 |
PDBsum entry 1sl6
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Sugar binding protein
|
PDB id
|
|
|
|
1sl6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Sugar binding protein
|
 |
|
Title:
|
 |
Crystal structure of a fragment of dc-signr (containg the carbohydrate recognition domain and two repeats of the neck) complexed with lewis- x.
|
|
Structure:
|
 |
C-type lectin dc-signr. Chain: a, b, c, d, e, f. Engineered: yes. Other_details: a fragment containing the crd domain and two repeats from the neck domain
|
|
Source:
|
 |
Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562. Expression_system_cell_line: bl21/de3
|
|
Biol. unit:
|
 |
Dodecamer (from
)
|
|
Resolution:
|
 |
|
2.25Å
|
R-factor:
|
0.219
|
R-free:
|
0.256
|
|
|
Authors:
|
 |
Y.Guo,H.Feinberg,E.Conroy,D.A.Mitchell,R.Alvarez,O.Blixt,M.E.Taylor, W.I.Weis,K.Drickamer
|
Key ref:
|
 |
Y.Guo
et al.
(2004).
Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR.
Nat Struct Mol Biol,
11,
591-598.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
05-Mar-04
|
Release date:
|
15-Jun-04
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
Q9H2X3
(CLC4M_HUMAN) -
C-type lectin domain family 4 member M from Homo sapiens
|
|
|
|
Seq: Struc:
|
 |
 |
 |
399 a.a.
168 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
PfamA domain |
 |
 |
 |
Secondary structure |
 |
 |
CATH domain |
 |
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nat Struct Mol Biol
11:591-598
(2004)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR.
|
|
Y.Guo,
H.Feinberg,
E.Conroy,
D.A.Mitchell,
R.Alvarez,
O.Blixt,
M.E.Taylor,
W.I.Weis,
K.Drickamer.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Both the dendritic cell receptor DC-SIGN and the closely related endothelial
cell receptor DC-SIGNR bind human immunodeficiency virus and enhance infection.
However, biochemical and structural comparison of these receptors now reveals
that they have very different physiological functions. By screening an extensive
glycan array, we demonstrated that DC-SIGN and DC-SIGNR have distinct
ligand-binding properties. Our structural and mutagenesis data explain how both
receptors bind high-mannose oligosaccharides on enveloped viruses and why only
DC-SIGN binds blood group antigens, including those present on microorganisms.
DC-SIGN mediates endocytosis, trafficking as a recycling receptor and releasing
ligand at endosomal pH, whereas DC-SIGNR does not release ligand at low pH or
mediate endocytosis. Thus, whereas DC-SIGN has dual ligand-binding properties
and functions both in adhesion and in endocytosis of pathogens, DC-SIGNR binds a
restricted set of ligands and has only the properties of an adhesion receptor.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Figure 2. Oligosaccharides used in structural studies of DC-SIGN
and DC-SIGNR. Symbols are as defined in Figure 1. Structures
of the complexes of both proteins with the GlcNAc[2]Man[3]
oligosaccharide are as described^14. This oligosaccharide
contains a branch mannose that is not linked to other sugars.
The branch mannose residues in the high-mannose oligosaccharide
are linked in either (outer
branch) or (core
branch) configuration. The Man[4] oligosaccharide is an analog
of the outer branch structure.
|
 |
Figure 4.
Figure 4. DC-SIGN and DC-SIGNR interactions with Lewisx and
oligomannosides. (a) DC-SIGNR bound to Lewisx trisaccharide.
(b) DC-SIGN bound to LNFP III. In a and b, key residues that
differ between DC-SIGN and DC-SIGNR are shown. (c) Comparison of
Man[4] (yellow bonds) binding with GlcNAc[2]Man[3] (red
bonds)14. Phe313 interacts with the Man 1-6Man
moiety of the trimannose structure. (d) Comparison of Man[4]
(yellow bonds) and LNFP III (black bonds) bound to DC-SIGN. The
color scheme is the same as in Figure 3.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nat Struct Mol Biol
(2004,
11,
591-598)
copyright 2004.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.S.Powlesland,
M.M.Barrio,
J.Mordoh,
P.G.Hitchen,
A.Dell,
K.Drickamer,
and
M.E.Taylor
(2011).
Glycoproteomic characterization of carriers of the CD15/Lewisx epitope on Hodgkin's Reed-Sternberg cells.
|
| |
BMC Biochem,
12,
13.
|
 |
|
|
|
|
 |
N.Obermajer,
S.Sattin,
C.Colombo,
M.Bruno,
U.Svajger,
M.Anderluh,
and
A.Bernardi
(2011).
Design, synthesis and activity evaluation of mannose-based DC-SIGN antagonists.
|
| |
Mol Divers,
15,
347-360.
|
 |
|
|
|
|
 |
R.Ilyas,
R.Wallis,
E.J.Soilleux,
P.Townsend,
D.Zehnder,
B.K.Tan,
R.B.Sim,
H.Lehnert,
H.S.Randeva,
and
D.A.Mitchell
(2011).
High glucose disrupts oligosaccharide recognition function via competitive inhibition: a potential mechanism for immune dysregulation in diabetes mellitus.
|
| |
Immunobiology,
216,
126-131.
|
 |
|
|
|
|
 |
R.T.Lee,
T.L.Hsu,
S.K.Huang,
S.L.Hsieh,
C.H.Wong,
and
Y.C.Lee
(2011).
Survey of immune-related, mannose/fucose-binding C-type lectin receptors reveals widely divergent sugar-binding specificities.
|
| |
Glycobiology,
21,
512-520.
|
 |
|
|
|
|
 |
S.J.Dilly,
A.J.Clark,
D.A.Mitchell,
A.Marsh,
and
P.C.Taylor
(2011).
Using the Man(9)(GlcNAc)(2)-DC-SIGN pairing to probe specificity in photochemical immobilization.
|
| |
Mol Biosyst,
7,
116-118.
|
 |
|
|
|
|
 |
Z.Pipirou,
A.S.Powlesland,
I.Steffen,
S.Pöhlmann,
M.E.Taylor,
and
K.Drickamer
(2011).
Mouse LSECtin as a model for a human Ebola virus receptor.
|
| |
Glycobiology,
21,
806-812.
|
 |
|
|
|
|
 |
A.E.Zeituni,
W.McCaig,
E.Scisci,
D.G.Thanassi,
and
C.W.Cutler
(2010).
The native 67-kilodalton minor fimbria of Porphyromonas gingivalis is a novel glycoprotein with DC-SIGN-targeting motifs.
|
| |
J Bacteriol,
192,
4103-4110.
|
 |
|
|
|
|
 |
E.Lonardi,
C.I.Balog,
A.M.Deelder,
and
M.Wuhrer
(2010).
Natural glycan microarrays.
|
| |
Expert Rev Proteomics,
7,
761-774.
|
 |
|
|
|
|
 |
H.Feinberg,
A.S.Powlesland,
M.E.Taylor,
and
W.I.Weis
(2010).
Trimeric structure of langerin.
|
| |
J Biol Chem,
285,
13285-13293.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Hwang,
J.Zhang,
K.A.Chung,
J.B.Leverenz,
C.P.Zabetian,
E.R.Peskind,
J.Jankovic,
Z.Su,
A.M.Hancock,
C.Pan,
T.J.Montine,
S.Pan,
J.Nutt,
R.Albin,
M.Gearing,
R.P.Beyer,
M.Shi,
and
J.Zhang
(2010).
Glycoproteomics in neurodegenerative diseases.
|
| |
Mass Spectrom Rev,
29,
79.
|
 |
|
|
|
|
 |
I.van Die,
and
R.D.Cummings
(2010).
Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response?
|
| |
Glycobiology,
20,
2.
|
 |
|
|
|
|
 |
J.Baumann,
C.G.Park,
and
N.J.Mantis
(2010).
Recognition of secretory IgA by DC-SIGN: implications for immune surveillance in the intestine.
|
| |
Immunol Lett,
131,
59-66.
|
 |
|
|
|
|
 |
K.C.Garber,
K.Wangkanont,
E.E.Carlson,
and
L.L.Kiessling
(2010).
A general glycomimetic strategy yields non-carbohydrate inhibitors of DC-SIGN.
|
| |
Chem Commun (Camb),
46,
6747-6749.
|
 |
|
|
|
|
 |
L.Balboa,
M.M.Romero,
N.Yokobori,
P.Schierloh,
L.Geffner,
J.I.Basile,
R.M.Musella,
E.Abbate,
S.de la Barrera,
M.C.Sasiain,
and
M.Alemán
(2010).
Mycobacterium tuberculosis impairs dendritic cell response by altering CD1b, DC-SIGN and MR profile.
|
| |
Immunol Cell Biol,
88,
716-726.
|
 |
|
|
|
|
 |
M.V.Carroll,
R.B.Sim,
F.Bigi,
A.Jäkel,
R.Antrobus,
and
D.A.Mitchell
(2010).
Identification of four novel DC-SIGN ligands on Mycobacterium bovis BCG.
|
| |
Protein Cell,
1,
859-870.
|
 |
|
|
|
|
 |
N.P.Chung,
S.K.Breun,
A.Bashirova,
J.G.Baumann,
T.D.Martin,
J.M.Karamchandani,
J.W.Rausch,
S.F.Le Grice,
L.Wu,
M.Carrington,
and
V.N.Kewalramani
(2010).
HIV-1 transmission by dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) is regulated by determinants in the carbohydrate recognition domain that are absent in liver/lymph node-SIGN (L-SIGN).
|
| |
J Biol Chem,
285,
2100-2112.
|
 |
|
|
|
|
 |
P.J.Coombs,
R.Harrison,
S.Pemberton,
A.Quintero-Martinez,
S.Parry,
S.M.Haslam,
A.Dell,
M.E.Taylor,
and
K.Drickamer
(2010).
Identification of novel contributions to high-affinity glycoprotein-receptor interactions using engineered ligands.
|
| |
J Mol Biol,
396,
685-696.
|
 |
|
|
|
|
 |
R.Yabe,
H.Tateno,
and
J.Hirabayashi
(2010).
Frontal affinity chromatography analysis of constructs of DC-SIGN, DC-SIGNR and LSECtin extend evidence for affinity to agalactosylated N-glycans.
|
| |
FEBS J,
277,
4010-4026.
|
 |
|
|
|
|
 |
T.S.Tsegaye,
and
S.Pöhlmann
(2010).
The multiple facets of HIV attachment to dendritic cell lectins.
|
| |
Cell Microbiol,
12,
1553-1561.
|
 |
|
|
|
|
 |
Y.Zhou,
K.Lu,
S.Pfefferle,
S.Bertram,
I.Glowacka,
C.Drosten,
S.Pöhlmann,
and
G.Simmons
(2010).
A single asparagine-linked glycosylation site of the severe acute respiratory syndrome coronavirus spike glycoprotein facilitates inhibition by mannose-binding lectin through multiple mechanisms.
|
| |
J Virol,
84,
8753-8764.
|
 |
|
|
|
|
 |
A.Tanne,
B.Ma,
F.Boudou,
L.Tailleux,
H.Botella,
E.Badell,
F.Levillain,
M.E.Taylor,
K.Drickamer,
J.Nigou,
K.M.Dobos,
G.Puzo,
D.Vestweber,
M.K.Wild,
M.Marcinko,
P.Sobieszczuk,
L.Stewart,
D.Lebus,
B.Gicquel,
and
O.Neyrolles
(2009).
A murine DC-SIGN homologue contributes to early host defense against Mycobacterium tuberculosis.
|
| |
J Exp Med,
206,
2205-2220.
|
 |
|
|
|
|
 |
B.Ernst,
and
J.L.Magnani
(2009).
From carbohydrate leads to glycomimetic drugs.
|
| |
Nat Rev Drug Discov,
8,
661-677.
|
 |
|
|
|
|
 |
G.Tabarani,
M.Thépaut,
D.Stroebel,
C.Ebel,
C.Vivès,
P.Vachette,
D.Durand,
and
F.Fieschi
(2009).
DC-SIGN neck domain is a pH-sensor controlling oligomerization: SAXS and hydrodynamic studies of extracellular domain.
|
| |
J Biol Chem,
284,
21229-21240.
|
 |
|
|
|
|
 |
H.Feinberg,
C.K.Tso,
M.E.Taylor,
K.Drickamer,
and
W.I.Weis
(2009).
Segmented helical structure of the neck region of the glycan-binding receptor DC-SIGNR.
|
| |
J Mol Biol,
394,
613-620.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.J.García-Vallejo,
and
Y.van Kooyk
(2009).
Endogenous ligands for C-type lectin receptors: the true regulators of immune homeostasis.
|
| |
Immunol Rev,
230,
22-37.
|
 |
|
|
|
|
 |
J.Stadlmann,
A.Weber,
M.Pabst,
H.Anderle,
R.Kunert,
H.J.Ehrlich,
H.Peter Schwarz,
and
F.Altmann
(2009).
A close look at human IgG sialylation and subclass distribution after lectin fractionation.
|
| |
Proteomics,
9,
4143-4153.
|
 |
|
|
|
|
 |
M.E.Taylor,
and
K.Drickamer
(2009).
Structural insights into what glycan arrays tell us about how glycan-binding proteins interact with their ligands.
|
| |
Glycobiology,
19,
1155-1162.
|
 |
|
|
|
|
 |
O.Martínez-Avila,
K.Hijazi,
M.Marradi,
C.Clavel,
C.Campion,
C.Kelly,
and
S.Penadés
(2009).
Gold manno-glyconanoparticles: multivalent systems to block HIV-1 gp120 binding to the lectin DC-SIGN.
|
| |
Chemistry,
15,
9874-9888.
|
 |
|
|
|
|
 |
O.Martínez-Avila,
L.M.Bedoya,
M.Marradi,
C.Clavel,
J.Alcamí,
and
S.Penadés
(2009).
Multivalent manno-glyconanoparticles inhibit DC-SIGN-mediated HIV-1 trans-infection of human T cells.
|
| |
Chembiochem,
10,
1806-1809.
|
 |
|
|
|
|
 |
Q.D.Yu,
A.P.Oldring,
A.S.Powlesland,
C.K.Tso,
C.Yang,
K.Drickamer,
and
M.E.Taylor
(2009).
Autonomous tetramerization domains in the glycan-binding receptors DC-SIGN and DC-SIGNR.
|
| |
J Mol Biol,
387,
1075-1080.
|
 |
|
|
|
|
 |
Q.Fan,
E.Lin,
T.Satoh,
H.Arase,
and
P.G.Spear
(2009).
Differential effects on cell fusion activity of mutations in herpes simplex virus 1 glycoprotein B (gB) dependent on whether a gD receptor or a gB receptor is overexpressed.
|
| |
J Virol,
83,
7384-7390.
|
 |
|
|
|
|
 |
S.A.Graham,
S.A.Jégouzo,
S.Yan,
A.S.Powlesland,
J.P.Brady,
M.E.Taylor,
and
K.Drickamer
(2009).
Prolectin, a Glycan-binding Receptor on Dividing B Cells in Germinal Centers.
|
| |
J Biol Chem,
284,
18537-18544.
|
 |
|
|
|
|
 |
S.I.Gringhuis,
J.den Dunnen,
M.Litjens,
M.van der Vlist,
and
T.B.Geijtenbeek
(2009).
Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori.
|
| |
Nat Immunol,
10,
1081-1088.
|
 |
|
|
|
|
 |
S.Menon,
K.Rosenberg,
S.A.Graham,
E.M.Ward,
M.E.Taylor,
K.Drickamer,
and
D.E.Leckband
(2009).
Binding-site geometry and flexibility in DC-SIGN demonstrated with surface force measurements.
|
| |
Proc Natl Acad Sci U S A,
106,
11524-11529.
|
 |
|
|
|
|
 |
T.L.Hsu,
S.C.Cheng,
W.B.Yang,
S.W.Chin,
B.H.Chen,
M.T.Huang,
S.L.Hsieh,
and
C.H.Wong
(2009).
Profiling carbohydrate-receptor interaction with recombinant innate immunity receptor-Fc fusion proteins.
|
| |
J Biol Chem,
284,
34479-34489.
|
 |
|
|
|
|
 |
W.Wang,
T.Hu,
P.A.Frantom,
T.Zheng,
B.Gerwe,
D.S.Del Amo,
S.Garret,
R.D.Seidel,
and
P.Wu
(2009).
Chemoenzymatic synthesis of GDP-L-fucose and the Lewis X glycan derivatives.
|
| |
Proc Natl Acad Sci U S A,
106,
16096-16101.
|
 |
|
|
|
|
 |
A.Bugarcic,
K.Hitchens,
A.G.Beckhouse,
C.A.Wells,
R.B.Ashman,
and
H.Blanchard
(2008).
Human and mouse macrophage-inducible C-type lectin (Mincle) bind Candida albicans.
|
| |
Glycobiology,
18,
679-685.
|
 |
|
|
|
|
 |
A.Cambi,
M.G.Netea,
H.M.Mora-Montes,
N.A.Gow,
S.V.Hato,
D.W.Lowman,
B.J.Kullberg,
R.Torensma,
D.L.Williams,
and
C.G.Figdor
(2008).
Dendritic cell interaction with Candida albicans critically depends on N-linked mannan.
|
| |
J Biol Chem,
283,
20590-20599.
|
 |
|
|
|
|
 |
A.Rathore,
A.Chatterjee,
P.Sivarama,
N.Yamamoto,
and
T.N.Dhole
(2008).
Role of Homozygous DC-SIGNR 5/5 Tandem Repeat Polymorphism in HIV-1 Exposed Seronegative North Indian Individuals.
|
| |
J Clin Immunol,
28,
50-57.
|
 |
|
|
|
|
 |
A.S.Powlesland,
T.Fisch,
M.E.Taylor,
D.F.Smith,
B.Tissot,
A.Dell,
S.Pöhlmann,
and
K.Drickamer
(2008).
A novel mechanism for LSECtin binding to Ebola virus surface glycoprotein through truncated glycans.
|
| |
J Biol Chem,
283,
593-602.
|
 |
|
|
|
|
 |
C.A.Aarnoudse,
M.Bax,
M.Sánchez-Hernández,
J.J.García-Vallejo,
and
Y.van Kooyk
(2008).
Glycan modification of the tumor antigen gp100 targets DC-SIGN to enhance dendritic cell induced antigen presentation to T cells.
|
| |
Int J Cancer,
122,
839-846.
|
 |
|
|
|
|
 |
D.Serrano-Gómez,
E.Sierra-Filardi,
R.T.Martínez-Nuñez,
E.Caparrós,
R.Delgado,
M.A.Muñoz-Fernández,
M.A.Abad,
J.Jimenez-Barbero,
M.Leal,
and
A.L.Corbí
(2008).
Structural requirements for multimerization of the pathogen receptor dendritic cell-specific ICAM3-grabbing non-integrin (CD209) on the cell surface.
|
| |
J Biol Chem,
283,
3889-3903.
|
 |
|
|
|
|
 |
G.Timpano,
G.Tabarani,
M.Anderluh,
D.Invernizzi,
F.Vasile,
D.Potenza,
P.M.Nieto,
J.Rojo,
F.Fieschi,
and
A.Bernardi
(2008).
Synthesis of novel DC-SIGN ligands with an alpha-fucosylamide anchor.
|
| |
Chembiochem,
9,
1921-1930.
|
 |
|
|
|
|
 |
J.Angulo,
I.Díaz,
J.J.Reina,
G.Tabarani,
F.Fieschi,
J.Rojo,
and
P.M.Nieto
(2008).
Saturation transfer difference (STD) NMR spectroscopy characterization of dual binding mode of a mannose disaccharide to DC-SIGN.
|
| |
Chembiochem,
9,
2225-2227.
|
 |
|
|
|
|
 |
J.J.Reina,
I.Díaz,
P.M.Nieto,
N.E.Campillo,
J.A.Páez,
G.Tabarani,
F.Fieschi,
and
J.Rojo
(2008).
Docking, synthesis, and NMR studies of mannosyl trisaccharide ligands for DC-SIGN lectin.
|
| |
Org Biomol Chem,
6,
2743-2754.
|
 |
|
|
|
|
 |
M.Sakakura,
S.Oo-Puthinan,
C.Moriyama,
T.Kimura,
J.Moriya,
T.Irimura,
and
I.Shimada
(2008).
Carbohydrate binding mechanism of the macrophage galactose-type C-type lectin 1 revealed by saturation transfer experiments.
|
| |
J Biol Chem,
283,
33665-33673.
|
 |
|
|
|
|
 |
P.H.Liang,
C.Y.Wu,
W.A.Greenberg,
and
C.H.Wong
(2008).
Glycan arrays: biological and medical applications.
|
| |
Curr Opin Chem Biol,
12,
86-92.
|
 |
|
|
|
|
 |
S.Park,
M.R.Lee,
and
I.Shin
(2008).
Carbohydrate microarrays as powerful tools in studies of carbohydrate-mediated biological processes.
|
| |
Chem Commun (Camb),
(),
4389-4399.
|
 |
|
|
|
|
 |
T.A.Bowden,
M.Crispin,
D.J.Harvey,
A.R.Aricescu,
J.M.Grimes,
E.Y.Jones,
and
D.I.Stuart
(2008).
Crystal structure and carbohydrate analysis of Nipah virus attachment glycoprotein: a template for antiviral and vaccine design.
|
| |
J Virol,
82,
11628-11636.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
U.S.Khoo,
K.Y.Chan,
V.S.Chan,
and
C.L.Lin
(2008).
DC-SIGN and L-SIGN: the SIGNs for infection.
|
| |
J Mol Med,
86,
861-874.
|
 |
|
|
|
|
 |
H.Feinberg,
M.E.Taylor,
and
W.I.Weis
(2007).
Scavenger receptor C-type lectin binds to the leukocyte cell surface glycan Lewis(x) by a novel mechanism.
|
| |
J Biol Chem,
282,
17250-17258.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Feinberg,
R.Castelli,
K.Drickamer,
P.H.Seeberger,
and
W.I.Weis
(2007).
Multiple modes of binding enhance the affinity of DC-SIGN for high mannose N-linked glycans found on viral glycoproteins.
|
| |
J Biol Chem,
282,
4202-4209.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.A.Maynard,
R.Myhre,
and
B.Roy
(2007).
Microarrays in infection and immunity.
|
| |
Curr Opin Chem Biol,
11,
306-315.
|
 |
|
|
|
|
 |
J.E.Turnbull,
and
R.A.Field
(2007).
Emerging glycomics technologies.
|
| |
Nat Chem Biol,
3,
74-77.
|
 |
|
|
|
|
 |
J.J.Reina,
S.Sattin,
D.Invernizzi,
S.Mari,
L.Martínez-Prats,
G.Tabarani,
F.Fieschi,
R.Delgado,
P.M.Nieto,
J.Rojo,
and
A.Bernardi
(2007).
1,2-Mannobioside Mimic: Synthesis, DC-SIGN Interaction by NMR and Docking, and Antiviral Activity.
|
| |
ChemMedChem,
2,
1030-1036.
|
 |
|
|
|
|
 |
M.E.Taylor,
and
K.Drickamer
(2007).
Paradigms for glycan-binding receptors in cell adhesion.
|
| |
Curr Opin Cell Biol,
19,
572-577.
|
 |
|
|
|
|
 |
M.J.Borrok,
and
L.L.Kiessling
(2007).
Non-carbohydrate inhibitors of the lectin DC-SIGN.
|
| |
J Am Chem Soc,
129,
12780-12785.
|
 |
|
|
|
|
 |
M.Luong,
J.S.Lam,
J.Chen,
and
S.M.Levitz
(2007).
Effects of fungal N- and O-linked mannosylation on the immunogenicity of model vaccines.
|
| |
Vaccine,
25,
4340-4344.
|
 |
|
|
|
|
 |
N.Wichukchinda,
Y.Kitamura,
A.Rojanawiwat,
E.E.Nakayama,
H.Song,
P.Pathipvanich,
W.Auwanit,
P.Sawanpanyalert,
A.Iwamoto,
T.Shioda,
and
K.Ariyoshi
(2007).
The polymorphisms in DC-SIGNR affect susceptibility to HIV type 1 infection.
|
| |
AIDS Res Hum Retroviruses,
23,
686-692.
|
 |
|
|
|
|
 |
O.Oyelaran,
and
J.C.Gildersleeve
(2007).
Application of carbohydrate array technology to antigen discovery and vaccine development.
|
| |
Expert Rev Vaccines,
6,
957-969.
|
 |
|
|
|
|
 |
P.W.Hong,
S.Nguyen,
S.Young,
S.V.Su,
and
B.Lee
(2007).
Identification of the optimal DC-SIGN binding site on human immunodeficiency virus type 1 gp120.
|
| |
J Virol,
81,
8325-8336.
|
 |
|
|
|
|
 |
R.Furmonaviciene,
A.M.Ghaemmaghami,
S.E.Boyd,
N.S.Jones,
K.Bailey,
A.C.Willis,
H.F.Sewell,
D.A.Mitchell,
and
F.Shakib
(2007).
The protease allergen Der p 1 cleaves cell surface DC-SIGN and DC-SIGNR: experimental analysis of in silico substrate identification and implications in allergic responses.
|
| |
Clin Exp Allergy,
37,
231-242.
|
 |
|
|
|
|
 |
S.C.Hsu,
T.H.Tsai,
H.Kawasaki,
C.H.Chen,
B.Plunkett,
R.T.Lee,
Y.C.Lee,
and
S.K.Huang
(2007).
Antigen coupled with Lewis-x trisaccharides elicits potent immune responses in mice.
|
| |
J Allergy Clin Immunol,
119,
1522-1528.
|
 |
|
|
|
|
 |
T.Hatakeyama,
H.Unno,
Y.Kouzuma,
T.Uchida,
S.Eto,
H.Hidemura,
N.Kato,
M.Yonekura,
and
M.Kusunoki
(2007).
C-type lectin-like carbohydrate recognition of the hemolytic lectin CEL-III containing ricin-type -trefoil folds.
|
| |
J Biol Chem,
282,
37826-37835.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
V.Pletnev,
R.Huether,
L.Habegger,
W.Schultz,
and
W.Duax
(2007).
Rational proteomics of PKD1. I. Modeling the three dimensional structure and ligand specificity of the C_lectin binding domain of Polycystin-1.
|
| |
J Mol Model,
13,
891-896.
|
 |
|
|
|
|
 |
Y.Shimizu,
H.Takagi,
T.Nakayama,
K.Yamakami,
T.Tadakuma,
N.Yokoyama,
and
N.Kojima
(2007).
Intraperitoneal immunization with oligomannose-coated liposome-entrapped soluble leishmanial antigen induces antigen-specific T-helper type immune response in BALB/c mice through uptake by peritoneal macrophages.
|
| |
Parasite Immunol,
29,
229-239.
|
 |
|
|
|
|
 |
A.Marzi,
A.Akhavan,
G.Simmons,
T.Gramberg,
H.Hofmann,
P.Bates,
V.R.Lingappa,
and
S.Pöhlmann
(2006).
The signal peptide of the ebolavirus glycoprotein influences interaction with the cellular lectins DC-SIGN and DC-SIGNR.
|
| |
J Virol,
80,
6305-6317.
|
 |
|
|
|
|
 |
A.S.Powlesland,
E.M.Ward,
S.K.Sadhu,
Y.Guo,
M.E.Taylor,
and
K.Drickamer
(2006).
Widely divergent biochemical properties of the complete set of mouse DC-SIGN-related proteins.
|
| |
J Biol Chem,
281,
20440-20449.
|
 |
|
|
|
|
 |
B.A.Wurzburg,
S.S.Tarchevskaya,
and
T.S.Jardetzky
(2006).
Structural changes in the lectin domain of CD23, the low-affinity IgE receptor, upon calcium binding.
|
| |
Structure,
14,
1049-1058.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.A.Aarnoudse,
J.J.Garcia Vallejo,
E.Saeland,
and
Y.van Kooyk
(2006).
Recognition of tumor glycans by antigen-presenting cells.
|
| |
Curr Opin Immunol,
18,
105-111.
|
 |
|
|
|
|
 |
C.Chaipan,
E.J.Soilleux,
P.Simpson,
H.Hofmann,
T.Gramberg,
A.Marzi,
M.Geier,
E.A.Stewart,
J.Eisemann,
A.Steinkasserer,
K.Suzuki-Inoue,
G.L.Fuller,
A.C.Pearce,
S.P.Watson,
J.A.Hoxie,
F.Baribaud,
and
S.Pöhlmann
(2006).
DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets.
|
| |
J Virol,
80,
8951-8960.
|
 |
|
|
|
|
 |
C.W.Davis,
H.Y.Nguyen,
S.L.Hanna,
M.D.Sánchez,
R.W.Doms,
and
T.C.Pierson
(2006).
West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection.
|
| |
J Virol,
80,
1290-1301.
|
 |
|
|
|
|
 |
C.W.Davis,
L.M.Mattei,
H.Y.Nguyen,
C.Ansarah-Sobrinho,
R.W.Doms,
and
T.C.Pierson
(2006).
The location of asparagine-linked glycans on West Nile virions controls their interactions with CD209 (dendritic cell-specific ICAM-3 grabbing nonintegrin).
|
| |
J Biol Chem,
281,
37183-37194.
|
 |
|
|
|
|
 |
E.Pokidysheva,
Y.Zhang,
A.J.Battisti,
C.M.Bator-Kelly,
P.R.Chipman,
C.Xiao,
G.G.Gregorio,
W.A.Hendrickson,
R.J.Kuhn,
and
M.G.Rossmann
(2006).
Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN.
|
| |
Cell,
124,
485-493.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.E.Nybakken,
C.A.Nelson,
B.R.Chen,
M.S.Diamond,
and
D.H.Fremont
(2006).
Crystal structure of the West Nile virus envelope glycoprotein.
|
| |
J Virol,
80,
11467-11474.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.C.Paulson,
O.Blixt,
and
B.E.Collins
(2006).
Sweet spots in functional glycomics.
|
| |
Nat Chem Biol,
2,
238-248.
|
 |
|
|
|
|
 |
L.Steeghs,
S.J.van Vliet,
H.Uronen-Hansson,
A.van Mourik,
A.Engering,
M.Sanchez-Hernandez,
N.Klein,
R.Callard,
J.P.van Putten,
P.van der Ley,
Y.van Kooyk,
and
J.G.van de Winkel
(2006).
Neisseria meningitidis expressing lgtB lipopolysaccharide targets DC-SIGN and modulates dendritic cell function.
|
| |
Cell Microbiol,
8,
316-325.
|
 |
|
|
|
|
 |
M.Wuhrer,
C.A.Koeleman,
A.M.Deelder,
and
C.H.Hokke
(2006).
Repeats of LacdiNAc and fucosylated LacdiNAc on N-glycans of the human parasite Schistosoma mansoni.
|
| |
FEBS J,
273,
347-361.
|
 |
|
|
|
|
 |
O.Carion,
J.Lefebvre,
G.Dubreucq,
L.Dahri-Correia,
J.Correia,
and
O.Melnyk
(2006).
Polysaccharide microarrays for polysaccharide-platelet-derived-growth-factor interaction studies.
|
| |
Chembiochem,
7,
817-826.
|
 |
|
|
|
|
 |
P.J.Coombs,
M.E.Taylor,
and
K.Drickamer
(2006).
Two categories of mammalian galactose-binding receptors distinguished by glycan array profiling.
|
| |
Glycobiology,
16,
1C-7C.
|
 |
|
|
|
|
 |
V.S.Chan,
K.Y.Chan,
Y.Chen,
L.L.Poon,
A.N.Cheung,
B.Zheng,
K.H.Chan,
W.Mak,
H.Y.Ngan,
X.Xu,
G.Screaton,
P.K.Tam,
J.M.Austyn,
L.C.Chan,
S.P.Yip,
M.Peiris,
U.S.Khoo,
and
C.L.Lin
(2006).
Homozygous L-SIGN (CLEC4M) plays a protective role in SARS coronavirus infection.
|
| |
Nat Genet,
38,
38-46.
|
 |
|
|
|
|
 |
W.K.Lai,
P.J.Sun,
J.Zhang,
A.Jennings,
P.F.Lalor,
S.Hubscher,
J.A.McKeating,
and
D.H.Adams
(2006).
Expression of DC-SIGN and DC-SIGNR on human sinusoidal endothelium: a role for capturing hepatitis C virus particles.
|
| |
Am J Pathol,
169,
200-208.
|
 |
|
|
|
|
 |
Y.Guo,
C.E.Atkinson,
M.E.Taylor,
and
K.Drickamer
(2006).
All but the shortest polymorphic forms of the viral receptor DC-SIGNR assemble into stable homo- and heterotetramers.
|
| |
J Biol Chem,
281,
16794-16798.
|
 |
|
|
|
|
 |
Y.P.Shih,
C.Y.Chen,
S.J.Liu,
K.H.Chen,
Y.M.Lee,
Y.C.Chao,
and
Y.M.Chen
(2006).
Identifying epitopes responsible for neutralizing antibody and DC-SIGN binding on the spike glycoprotein of the severe acute respiratory syndrome coronavirus.
|
| |
J Virol,
80,
10315-10324.
|
 |
|
|
|
|
 |
A.Cambi,
and
C.G.Figdor
(2005).
Levels of complexity in pathogen recognition by C-type lectins.
|
| |
Curr Opin Immunol,
17,
345-351.
|
 |
|
|
|
|
 |
A.Cambi,
M.Koopman,
and
C.G.Figdor
(2005).
How C-type lectins detect pathogens.
|
| |
Cell Microbiol,
7,
481-488.
|
 |
|
|
|
|
 |
A.N.Zelensky,
and
J.E.Gready
(2005).
The C-type lectin-like domain superfamily.
|
| |
FEBS J,
272,
6179-6217.
|
 |
|
|
|
|
 |
E.A.Koppel,
K.P.van Gisbergen,
T.B.Geijtenbeek,
and
Y.van Kooyk
(2005).
Distinct functions of DC-SIGN and its homologues L-SIGN (DC-SIGNR) and mSIGNR1 in pathogen recognition and immune regulation.
|
| |
Cell Microbiol,
7,
157-165.
|
 |
|
|
|
|
 |
E.P.McGreal,
J.L.Miller,
and
S.Gordon
(2005).
Ligand recognition by antigen-presenting cell C-type lectin receptors.
|
| |
Curr Opin Immunol,
17,
18-24.
|
 |
|
|
|
|
 |
E.Yuriev,
W.Farrugia,
A.M.Scott,
and
P.A.Ramsland
(2005).
Three-dimensional structures of carbohydrate determinants of Lewis system antigens: implications for effective antibody targeting of cancer.
|
| |
Immunol Cell Biol,
83,
709-717.
|
 |
|
|
|
|
 |
H.Feinberg,
Y.Guo,
D.A.Mitchell,
K.Drickamer,
and
W.I.Weis
(2005).
Extended neck regions stabilize tetramers of the receptors DC-SIGN and DC-SIGNR.
|
| |
J Biol Chem,
280,
1327-1335.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.A.Naarding,
I.S.Ludwig,
F.Groot,
B.Berkhout,
T.B.Geijtenbeek,
G.Pollakis,
and
W.A.Paxton
(2005).
Lewis X component in human milk binds DC-SIGN and inhibits HIV-1 transfer to CD4+ T lymphocytes.
|
| |
J Clin Invest,
115,
3256-3264.
|
 |
|
|
|
|
 |
P.J.Coombs,
S.A.Graham,
K.Drickamer,
and
M.E.Taylor
(2005).
Selective binding of the scavenger receptor C-type lectin to Lewisx trisaccharide and related glycan ligands.
|
| |
J Biol Chem,
280,
22993-22999.
|
 |
|
|
|
|
 |
R.Raman,
S.Raguram,
G.Venkataraman,
J.C.Paulson,
and
R.Sasisekharan
(2005).
Glycomics: an integrated systems approach to structure-function relationships of glycans.
|
| |
Nat Methods,
2,
817-824.
|
 |
|
|
|
|
 |
S.Meyer,
E.van Liempt,
A.Imberty,
Y.van Kooyk,
H.Geyer,
R.Geyer,
and
I.van Die
(2005).
DC-SIGN mediates binding of dendritic cells to authentic pseudo-LewisY glycolipids of Schistosoma mansoni cercariae, the first parasite-specific ligand of DC-SIGN.
|
| |
J Biol Chem,
280,
37349-37359.
|
 |
|
|
|
|
 |
B.E.Collins,
and
J.C.Paulson
(2004).
Cell surface biology mediated by low affinity multivalent protein-glycan interactions.
|
| |
Curr Opin Chem Biol,
8,
617-625.
|
 |
|
|
|
|
 |
O.Blixt,
S.Head,
T.Mondala,
C.Scanlan,
M.E.Huflejt,
R.Alvarez,
M.C.Bryan,
F.Fazio,
D.Calarese,
J.Stevens,
N.Razi,
D.J.Stevens,
J.J.Skehel,
I.van Die,
D.R.Burton,
I.A.Wilson,
R.Cummings,
N.Bovin,
C.H.Wong,
and
J.C.Paulson
(2004).
Printed covalent glycan array for ligand profiling of diverse glycan binding proteins.
|
| |
Proc Natl Acad Sci U S A,
101,
17033-17038.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |