spacer
spacer

PDBsum entry 1sq0

Go to PDB code: 
protein Protein-protein interface(s) links
Blood clotting PDB id
1sq0

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
198 a.a. *
265 a.a. *
Waters ×318
* Residue conservation analysis
PDB id:
1sq0
Name: Blood clotting
Title: Crystal structure of the complex of the wild-type von willebrand factor a1 domain and glycoprotein ib alpha at 2.6 angstrom resolution
Structure: Von willebrand factor (vwf) [contains: von willebrand antigen ii]. Chain: a. Fragment: a1. Engineered: yes. Platelet glycoprotein ib alpha chain (glycoprotein ibalpha) (gp-ib alpha) (gpiba) (gpib-alpha) (cd42b-alpha) (cd42b) [contains: glycocalicin]. Chain: b.
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: vwf, f8vwf. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008. Gene: gp1ba. Expressed in: cricetulus griseus. Expression_system_taxid: 10029.
Biol. unit: Dimer (from PQS)
Resolution:
2.60Å     R-factor:   0.190     R-free:   0.239
Authors: J.J.Dumas,R.Kumar,T.Mcdonagh,F.Sullivan,M.L.Stahl,W.S.Somers,L.Mosyak
Key ref:
J.J.Dumas et al. (2004). Crystal structure of the wild-type von Willebrand factor A1-glycoprotein Ibalpha complex reveals conformation differences with a complex bearing von Willebrand disease mutations. J Biol Chem, 279, 23327-23334. PubMed id: 15039442 DOI: 10.1074/jbc.M401659200
Date:
17-Mar-04     Release date:   13-Apr-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P04275  (VWF_HUMAN) -  von Willebrand factor from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
2813 a.a.
198 a.a.*
Protein chain
Pfam   ArchSchema ?
P07359  (GP1BA_HUMAN) -  Platelet glycoprotein Ib alpha chain from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
652 a.a.
265 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 

 
DOI no: 10.1074/jbc.M401659200 J Biol Chem 279:23327-23334 (2004)
PubMed id: 15039442  
 
 
Crystal structure of the wild-type von Willebrand factor A1-glycoprotein Ibalpha complex reveals conformation differences with a complex bearing von Willebrand disease mutations.
J.J.Dumas, R.Kumar, T.McDonagh, F.Sullivan, M.L.Stahl, W.S.Somers, L.Mosyak.
 
  ABSTRACT  
 
The adhesion of platelets to the subendothelium of blood vessels at sites of vascular injury under high shear conditions is mediated by a direct interaction between the platelet receptor glycoprotein Ibalpha (GpIbalpha) and the A1 domain of the von Willebrand factor (VWF). Here we report the 2.6-A crystal structure of a complex comprised of the extracellular domain of GpIbalpha and the wild-type A1 domain of VWF. A direct comparison of this structure to a GpIbalpha-A1 complex containing "gain-of-function" mutations, A1-R543Q and GpIbalpha-M239V, reveals specific structural differences between these complexes at sites near the two GpIbalpha-A1 binding interfaces. At the smaller interface, differences in interaction show that the alpha1-beta2 loop of A1 serves as a conformational switch, alternating between an open alpha1-beta2 isomer that allows faster dissociation of GpIbalpha-A1, as observed in the wild-type complex, and an extended isomer that favors tight association as seen in the complex containing A1 with a type 2B von Willebrand Disease (VWD) mutation associated with spontaneous binding to GpIbalpha. At the larger interface, differences in interaction associated with the GpIbalpha-M239V platelet-type VWD mutation are minor and localized but feature discrete gamma-turn conformers at the loop end of the beta-hairpin structure. The beta-hairpin, stabilized by a strong classic gamma-turn as seen in the mutant complex, relates to the increased affinity of A1 binding, and the beta-hairpin with a weak inverse gamma-turn observed in the wild-type complex corresponds to the lower affinity state of GpIbalpha. These findings provide important details that add to our understanding of how both type 2B and platelet-type VWD mutations affect GpIbalpha-A1 binding affinity.
 
  Selected figure(s)  
 
Figure 2.
FIG. 2. Superposition of GpIb -A1 and GpIb -M239V/A1-R543Q complexes. The GpIb is green, and the GpIb -bound wild-type A1 domain is gold. Regions of GpIb -M239V that differ most extensively from wild-type A1 are red ( -switch region, Val227-Ser241; cysteine loop, Asp249-Phe^254) and the remainder of the molecule is white. The region of A1-R543Q with the most notable change in conformation compared with the wild-type A1 structure is blue ( 1- 2 loop, Arg543-Arg552), and the remainder of A1 is white. The structure of mutant complex is derived from PDB code 1M10 [PDB] (35).
Figure 5.
FIG. 5. Superposition of unliganded A1, wild-type GpIb -A1 and GpIb -M239V-A1-R543Q. Rearrangement of the 1- 2 loop region of A1 is highlighted. The 1- 2 loop region of unliganded A1 (33)(shown in purple) adopts an intermediate conformation between the closed conformation of 1- 2 in the mutant complex (blue) and the open conformation of 1- 2 in the wild-type complex (gold).
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (2004, 279, 23327-23334) copyright 2004.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21266772 M.C.Berndt, and R.K.Andrews (2011).
Thrombotic thrombocytopenic purpura: reducing the risk?
  J Clin Invest, 121, 522-524.  
20804530 M.Landau, and N.Rosenberg (2011).
Molecular insight into human platelet antigens: structural and evolutionary conservation analyses offer new perspective to immunogenic disorders.
  Transfusion, 51, 558-569.  
20457869 C.Ravanat, C.Strassel, B.Hechler, S.Schuhler, G.Chicanne, B.Payrastre, C.Gachet, and F.Lanza (2010).
A central role of GPIb-IX in the procoagulant function of platelets that is independent of the 45-kDa GPIbalpha N-terminal extracellular domain.
  Blood, 116, 1157-1164.  
  20367574 E.E.Gardiner, J.F.Arthur, Y.Shen, D.Karunakaran, L.A.Moore, J.S.Am Esch, R.K.Andrews, and M.C.Berndt (2010).
GPIbalpha-selective activation of platelets induces platelet signaling events comparable to GPVI activation events.
  Platelets, 21, 244-252.  
20725043 J.Kim, C.Z.Zhang, X.Zhang, and T.A.Springer (2010).
A mechanically stabilized receptor-ligand flex-bond important in the vasculature.
  Nature, 466, 992-995.  
20118404 P.Nurden, G.Gobbi, A.Nurden, J.Enouf, I.Youlyouz-Marfak, C.Carubbi, S.La Marca, M.Punzo, L.Baronciani, L.De Marco, M.Vitale, and A.B.Federici (2010).
Abnormal VWF modifies megakaryocytopoiesis: studies of platelets and megakaryocyte cultures from patients with von Willebrand disease type 2B.
  Blood, 115, 2649-2656.  
19575676 R.P.McEver, and C.Zhu (2010).
Rolling cell adhesion.
  Annu Rev Cell Dev Biol, 26, 363-396.  
21054192 T.Thijs, B.P.Nuyttens, H.Deckmyn, and K.Broos (2010).
Platelet physiology and antiplatelet agents.
  Clin Chem Lab Med, 48, S3-13.  
19401461 A.B.Herr, and R.W.Farndale (2009).
Structural insights into the interactions between platelet receptors and fibrillar collagen.
  J Biol Chem, 284, 19781-19785.  
19630816 A.T.Nurden, A.B.Federici, and P.Nurden (2009).
Altered megakaryocytopoiesis in von Willebrand type 2B disease.
  J Thromb Haemost, 7, 277-281.  
19422452 J.L.Diener, H.A.Daniel Lagassé, D.Duerschmied, Y.Merhi, J.F.Tanguay, R.Hutabarat, J.Gilbert, D.D.Wagner, and R.Schaub (2009).
Inhibition of von Willebrand factor-mediated platelet activation and thrombosis by the anti-von Willebrand factor A1-domain aptamer ARC1779.
  J Thromb Haemost, 7, 1155-1162.  
19452560 K.L.Hindle, J.Bella, and S.C.Lovell (2009).
Quantitative analysis and prediction of curvature in leucine-rich repeat proteins.
  Proteins, 77, 342-358.  
19619477 M.Auton, E.Sedlák, J.Marek, T.Wu, C.Zhu, and M.A.Cruz (2009).
Changes in thermodynamic stability of von Willebrand factor differentially affect the force-dependent binding to platelet GPIbalpha.
  Biophys J, 97, 618-627.  
19758994 M.Baud'huin, L.Duplomb, S.Téletchéa, C.Charrier, M.Maillasson, M.Fouassier, and D.Heymann (2009).
Factor VIII-von Willebrand factor complex inhibits osteoclastogenesis and controls cell survival.
  J Biol Chem, 284, 31704-31713.  
19913482 R.H.Huang, D.H.Fremont, J.L.Diener, R.G.Schaub, and J.E.Sadler (2009).
A structural explanation for the antithrombotic activity of ARC1172, a DNA aptamer that binds von Willebrand factor domain A1.
  Structure, 17, 1476-1484.
PDB codes: 3hxo 3hxq
19157853 W.E.Thomas (2009).
Mechanochemistry of receptor-ligand bonds.
  Curr Opin Struct Biol, 19, 50-55.  
19191170 Z.M.Ruggeri (2009).
Platelet adhesion under flow.
  Microcirculation, 16, 58-83.  
18084279 J.Chen, K.Tan, H.Zhou, H.F.Lo, D.T.Roux, R.C.Liddington, and T.G.Diacovo (2008).
Modifying murine von Willebrand factor A1 domain for in vivo assessment of human platelet therapies.
  Nat Biotechnol, 26, 114-119.  
18772372 J.Lou, and C.Zhu (2008).
Flow induces loop-to-beta-hairpin transition on the beta-switch of platelet glycoprotein Ib alpha.
  Proc Natl Acad Sci U S A, 105, 13847-13852.  
18515386 N.A.Mody, and M.R.King (2008).
Platelet adhesive dynamics. Part II: high shear-induced transient aggregation via GPIbalpha-vWF-GPIbalpha bridging.
  Biophys J, 95, 2556-2574.  
18214954 Q.R.Fan, and W.A.Hendrickson (2008).
Comparative structural analysis of the binding domain of follicle stimulating hormone receptor.
  Proteins, 72, 393-401.  
  18725992 R.K.Andrews, and M.C.Berndt (2008).
Platelet adhesion: a game of catch and release.
  J Clin Invest, 118, 3009-3011.  
  18725999 T.Yago, J.Lou, T.Wu, J.Yang, J.J.Miner, L.Coburn, J.A.López, M.A.Cruz, J.F.Dong, L.V.McIntire, R.P.McEver, and C.Zhu (2008).
Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF.
  J Clin Invest, 118, 3195-3207.  
18441028 Z.Chen, J.Lou, C.Zhu, and K.Schulten (2008).
Flow-induced structural transition in the beta-switch region of glycoprotein Ib.
  Biophys J, 95, 1303-1313.  
17517123 N.Matsushima, T.Tanaka, P.Enkhbayar, T.Mikami, M.Taga, K.Yamada, and Y.Kuroki (2007).
Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors.
  BMC Genomics, 8, 124.  
17083647 N.Rosenberg, S.Lalezari, M.Landau, B.Shenkman, U.Seligsohn, and S.Izraeli (2007).
Trp207Gly in platelet glycoprotein Ibalpha is a novel mutation that disrupts the connection between the leucine-rich repeat domain and the disulfide loop structure and causes Bernard-Soulier syndrome.
  J Thromb Haemost, 5, 378-386.  
17045735 Q.R.Fan, and W.A.Hendrickson (2007).
Assembly and structural characterization of an authentic complex between human follicle stimulating hormone and a hormone-binding ectodomain of its receptor.
  Mol Cell Endocrinol, 260, 73-82.  
16567959 A.T.Nurden, and P.Nurden (2006).
Inherited disorders of platelets: an update.
  Curr Opin Hematol, 13, 157-162.  
16420575 L.D.Morales, C.Martin, and M.A.Cruz (2006).
The interaction of von Willebrand factor-A1 domain with collagen: mutation G1324S (type 2M von Willebrand disease) impairs the conformational change in A1 domain induced by collagen.
  J Thromb Haemost, 4, 417-425.  
16519708 S.Kunishima, T.Imai, M.Hamaguchi, and H.Saito (2006).
Novel heterozygous missense mutation in the second leucine rich repeat of GPIbalpha affects GPIb/IX/V expression and results in macrothrombocytopenia in a patient initially misdiagnosed with idiopathic thrombocytopenic purpura.
  Eur J Haematol, 76, 348-355.  
17098186 T.A.Springer (2006).
Complement and the multifaceted functions of VWA and integrin I domains.
  Structure, 14, 1611-1616.  
17002656 V.M.Chen, and P.J.Hogg (2006).
Allosteric disulfide bonds in thrombosis and thrombolysis.
  J Thromb Haemost, 4, 2533-2541.  
16102044 A.T.Nurden (2005).
Qualitative disorders of platelets and megakaryocytes.
  J Thromb Haemost, 3, 1773-1782.  
15665869 K.Fukuda, T.Doggett, I.J.Laurenzi, R.C.Liddington, and T.G.Diacovo (2005).
The snake venom protein botrocetin acts as a biological brace to promote dysfunctional platelet aggregation.
  Nat Struct Mol Biol, 12, 152-159.
PDB codes: 1u0n 1u0o
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer