serpins--advantages of a mobile mechanism.
  Trends Biochem Sci, 31, 427-435.  
17079131 J.C.Whisstock, and S.P.Bottomley (2006).
Molecular gymnastics: serpin structure, folding and misfolding.
  Curr Opin Struct Biol, 16, 761-768.  
16923021 K.M.Bromfield, N.S.Quinsey, P.J.Duggan, and R.N.Pike (2006).
Approaches to selective peptidic inhibitors of factor Xa.
  Chem Biol Drug Des, 68, 11-19.  
16737556 R.H.Law, Q.Zhang, S.McGowan, A.M.Buckle, G.A.Silverman, W.Wong, C.J.Rosado, C.G.Langendorf, R.N.Pike, P.I.Bird, and J.C.Whisstock (2006).
An overview of the serpin superfamily.
  Genome Biol, 7, 216.  
16834555 R.Sasisekharan, R.Raman, and V.Prabhakar (2006).
Glycomics approach to structure-function relationships of glycosaminoglycans.
  Annu Rev Biomed Eng, 8, 181-231.  
16102053 J.A.Huntington (2005).
Molecular recognition mechanisms of thrombin.
  J Thromb Haemost, 3, 1861-1872.  
16176261 J.C.Whisstock, S.P.Bottomley, P.I.Bird, R.N.Pike, and P.Coughlin (2005).
Serpins 2005 - fun between the beta-sheets. Meeting report based upon presentations made at the 4th International Symposium on Serpin Structure, Function and Biology (Cairns, Australia).
  FEBS J, 272, 4868-4873.  
15590653 K.F.Fulton, A.M.Buckle, L.D.Cabrita, J.A.Irving, R.E.Butcher, I.Smith, S.Reeve, A.M.Lesk, S.P.Bottomley, J.Rossjohn, and J.C.Whisstock (2005).
The high resolution crystal structure of a native thermostable serpin reveals the complex mechanism underpinning the stressed to relaxed transition.
  J Biol Chem, 280, 8435-8442.
PDB code: 1sng
15851487 K.Ingold, A.Zumsteg, A.Tardivel, B.Huard, Q.G.Steiner, T.G.Cachero, F.Qiang, L.Gorelik, S.L.Kalled, H.Acha-Orbea, P.D.Rennert, J.Tschopp, and P.Schneider (2005).
Identification of proteoglycans as the APRIL-specific binding partners.
  J Exp Med, 201, 1375-1383.  
15922935 M.de Kort, R.C.Buijsman, and C.A.van Boeckel (2005).
Synthetic heparin derivatives as new anticoagulant drugs.
  Drug Discov Today, 10, 769-779.  
16176258 R.N.Pike, A.M.Buckle, B.F.le Bonniec, and F.C.Church (2005).
Control of the coagulation system by serpins. Getting by with a little help from glycosaminoglycans.
  FEBS J, 272, 4842-4851.  
15892855 W.Bode (2005).
The structure of thrombin, a chameleon-like proteinase.
  J Thromb Haemost, 3, 2379-2388.  
15548541 W.J.Carter, E.Cama, and J.A.Huntington (2005).
Crystal structure of thrombin bound to heparin.
  J Biol Chem, 280, 2745-2749.
PDB code: 1xmn
15326167 J.Langdown, D.J.Johnson, T.P.Baglin, and J.A.Huntington (2004).
Allosteric activation of antithrombin critically depends upon hinge region extension.
  J Biol Chem, 279, 47288-47297.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer