spacer
spacer

PDBsum entry 1ro9

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Hydrolase PDB id
1ro9

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
338 a.a. *
Ligands
8BR ×2
Metals
_ZN ×4
Waters ×263
* Residue conservation analysis
PDB id:
1ro9
Name: Hydrolase
Title: Crystal structures of the catalytic domain of phosphodiesterase 4b2b complexed with 8-br-amp
Structure: Camp-specific 3',5'-cyclic phosphodiesterase 4b. Chain: a, b. Fragment: catalytic domain. Synonym: dpde4, pde32. Engineered: yes. Mutation: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: pde4b. Expressed in: unidentified baculovirus. Expression_system_taxid: 10469
Biol. unit: Dimer (from PQS)
Resolution:
2.13Å     R-factor:   0.210     R-free:   0.234
Authors: R.X.Xu,W.J.Rocque,M.H.Lambert,D.E.Vanderwall,R.T.Nolte
Key ref:
R.X.Xu et al. (2004). Crystal structures of the catalytic domain of phosphodiesterase 4B complexed with AMP, 8-Br-AMP, and rolipram. J Mol Biol, 337, 355-365. PubMed id: 15003452 DOI: 10.1016/j.jmb.2004.01.040
Date:
01-Dec-03     Release date:   07-Dec-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q07343  (PDE4B_HUMAN) -  3',5'-cyclic-AMP phosphodiesterase 4B from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
736 a.a.
338 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.3.1.4.53  - 3',5'-cyclic-AMP phosphodiesterase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 3',5'-cyclic AMP + H2O = AMP + H+
3',5'-cyclic AMP
+ H2O
=
AMP
Bound ligand (Het Group name = 8BR)
matches with 95.83% similarity
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1016/j.jmb.2004.01.040 J Mol Biol 337:355-365 (2004)
PubMed id: 15003452  
 
 
Crystal structures of the catalytic domain of phosphodiesterase 4B complexed with AMP, 8-Br-AMP, and rolipram.
R.X.Xu, W.J.Rocque, M.H.Lambert, D.E.Vanderwall, M.A.Luther, R.T.Nolte.
 
  ABSTRACT  
 
Phosphodiesterase catalyzes the hydrolysis of the intracellular second messenger 3',5'-cyclic AMP (cAMP) into the corresponding 5'-nucleotide. Phosphodiesterase 4 (PDE4), the major cAMP-specific PDE in inflammatory and immune cells, is an attractive target for the treatment of asthma and COPD. We have determined crystal structures of the catalytic domain of PDE4B complexed with AMP (2.0 A), 8-Br-AMP (2.13 A) and the potent inhibitor rolipram (2.0 A). All the ligands bind in the same hydrophobic pocket and can interact directly with the active site metal ions. The identity of these metal ions was examined using X-ray anomalous difference data. The structure of the AMP complex confirms the location of the catalytic site and allowed us to speculate about the detailed mechanism of catalysis. The high-resolution structures provided the experimental insight into the nucleotide selectivity of phosphodiesterase. 8-Br-AMP binds in the syn conformation to the enzyme and demonstrates an alternative nucleotide-binding mode. Rolipram occupies much of the AMP-binding site and forms two hydrogen bonds with Gln443 similar to the nucleotides.
 
  Selected figure(s)  
 
Figure 7.
Figure 7. Binding of 8-Br-AMP in the PDE4B active site. The protein backbone is shown as a gray ribbon. The Br is colored dark red. The carbon atoms of 8-Br-AMP are colored yellow, the phosphate is colored pink. The carbon atoms of important side-chain of the protein are shown in green. The metal ions are shown as yellow balls. The hydrogen bonds between protein and 8-Br-AMP are shown as white dotted lines. The protein interactions with metal ions are shown as cyan dotted lines.
Figure 8.
Figure 8. Comparison of the AMP and 8-Br-AMP bound to PDE4B. Schematic representation of the ligand-binding mode for each molecule including the major hydrogen bond interactions seen between each ligand and the active site.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2004, 337, 355-365) copyright 2004.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21053051 A.K.Malde, and A.E.Mark (2011).
Challenges in the determination of the binding modes of non-standard ligands in X-ray crystal complexes.
  J Comput Aided Mol Des, 25, 1.  
20037581 A.B.Burgin, O.T.Magnusson, J.Singh, P.Witte, B.L.Staker, J.M.Bjornsson, M.Thorsteinsdottir, S.Hrafnsdottir, T.Hagen, A.S.Kiselyov, L.J.Stewart, and M.E.Gurney (2010).
Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety.
  Nat Biotechnol, 28, 63-70.
PDB codes: 3g45 3g4g 3g4i 3g4k 3g4l 3g58 3iad
21049583 S.J.Hill, C.Williams, and L.T.May (2010).
Insights into GPCR pharmacology from the measurement of changes in intracellular cyclic AMP; advantages and pitfalls of differing methodologies.
  Br J Pharmacol, 161, 1266-1275.  
19464886 A.P.Skoumbourdis, C.A.Leclair, E.Stefan, A.G.Turjanski, W.Maguire, S.A.Titus, R.Huang, D.S.Auld, J.Inglese, C.P.Austin, S.W.Michnick, M.Xia, and C.J.Thomas (2009).
Exploration and optimization of substituted triazolothiadiazines and triazolopyridazines as PDE4 inhibitors.
  Bioorg Med Chem Lett, 19, 3686-3692.  
19641165 J.L.Weeks, J.D.Corbin, and S.H.Francis (2009).
Interactions between cyclic nucleotide phosphodiesterase 11 catalytic site and substrates or tadalafil and role of a critical Gln-869 hydrogen bond.
  J Pharmacol Exp Ther, 331, 133-141.  
19828435 J.Pandit, M.D.Forman, K.F.Fennell, K.S.Dillman, and F.S.Menniti (2009).
Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct.
  Proc Natl Acad Sci U S A, 106, 18225-18230.
PDB codes: 3ibj 3itm 3itu
19119138 T.T.Aye, S.Mohammed, H.W.van den Toorn, T.A.van Veen, M.A.van der Heyden, A.Scholten, and A.J.Heck (2009).
Selectivity in enrichment of cAMP-dependent protein kinase regulatory subunits type I and type II and their interactors using modified cAMP affinity resins.
  Mol Cell Proteomics, 8, 1016-1028.  
17716863 G.G.Holz, O.G.Chepurny, and F.Schwede (2008).
Epac-selective cAMP analogs: new tools with which to evaluate the signal transduction properties of cAMP-regulated guanine nucleotide exchange factors.
  Cell Signal, 20, 10-20.  
18353368 M.D.Zimmerman, M.Proudfoot, A.Yakunin, and W.Minor (2008).
Structural insight into the mechanism of substrate specificity and catalytic activity of an HD-domain phosphohydrolase: the 5'-deoxyribonucleotidase YfbR from Escherichia coli.
  J Mol Biol, 378, 215-226.
PDB codes: 2paq 2par 2pau
18757755 S.Liu, M.N.Mansour, K.S.Dillman, J.R.Perez, D.E.Danley, P.A.Aeed, S.P.Simons, P.K.Lemotte, and F.S.Menniti (2008).
Structural basis for the catalytic mechanism of human phosphodiesterase 9.
  Proc Natl Acad Sci U S A, 105, 13309-13314.
PDB codes: 3dy8 3dyl 3dyn 3dyq 3dys
17582435 H.Wang, H.Robinson, and H.Ke (2007).
The molecular basis for different recognition of substrates by phosphodiesterase families 4 and 10.
  J Mol Biol, 371, 302-307.
PDB code: 2pw3
17389385 H.Wang, Y.Liu, J.Hou, M.Zheng, H.Robinson, and H.Ke (2007).
Structural insight into substrate specificity of phosphodiesterase 10.
  Proc Natl Acad Sci U S A, 104, 5782-5787.
PDB codes: 2oun 2oup 2ouq 2our 2ous 2ouu 2ouv 2ouy
16522215 A.Johner, S.Kunz, M.Linder, Y.Shakur, and T.Seebeck (2006).
Cyclic nucleotide specific phosphodiesterases of Leishmania major.
  BMC Microbiol, 6, 25.  
16102838 C.Lugnier (2006).
Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents.
  Pharmacol Ther, 109, 366-398.  
16843671 F.G.Oliveira, C.M.Sant'Anna, E.R.Caffarena, L.E.Dardenne, and E.J.Barreiro (2006).
Molecular docking study and development of an empirical binding free energy model for phosphodiesterase 4 inhibitors.
  Bioorg Med Chem, 14, 6001-6011.  
16735511 H.Wang, Y.Liu, Q.Huai, J.Cai, R.Zoraghi, S.H.Francis, J.D.Corbin, H.Robinson, Z.Xin, G.Lin, and H.Ke (2006).
Multiple conformations of phosphodiesterase-5: implications for enzyme function and drug development.
  J Biol Chem, 281, 21469-21479.
PDB codes: 2h40 2h42 2h44
16332678 J.Montalibet, K.Skorey, D.McKay, G.Scapin, E.Asante-Appiah, and B.P.Kennedy (2006).
Residues distant from the active site influence protein-tyrosine phosphatase 1B inhibitor binding.
  J Biol Chem, 281, 5258-5266.
PDB code: 2f6f
16539372 Q.Huai, Y.Sun, H.Wang, D.Macdonald, R.Aspiotis, H.Robinson, Z.Huang, and H.Ke (2006).
Enantiomer discrimination illustrated by the high resolution crystal structures of type 4 phosphodiesterase.
  J Med Chem, 49, 1867-1873.
PDB codes: 2fm0 2fm5
16407275 R.Zoraghi, J.D.Corbin, and S.H.Francis (2006).
Phosphodiesterase-5 Gln817 is critical for cGMP, vardenafil, or sildenafil affinity: its orientation impacts cGMP but not cAMP affinity.
  J Biol Chem, 281, 5553-5558.  
15514991 A.Castro, M.J.Jerez, C.Gil, and A.Martinez (2005).
Cyclic nucleotide phosphodiesterases and their role in immunomodulatory responses: advances in the development of specific phosphodiesterase inhibitors.
  Med Res Rev, 25, 229-244.  
15994308 H.Wang, Y.Liu, Y.Chen, H.Robinson, and H.Ke (2005).
Multiple elements jointly determine inhibitor selectivity of cyclic nucleotide phosphodiesterases 4 and 7.
  J Biol Chem, 280, 30949-30955.
PDB code: 1zkl
16300476 K.Y.Zhang, P.N.Ibrahim, S.Gillette, and G.Bollag (2005).
Phosphodiesterase-4 as a potential drug target.
  Expert Opin Ther Targets, 9, 1283-1305.  
16257373 M.D.Houslay, P.Schafer, and K.Y.Zhang (2005).
Keynote review: phosphodiesterase-4 as a therapeutic target.
  Drug Discov Today, 10, 1503-1519.  
16336277 S.Kunz, M.Oberholzer, and T.Seebeck (2005).
A FYVE-containing unusual cyclic nucleotide phosphodiesterase from Trypanosoma cruzi.
  FEBS J, 272, 6412-6422.  
15576036 G.L.Card, B.P.England, Y.Suzuki, D.Fong, B.Powell, B.Lee, C.Luu, M.Tabrizizad, S.Gillette, P.N.Ibrahim, D.R.Artis, G.Bollag, M.V.Milburn, S.H.Kim, J.Schlessinger, and K.Y.Zhang (2004).
Structural basis for the activity of drugs that inhibit phosphodiesterases.
  Structure, 12, 2233-2247.
PDB codes: 1xlx 1xlz 1xm4 1xm6 1xmu 1xmy 1xn0 1xom 1xon 1xoq 1xor 1xos 1xot 1xoz 1xp0
15260978 K.Y.Zhang, G.L.Card, Y.Suzuki, D.R.Artis, D.Fong, S.Gillette, D.Hsieh, J.Neiman, B.L.West, C.Zhang, M.V.Milburn, S.H.Kim, J.Schlessinger, and G.Bollag (2004).
A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases.
  Mol Cell, 15, 279-286.
PDB codes: 1t9r 1t9s 1taz 1tb5 1tb7 1tbb 1tbf
15332080 M.Conti (2004).
A view into the catalytic pocket of cyclic nucleotide phosphodiesterases.
  Nat Struct Mol Biol, 11, 809-810.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer