spacer
spacer

PDBsum entry 1so2

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Hydrolase PDB id
1so2

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
363 a.a. *
Ligands
HG9 ×4
666 ×4
Metals
_MG ×9
Waters ×362
* Residue conservation analysis
PDB id:
1so2
Name: Hydrolase
Title: Catalytic domain of human phosphodiesterase 3b in complex with a dihydropyridazine inhibitor
Structure: Cgmp-inhibited 3',5'-cyclic phosphodiesterase b. Chain: a, b, c, d. Fragment: catalytic domain, residues 654-1073. Synonym: cyclic gmp inhibited phosphodiesterase b, cgi-pde b, cgipde1, cgip1. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: pde3b. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Not given
Resolution:
2.40Å     R-factor:   0.239     R-free:   0.277
Authors: G.Scapin,S.B.Patel,C.Chung,J.P.Varnerin,S.D.Edmondson,A.Mastracchio, E.R.Parmee,J.W.Becker,S.B.Singh,L.H.Van Der Ploeg,M.R.Tota
Key ref:
G.Scapin et al. (2004). Crystal structure of human phosphodiesterase 3B: atomic basis for substrate and inhibitor specificity. Biochemistry, 43, 6091-6100. PubMed id: 15147193 DOI: 10.1021/bi049868i
Date:
12-Mar-04     Release date:   11-May-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q13370  (PDE3B_HUMAN) -  cGMP-inhibited 3',5'-cyclic phosphodiesterase 3B from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1112 a.a.
363 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.1.4.17  - 3',5'-cyclic-nucleotide phosphodiesterase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a nucleoside 3',5'-cyclic phosphate + H2O = a nucleoside 5'-phosphate + H+
nucleoside 3',5'-cyclic phosphate
+ H2O
= nucleoside 5'-phosphate
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1021/bi049868i Biochemistry 43:6091-6100 (2004)
PubMed id: 15147193  
 
 
Crystal structure of human phosphodiesterase 3B: atomic basis for substrate and inhibitor specificity.
G.Scapin, S.B.Patel, C.Chung, J.P.Varnerin, S.D.Edmondson, A.Mastracchio, E.R.Parmee, S.B.Singh, J.W.Becker, L.H.Van der Ploeg, M.R.Tota.
 
  ABSTRACT  
 
Phosphodiesterases (PDEs) are enzymes that modulate cyclic nucleotide signaling and as such are clinical targets for a range of disorders including congestive heart failure, erectile dysfunction, and inflammation. The PDE3 family comprises two highly homologous subtypes expressed in different tissues, and inhibitors of this family have been shown to increase lipolysis in adipocytes. A specific PDE3B (the lipocyte-localized subtype) inhibitor would be a very useful tool to evaluate the effects of PDE3 inhibition on lipolysis and metabolic rate and might become a novel tool for treatment of obesity. We report here the three-dimensional structures of the catalytic domain of human PDE3B in complex with a generic PDE inhibitor and a novel PDE3 selective inhibitor. These structures explain the dual cAMP/cGMP binding capabilities of PDE3, provide the molecular basis for inhibitor specificity, and can supply a valid platform for the design of improved compounds.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
20673774 R.E.Hubbard (2011).
Structure-based drug discovery and protein targets in the CNS.
  Neuropharmacology, 60, 7.  
21530250 R.W.Allcock, H.Blakli, Z.Jiang, K.A.Johnston, K.M.Morgan, G.M.Rosair, K.Iwase, Y.Kohno, and D.R.Adams (2011).
Phosphodiesterase inhibitors. Part 1: Synthesis and structure-activity relationships of pyrazolopyridine-pyridazinone PDE inhibitors developed from ibudilast.
  Bioorg Med Chem Lett, 21, 3307-3312.  
20622454 W.C.Lee, H.C.Chen, C.Y.Wang, P.Y.Lin, T.T.Ou, C.C.Chen, M.C.Wen, J.Wang, and H.J.Lee (2010).
Cilostazol ameliorates nephropathy in type 1 diabetic rats involving improvement in oxidative stress and regulation of TGF-Beta and NF-kappaB.
  Biosci Biotechnol Biochem, 74, 1355-1361.  
20397626 Z.Zhang, and N.O.Artemyev (2010).
Determinants for phosphodiesterase 6 inhibition by its gamma-subunit.
  Biochemistry, 49, 3862-3867.  
19828435 J.Pandit, M.D.Forman, K.F.Fennell, K.S.Dillman, and F.S.Menniti (2009).
Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct.
  Proc Natl Acad Sci U S A, 106, 18225-18230.
PDB codes: 3ibj 3itm 3itu
17716863 G.G.Holz, O.G.Chepurny, and F.Schwede (2008).
Epac-selective cAMP analogs: new tools with which to evaluate the signal transduction properties of cAMP-regulated guanine nucleotide exchange factors.
  Cell Signal, 20, 10-20.  
18757755 S.Liu, M.N.Mansour, K.S.Dillman, J.R.Perez, D.E.Danley, P.A.Aeed, S.P.Simons, P.K.Lemotte, and F.S.Menniti (2008).
Structural basis for the catalytic mechanism of human phosphodiesterase 9.
  Proc Natl Acad Sci U S A, 105, 13309-13314.
PDB codes: 3dy8 3dyl 3dyn 3dyq 3dys
17389385 H.Wang, Y.Liu, J.Hou, M.Zheng, H.Robinson, and H.Ke (2007).
Structural insight into substrate specificity of phosphodiesterase 10.
  Proc Natl Acad Sci U S A, 104, 5782-5787.
PDB codes: 2oun 2oup 2ouq 2our 2ous 2ouu 2ouv 2ouy
17944832 H.Wang, Z.Yan, J.Geng, S.Kunz, T.Seebeck, and H.Ke (2007).
Crystal structure of the Leishmania major phosphodiesterase LmjPDEB1 and insight into the design of the parasite-selective inhibitors.
  Mol Microbiol, 66, 1029-1038.
PDB code: 2r8q
17376027 M.Conti, and J.Beavo (2007).
Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling.
  Annu Rev Biochem, 76, 481-511.  
  18268925 W.M.Brown (2007).
Treating COPD with PDE 4 inhibitors.
  Int J Chron Obstruct Pulmon Dis, 2, 517-533.  
17570154 W.Yuan, and A.López Bernal (2007).
Cyclic AMP signalling pathways in the regulation of uterine relaxation.
  BMC Pregnancy Childbirth, 7, S10.  
16102838 C.Lugnier (2006).
Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents.
  Pharmacol Ther, 109, 366-398.  
16735511 H.Wang, Y.Liu, Q.Huai, J.Cai, R.Zoraghi, S.H.Francis, J.D.Corbin, H.Robinson, Z.Xin, G.Lin, and H.Ke (2006).
Multiple conformations of phosphodiesterase-5: implications for enzyme function and drug development.
  J Biol Chem, 281, 21469-21479.
PDB codes: 2h40 2h42 2h44
16539372 Q.Huai, Y.Sun, H.Wang, D.Macdonald, R.Aspiotis, H.Robinson, Z.Huang, and H.Ke (2006).
Enantiomer discrimination illustrated by the high resolution crystal structures of type 4 phosphodiesterase.
  J Med Chem, 49, 1867-1873.
PDB codes: 2fm0 2fm5
16407275 R.Zoraghi, J.D.Corbin, and S.H.Francis (2006).
Phosphodiesterase-5 Gln817 is critical for cGMP, vardenafil, or sildenafil affinity: its orientation impacts cGMP but not cAMP affinity.
  J Biol Chem, 281, 5553-5558.  
16873361 S.H.Hung, W.Zhang, R.A.Pixley, B.A.Jameson, Y.C.Huang, R.F.Colman, and R.W.Colman (2006).
New insights from the structure-function analysis of the catalytic region of human platelet phosphodiesterase 3A: a role for the unique 44-amino acid insert.
  J Biol Chem, 281, 29236-29244.  
16183021 F.V.Rao, O.A.Andersen, K.A.Vora, J.A.Demartino, and D.M.van Aalten (2005).
Methylxanthine drugs are chitinase inhibitors: investigation of inhibition and binding modes.
  Chem Biol, 12, 973-980.
PDB codes: 2a3a 2a3b 2a3c 2a3e
15994308 H.Wang, Y.Liu, Y.Chen, H.Robinson, and H.Ke (2005).
Multiple elements jointly determine inhibitor selectivity of cyclic nucleotide phosphodiesterases 4 and 7.
  J Biol Chem, 280, 30949-30955.
PDB code: 1zkl
15576036 G.L.Card, B.P.England, Y.Suzuki, D.Fong, B.Powell, B.Lee, C.Luu, M.Tabrizizad, S.Gillette, P.N.Ibrahim, D.R.Artis, G.Bollag, M.V.Milburn, S.H.Kim, J.Schlessinger, and K.Y.Zhang (2004).
Structural basis for the activity of drugs that inhibit phosphodiesterases.
  Structure, 12, 2233-2247.
PDB codes: 1xlx 1xlz 1xm4 1xm6 1xmu 1xmy 1xn0 1xom 1xon 1xoq 1xor 1xos 1xot 1xoz 1xp0
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer