spacer
spacer

PDBsum entry 1r0z

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Transport protein PDB id
1r0z

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
275 a.a. *
259 a.a. *
Ligands
ATP ×4
ACY ×4
Metals
_MG ×4
Waters ×300
* Residue conservation analysis
PDB id:
1r0z
Name: Transport protein
Title: Phosphorylated cystic fibrosis transmembrane conductance regulator (cftr) nucleotide-binding domain one (nbd1) with atp
Structure: Cystic fibrosis transmembrane conductance regulator. Chain: a, b, c, d. Fragment: nbd1 domain (residues 389-673). Synonym: cftr, camp- dependent chloride channel. Engineered: yes
Source: Mus musculus. House mouse. Organism_taxid: 10090. Gene: cftr or abcc7. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Biol. unit: Octamer (from PQS)
Resolution:
2.35Å     R-factor:   0.221     R-free:   0.258
Authors: H.A.Lewis,S.G.Buchanan,S.K.Burley,K.Conners,M.Dickey,M.Dorwart, R.Fowler,X.Gao,W.B.Guggino,W.A.Hendrickson
Key ref:
H.A.Lewis et al. (2004). Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J, 23, 282-293. PubMed id: 14685259 DOI: 10.1038/sj.emboj.7600040
Date:
23-Sep-03     Release date:   09-Dec-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P26361  (CFTR_MOUSE) -  Cystic fibrosis transmembrane conductance regulator from Mus musculus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1476 a.a.
275 a.a.
Protein chain
Pfam   ArchSchema ?
P26361  (CFTR_MOUSE) -  Cystic fibrosis transmembrane conductance regulator from Mus musculus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1476 a.a.
259 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chains A, B, C, D: E.C.5.6.1.6  - channel-conductance-controlling ATPase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O + closed Cl- channel = ADP + phosphate + open Cl- channel
ATP
Bound ligand (Het Group name = ATP)
corresponds exactly
+ H2O
+ closed Cl(-) channel
= ADP
+ phosphate
+ open Cl(-) channel
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1038/sj.emboj.7600040 EMBO J 23:282-293 (2004)
PubMed id: 14685259  
 
 
Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator.
H.A.Lewis, S.G.Buchanan, S.K.Burley, K.Conners, M.Dickey, M.Dorwart, R.Fowler, X.Gao, W.B.Guggino, W.A.Hendrickson, J.F.Hunt, M.C.Kearins, D.Lorimer, P.C.Maloney, K.W.Post, K.R.Rajashankar, M.E.Rutter, J.M.Sauder, S.Shriver, P.H.Thibodeau, P.J.Thomas, M.Zhang, X.Zhao, S.Emtage.
 
  ABSTRACT  
 
Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that functions as a chloride channel. Nucleotide-binding domain 1 (NBD1), one of two ABC domains in CFTR, also contains sites for the predominant CF-causing mutation and, potentially, for regulatory phosphorylation. We have determined crystal structures for mouse NBD1 in unliganded, ADP- and ATP-bound states, with and without phosphorylation. This NBD1 differs from typical ABC domains in having added regulatory segments, a foreshortened subdomain interconnection, and an unusual nucleotide conformation. Moreover, isolated NBD1 has undetectable ATPase activity and its structure is essentially the same independent of ligand state. Phe508, which is commonly deleted in CF, is exposed at a putative NBD1-transmembrane interface. Our results are consistent with a CFTR mechanism, whereby channel gating occurs through ATP binding in an NBD1-NBD2 nucleotide sandwich that forms upon displacement of NBD1 regulatory segments.
 
  Selected figure(s)  
 
Figure 1.
Figure 1 Domain organization of CFTR. The five domains of CFTR are shown. Also indicated is a putative nucleotide-binding domain association in which the ATP-binding site of one NBD is opposed by the signature sequence of the other NBD. Inactivity at the NBD1 ATP-binding site is indicated by Ser residues in place of the catalytic Glu and His in addition to His residues substituted for the Gln and central Gly in the NBD2 signature sequence.
Figure 4.
Figure 4 Close-up on ATP binding by mNBD1. (A) Canonical hydrogen bonding interactions in Mg-ATP mNBD1. Some relevant hydrogen bonds are indicated as green lines. Some residues in the foreground and background have been removed to clarify the interactions, here and in (B) and (C). (B) Differences in adenine base recognition from other ABC domains. Left: adenine stacks against Tyr11 of MJ0796 (PDB ID code 1L2T). Right: adenine of ATP makes edge-to-face interactions with Phe430 of mNBD1. (C) Added structure in phosphorylated mNBD1. The ATP molecule plus magnesium in blue, the additional mNBD1 residues observed in the phosphorylated state in white, the phosphate atoms of Ser422 and Ser660 in brown, and the remainder of the mNBD1 structure in yellow are shown.
 
  The above figures are reprinted from an Open Access publication published by Macmillan Publishers Ltd: EMBO J (2004, 23, 282-293) copyright 2004.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22447242 M.Hohl, C.Briand, M.G.Grütter, and M.A.Seeger (2012).
Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation.
  Nat Struct Mol Biol, 19, 395-402.
PDB code: 3qf4
21419343 A.Khushoo, Z.Yang, A.E.Johnson, and W.R.Skach (2011).
Ligand-driven vectorial folding of ribosome-bound human CFTR NBD1.
  Mol Cell, 41, 682-692.  
21441914 G.J.Williams, R.S.Williams, J.S.Williams, G.Moncalian, A.S.Arvai, O.Limbo, G.Guenther, S.Sildas, M.Hammel, P.Russell, and J.A.Tainer (2011).
ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair.
  Nat Struct Mol Biol, 18, 423-431.
PDB codes: 3qkr 3qks 3qkt 3qku
21338920 H.M.Sampson, R.Robert, J.Liao, E.Matthes, G.W.Carlile, J.W.Hanrahan, and D.Y.Thomas (2011).
Identification of a NBD1-binding pharmacological chaperone that corrects the trafficking defect of F508del-CFTR.
  Chem Biol, 18, 231-242.  
21315686 R.Yang, Y.X.Hou, C.A.Campbell, K.Palaniyandi, Q.Zhao, A.J.Bordner, and X.B.Chang (2011).
Glutamine residues in Q-loops of multidrug resistance protein MRP1 contribute to ATP binding via interaction with metal cofactor.
  Biochim Biophys Acta, 1808, 1790-1796.  
20004757 A.Bronckers, L.Kalogeraki, H.J.Jorna, M.Wilke, T.J.Bervoets, D.M.Lyaruu, B.Zandieh-Doulabi, P.Denbesten, and H.de Jonge (2010).
The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in maturation stage ameloblasts, odontoblasts and bone cells.
  Bone, 46, 1188-1196.  
19862546 A.Rupnik, N.F.Lowndes, and M.Grenon (2010).
MRN and the race to the break.
  Chromosoma, 119, 115-135.  
20687163 C.Wang, I.Protasevich, Z.Yang, D.Seehausen, T.Skalak, X.Zhao, S.Atwell, J.Spencer Emtage, D.R.Wetmore, C.G.Brouillette, and J.F.Hunt (2010).
Integrated biophysical studies implicate partial unfolding of NBD1 of CFTR in the molecular pathogenesis of F508del cystic fibrosis.
  Protein Sci, 19, 1932-1947.  
21152102 H.Hoelen, B.Kleizen, A.Schmidt, J.Richardson, P.Charitou, P.J.Thomas, and I.Braakman (2010).
The primary folding defect and rescue of ΔF508 CFTR emerge during translation of the mutant domain.
  PLoS One, 5, e15458.  
20628841 H.Shimizu, Y.C.Yu, K.Kono, T.Kubota, M.Yasui, M.Li, T.C.Hwang, and Y.Sohma (2010).
A stable ATP binding to the nucleotide binding domain is important for reliable gating cycle in an ABC transporter CFTR.
  J Physiol Sci, 60, 353-362.  
20687133 I.Protasevich, Z.Yang, C.Wang, S.Atwell, X.Zhao, S.Emtage, D.Wetmore, J.F.Hunt, and C.G.Brouillette (2010).
Thermal unfolding studies show the disease causing F508del mutation in CFTR thermodynamically destabilizes nucleotide-binding domain 1.
  Protein Sci, 19, 1917-1931.  
19925455 M.A.Pagano, O.Marin, G.Cozza, S.Sarno, F.Meggio, K.J.Treharne, A.Mehta, and L.A.Pinna (2010).
Cystic fibrosis transmembrane regulator fragments with the Phe508 deletion exert a dual allosteric control over the master kinase CK2.
  Biochem J, 426, 19-29.  
  20421370 M.F.Tsai, M.Li, and T.C.Hwang (2010).
Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel.
  J Gen Physiol, 135, 399-414.  
20823549 M.Haffke, A.Menzel, Y.Carius, D.Jahn, and D.W.Heinz (2010).
Structures of the nucleotide-binding domain of the human ABCB6 transporter and its complexes with nucleotides.
  Acta Crystallogr D Biol Crystallogr, 66, 979-987.
PDB codes: 3nh6 3nh9 3nha 3nhb
20110677 M.Kloch, M.Milewski, E.Nurowska, B.Dworakowska, G.R.Cutting, and K.Dołowy (2010).
The H-loop in the second nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator is required for efficient chloride channel closing.
  Cell Physiol Biochem, 25, 169-180.  
20162627 O.Doppelt-Azeroual, F.Delfaud, F.Moriaud, and A.G.de Brevern (2010).
Fast and automated functional classification with MED-SuMo: an application on purine-binding proteins.
  Protein Sci, 19, 847-867.  
20150177 S.Atwell, C.G.Brouillette, K.Conners, S.Emtage, T.Gheyi, W.B.Guggino, J.Hendle, J.F.Hunt, H.A.Lewis, F.Lu, I.I.Protasevich, L.A.Rodgers, R.Romero, S.R.Wasserman, P.C.Weber, D.Wetmore, F.F.Zhang, and X.Zhao (2010).
Structures of a minimal human CFTR first nucleotide-binding domain as a monomer, head-to-tail homodimer, and pathogenic mutant.
  Protein Eng Des Sel, 23, 375-384.
PDB codes: 2pze 2pzf 2pzg
20590134 T.W.Loo, M.C.Bartlett, and D.M.Clarke (2010).
The V510D suppressor mutation stabilizes DeltaF508-CFTR at the cell surface.
  Biochemistry, 49, 6352-6357.  
19927121 V.Kanelis, R.P.Hudson, P.H.Thibodeau, P.J.Thomas, and J.D.Forman-Kay (2010).
NMR evidence for differential phosphorylation-dependent interactions in WT and DeltaF508 CFTR.
  EMBO J, 29, 263-277.  
19625452 D.E.Grove, M.F.Rosser, H.Y.Ren, A.P.Naren, and D.M.Cyr (2009).
Mechanisms for rescue of correctable folding defects in CFTRDelta F508.
  Mol Biol Cell, 20, 4059-4069.  
18957373 D.Muallem, and P.Vergani (2009).
Review. ATP hydrolysis-driven gating in cystic fibrosis transmembrane conductance regulator.
  Philos Trans R Soc Lond B Biol Sci, 364, 247-255.  
19297616 G.Oancea, M.L.O'Mara, W.F.Bennett, D.P.Tieleman, R.Abele, and R.Tampé (2009).
Structural arrangement of the transmission interface in the antigen ABC transport complex TAP.
  Proc Natl Acad Sci U S A, 106, 5551-5556.  
19697963 H.Li, and D.N.Sheppard (2009).
Therapeutic potential of cystic fibrosis transmembrane conductance regulator (CFTR) inhibitors in polycystic kidney disease.
  BioDrugs, 23, 203-216.  
19837660 J.H.Chen, Z.Cai, and D.N.Sheppard (2009).
Direct sensing of intracellular pH by the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel.
  J Biol Chem, 284, 35495-35506.  
19707853 J.P.Mornon, P.Lehn, and I.Callebaut (2009).
Molecular models of the open and closed states of the whole human CFTR protein.
  Cell Mol Life Sci, 66, 3469-3486.  
19910675 K.J.Treharne, Z.Xu, J.H.Chen, O.G.Best, D.M.Cassidy, D.C.Gruenert, P.Hegyi, M.A.Gray, D.N.Sheppard, K.Kunzelmann, and A.Mehta (2009).
Inhibition of protein kinase CK2 closes the CFTR Cl channel, but has no effect on the cystic fibrosis mutant deltaF508-CFTR.
  Cell Physiol Biochem, 24, 347-360.  
  19332621 M.F.Tsai, H.Shimizu, Y.Sohma, M.Li, and T.C.Hwang (2009).
State-dependent modulation of CFTR gating by pyrophosphate.
  J Gen Physiol, 133, 405-419.  
18831048 P.M.Jones, and A.M.George (2009).
Opening of the ADP-bound active site in the ABC transporter ATPase dimer: evidence for a constant contact, alternating sites model for the catalytic cycle.
  Proteins, 75, 387-396.  
19167254 S.Y.Huang, D.Bolser, H.Y.Liu, T.C.Hwang, and X.Zou (2009).
Molecular modeling of the heterodimer of human CFTR's nucleotide-binding domains using a protein-protein docking approach.
  J Mol Graph Model, 27, 822-828.  
19453273 U.A.Hellmich, and C.Glaubitz (2009).
NMR and EPR studies of membrane transporters.
  Biol Chem, 390, 815-834.  
19544044 V.Kos, and R.C.Ford (2009).
The ATP-binding cassette family: a structural perspective.
  Cell Mol Life Sci, 66, 3111-3126.  
  19114635 X.Wang, S.G.Bompadre, M.Li, and T.C.Hwang (2009).
Mutations at the signature sequence of CFTR create a Cd(2+)-gated chloride channel.
  J Gen Physiol, 133, 69-77.  
19691360 Y.X.Hou, C.Z.Li, K.Palaniyandi, P.M.Magtibay, L.Homolya, B.Sarkadi, and X.B.Chang (2009).
Effects of putative catalytic base mutation E211Q on ABCG2-mediated methotrexate transport.
  Biochemistry, 48, 9122-9131.  
18305154 A.W.Serohijos, T.Hegedus, A.A.Aleksandrov, L.He, L.Cui, N.V.Dokholyan, and J.R.Riordan (2008).
Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function.
  Proc Natl Acad Sci U S A, 105, 3256-3261.  
18463704 A.W.Serohijos, T.Hegedus, J.R.Riordan, and N.V.Dokholyan (2008).
Diminished self-chaperoning activity of the DeltaF508 mutant of CFTR results in protein misfolding.
  PLoS Comput Biol, 4, e1000008.  
18215767 C.M.Deber, J.C.Cheung, and A.Rath (2008).
Defining the defect in F508 del CFTR: a soluble problem?
  Chem Biol, 15, 3-4.  
18487356 C.S.Rogers, W.M.Abraham, K.A.Brogden, J.F.Engelhardt, J.T.Fisher, P.B.McCray, G.McLennan, D.K.Meyerholz, E.Namati, L.S.Ostedgaard, R.S.Prather, J.R.Sabater, D.A.Stoltz, J.Zabner, and M.J.Welsh (2008).
The porcine lung as a potential model for cystic fibrosis.
  Am J Physiol Lung Cell Mol Physiol, 295, L240-L263.  
18556464 F.Sun, Z.Mi, S.B.Condliffe, C.A.Bertrand, X.Gong, X.Lu, R.Zhang, J.D.Latoche, J.M.Pilewski, P.D.Robbins, and R.A.Frizzell (2008).
Chaperone displacement from mutant cystic fibrosis transmembrane conductance regulator restores its function in human airway epithelia.
  FASEB J, 22, 3255-3263.  
18057957 H.Schillers (2008).
Imaging CFTR in its native environment.
  Pflugers Arch, 456, 163-177.  
18366741 J.Kitchen, R.E.Saunders, and J.Warwicker (2008).
Charge environments around phosphorylation sites in proteins.
  BMC Struct Biol, 8, 19.  
18304008 J.R.Riordan (2008).
CFTR function and prospects for therapy.
  Annu Rev Biochem, 77, 701-726.  
17951296 J.Weng, J.Ma, K.Fan, and W.Wang (2008).
The conformational coupling and translocation mechanism of vitamin B12 ATP-binding cassette transporter BtuCD.
  Biophys J, 94, 612-621.  
18723516 K.Mio, T.Ogura, M.Mio, H.Shimizu, T.C.Hwang, C.Sato, and Y.Sohma (2008).
Three-dimensional reconstruction of human cystic fibrosis transmembrane conductance regulator chloride channel revealed an ellipsoidal structure with orifices beneath the putative transmembrane domain.
  J Biol Chem, 283, 30300-30310.  
18658148 L.He, A.A.Aleksandrov, A.W.Serohijos, T.Hegedus, L.A.Aleksandrov, L.Cui, N.V.Dokholyan, and J.R.Riordan (2008).
Multiple membrane-cytoplasmic domain contacts in the cystic fibrosis transmembrane conductance regulator (CFTR) mediate regulation of channel gating.
  J Biol Chem, 283, 26383-26390.  
18215773 L.S.Pissarra, C.M.Farinha, Z.Xu, A.Schmidt, P.H.Thibodeau, Z.Cai, P.J.Thomas, D.N.Sheppard, and M.D.Amaral (2008).
Solubilizing mutations used to crystallize one CFTR domain attenuate the trafficking and channel defects caused by the major cystic fibrosis mutation.
  Chem Biol, 15, 62-69.  
18597485 M.A.Pagano, G.Arrigoni, O.Marin, S.Sarno, F.Meggio, K.J.Treharne, A.Mehta, and L.A.Pinna (2008).
Modulation of protein kinase CK2 activity by fragments of CFTR encompassing F508 may reflect functional links with cystic fibrosis pathogenesis.
  Biochemistry, 47, 7925-7936.  
18716059 M.F.Rosser, D.E.Grove, L.Chen, and D.M.Cyr (2008).
Assembly and misassembly of cystic fibrosis transmembrane conductance regulator: folding defects caused by deletion of F508 occur before and after the calnexin-dependent association of membrane spanning domain (MSD) 1 and MSD2.
  Mol Biol Cell, 19, 4570-4579.  
18790847 P.C.Wen, and E.Tajkhorshid (2008).
Dimer opening of the nucleotide binding domains of ABC transporters after ATP hydrolysis.
  Biophys J, 95, 5100-5110.  
18805924 Q.Dong, C.O.Randak, and M.J.Welsh (2008).
A mutation in CFTR modifies the effects of the adenylate kinase inhibitor Ap5A on channel gating.
  Biophys J, 95, 5178-5185.  
18088596 R.Yang, R.Scavetta, and X.B.Chang (2008).
The hydroxyl group of S685 in Walker A motif and the carboxyl group of D792 in Walker B motif of NBD1 play a crucial role for multidrug resistance protein folding and function.
  Biochim Biophys Acta, 1778, 454-465.  
18167357 S.G.Bompadre, M.Li, and T.C.Hwang (2008).
Mechanism of G551D-CFTR (cystic fibrosis transmembrane conductance regulator) potentiation by a high affinity ATP analog.
  J Biol Chem, 283, 5364-5369.  
17021796 A.A.Aleksandrov, L.A.Aleksandrov, and J.R.Riordan (2007).
CFTR (ABCC7) is a hydrolyzable-ligand-gated channel.
  Pflugers Arch, 453, 693-702.  
17182856 A.Ahner, K.Nakatsukasa, H.Zhang, R.A.Frizzell, and J.L.Brodsky (2007).
Small heat-shock proteins select deltaF508-CFTR for endoplasmic reticulum-associated degradation.
  Mol Biol Cell, 18, 806-814.  
17208306 C.A.McDevitt, and R.Callaghan (2007).
How can we best use structural information on P-glycoprotein to design inhibitors?
  Pharmacol Ther, 113, 429-441.  
17965924 C.O.Randak, and M.J.Welsh (2007).
Role of CFTR's intrinsic adenylate kinase activity in gating of the Cl(-) channel.
  J Bioenerg Biomembr, 39, 473-479.  
17673962 J.J.Zhou, M.Fatehi, and P.Linsdell (2007).
Direct and indirect effects of mutations at the outer mouth of the cystic fibrosis transmembrane conductance regulator chloride channel pore.
  J Membr Biol, 216, 129-142.  
18080175 J.L.Mendoza, and P.J.Thomas (2007).
Building an understanding of cystic fibrosis on the foundation of ABC transporter structures.
  J Bioenerg Biomembr, 39, 499-505.  
17660831 J.M.Baker, R.P.Hudson, V.Kanelis, W.Y.Choy, P.H.Thibodeau, P.J.Thomas, and J.D.Forman-Kay (2007).
CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices.
  Nat Struct Mol Biol, 14, 738-745.  
17289674 K.J.Treharne, R.M.Crawford, Z.Xu, J.H.Chen, O.G.Best, E.A.Schulte, D.C.Gruenert, S.M.Wilson, D.N.Sheppard, K.Kunzelmann, and A.Mehta (2007).
Protein kinase CK2, cystic fibrosis transmembrane conductance regulator, and the deltaF508 mutation: F508 deletion disrupts a kinase-binding site.
  J Biol Chem, 282, 10804-10813.  
17873061 L.S.Ostedgaard, C.S.Rogers, Q.Dong, C.O.Randak, D.W.Vermeer, T.Rokhlina, P.H.Karp, and M.J.Welsh (2007).
Processing and function of CFTR-DeltaF508 are species-dependent.
  Proc Natl Acad Sci U S A, 104, 15370-15375.  
17485460 P.M.Jones, and A.M.George (2007).
Nucleotide-dependent allostery within the ABC transporter ATP-binding cassette: a computational study of the MJ0796 dimer.
  J Biol Chem, 282, 22793-22803.  
17386254 R.S.Williams, and J.A.Tainer (2007).
Learning our ABCs: Rad50 directs MRN repair functions via adenylate kinase activity from the conserved ATP binding cassette.
  Mol Cell, 25, 789-791.  
  17353351 S.G.Bompadre, Y.Sohma, M.Li, and T.C.Hwang (2007).
G551D and G1349D, two CF-associated mutations in the signature sequences of CFTR, exhibit distinct gating defects.
  J Gen Physiol, 129, 285-298.  
17913891 T.S.Scott-Ward, Z.Cai, E.S.Dawson, A.Doherty, A.C.Da Paula, H.Davidson, D.J.Porteous, B.J.Wainwright, M.D.Amaral, D.N.Sheppard, and A.C.Boyd (2007).
Chimeric constructs endow the human CFTR Cl- channel with the gating behavior of murine CFTR.
  Proc Natl Acad Sci U S A, 104, 16365-16370.  
17178710 W.Wang, K.Bernard, G.Li, and K.L.Kirk (2007).
Curcumin opens cystic fibrosis transmembrane conductance regulator channels by a novel mechanism that requires neither ATP binding nor dimerization of the nucleotide-binding domains.
  J Biol Chem, 282, 4533-4544.  
16361259 C.H.Gross, N.Abdul-Manan, J.Fulghum, J.Lippke, X.Liu, P.Prabhakar, D.Brennan, M.S.Willis, C.Faerman, P.Connelly, S.Raybuck, and J.Moore (2006).
Nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator, an ABC transporter, catalyze adenylate kinase activity but not ATP hydrolysis.
  J Biol Chem, 281, 4058-4068.  
16541253 C.Oswald, I.B.Holland, and L.Schmitt (2006).
The motor domains of ABC-transporters. What can structures tell us?
  Naunyn Schmiedebergs Arch Pharmacol, 372, 385-399.  
16554808 D.C.Gadsby, P.Vergani, and L.Csanády (2006).
The ABC protein turned chloride channel whose failure causes cystic fibrosis.
  Nature, 440, 477-483.  
17215877 E.O.Oloo, C.Kandt, M.L.O'Mara, and D.P.Tieleman (2006).
Computer simulations of ABC transporter components.
  Biochem Cell Biol, 84, 900-911.  
16858415 J.Zaitseva, C.Oswald, T.Jumpertz, S.Jenewein, A.Wiedenmann, I.B.Holland, and L.Schmitt (2006).
A structural analysis of asymmetry required for catalytic activity of an ABC-ATPase domain dimer.
  EMBO J, 25, 3432-3443.
PDB codes: 2ff7 2ffa 2ffb 2fgj 2fgk
16791740 K.Kurashima-Ito, T.Ikeya, H.Senbongi, H.Tochio, T.Mikawa, T.Shibata, and Y.Ito (2006).
Heteronuclear multidimensional NMR and homology modelling studies of the C-terminal nucleotide-binding domain of the human mitochondrial ABC transporter ABCB6.
  J Biomol NMR, 35, 53-71.  
17036051 M.Mense, P.Vergani, D.M.White, G.Altberg, A.C.Nairn, and D.C.Gadsby (2006).
In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer.
  EMBO J, 25, 4728-4739.  
17098864 M.Roxo-Rosa, Z.Xu, A.Schmidt, M.Neto, Z.Cai, C.M.Soares, D.N.Sheppard, and M.D.Amaral (2006).
Revertant mutants G550E and 4RK rescue cystic fibrosis mutants in the first nucleotide-binding domain of CFTR by different mechanisms.
  Proc Natl Acad Sci U S A, 103, 17891-17896.  
16547024 X.Guo, R.W.Harrison, and P.C.Tai (2006).
Nucleotide-dependent dimerization of the C-terminal domain of the ABC transporter CvaB in colicin V secretion.
  J Bacteriol, 188, 2383-2391.  
16311240 Z.Cai, A.Taddei, and D.N.Sheppard (2006).
Differential sensitivity of the cystic fibrosis (CF)-associated mutants G551D and G1349D to potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel.
  J Biol Chem, 281, 1970-1977.  
  16966475 Z.Zhou, X.Wang, H.Y.Liu, X.Zou, M.Li, and T.C.Hwang (2006).
The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics.
  J Gen Physiol, 128, 413-422.  
15837203 A.Karcher, K.Büttner, B.Märtens, R.P.Jansen, and K.P.Hopfner (2005).
X-ray structure of RLI, an essential twin cassette ABC ATPase involved in ribosome biogenesis and HIV capsid assembly.
  Structure, 13, 649-659.
PDB code: 1yqt
15623556 A.L.Berger, M.Ikuma, and M.J.Welsh (2005).
Normal gating of CFTR requires ATP binding to both nucleotide-binding domains and hydrolysis at the second nucleotide-binding domain.
  Proc Natl Acad Sci U S A, 102, 455-460.  
15936089 C.Li, and A.P.Naren (2005).
Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners.
  Pharmacol Ther, 108, 208-223.  
15923638 C.M.Farinha, and M.D.Amaral (2005).
Most F508del-CFTR is targeted to degradation at an early folding checkpoint and independently of calnexin.
  Mol Cell Biol, 25, 5242-5252.  
15684079 C.O.Randak, and M.J.Welsh (2005).
ADP inhibits function of the ABC transporter cystic fibrosis transmembrane conductance regulator via its adenylate kinase activity.
  Proc Natl Acad Sci U S A, 102, 2216-2220.  
15689966 D.M.Cyr (2005).
Arrest of CFTRDeltaF508 folding.
  Nat Struct Mol Biol, 12, 2-3.  
16326809 G.Lu, J.M.Westbrooks, A.L.Davidson, and J.Chen (2005).
ATP hydrolysis is required to reset the ATP-binding cassette dimer into the resting-state conformation.
  Proc Natl Acad Sci U S A, 102, 17969-17974.
PDB codes: 2awn 2awo
15528182 H.A.Lewis, X.Zhao, C.Wang, J.M.Sauder, I.Rooney, B.W.Noland, D.Lorimer, M.C.Kearins, K.Conners, B.Condon, P.C.Maloney, W.B.Guggino, J.F.Hunt, and S.Emtage (2005).
Impact of the deltaF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure.
  J Biol Chem, 280, 1346-1353.
PDB codes: 1xmi 1xmj
16691486 J.E.Moody, and P.J.Thomas (2005).
Nucleotide binding domain interactions during the mechanochemical reaction cycle of ATP-binding cassette transporters.
  J Bioenerg Biomembr, 37, 475-479.  
16166089 J.Oberdorf, D.Pitonzo, and W.R.Skach (2005).
An energy-dependent maturation step is required for release of the cystic fibrosis transmembrane conductance regulator from early endoplasmic reticulum biosynthetic machinery.
  J Biol Chem, 280, 38193-38202.  
15709975 J.R.Riordan (2005).
Assembly of functional CFTR chloride channels.
  Annu Rev Physiol, 67, 701-718.  
15889153 J.Zaitseva, S.Jenewein, T.Jumpertz, I.B.Holland, and L.Schmitt (2005).
H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB.
  EMBO J, 24, 1901-1910.
PDB code: 1xef
15619635 K.Du, M.Sharma, and G.L.Lukacs (2005).
The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR.
  Nat Struct Mol Biol, 12, 17-25.  
  15657296 L.Csanády, D.Seto-Young, K.W.Chan, C.Cenciarelli, B.B.Angel, J.Qin, D.T.McLachlin, A.N.Krutchinsky, B.T.Chait, A.C.Nairn, and D.C.Gadsby (2005).
Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA.
  J Gen Physiol, 125, 171-186.  
  15596536 L.Csanády, K.W.Chan, A.C.Nairn, and D.C.Gadsby (2005).
Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain.
  J Gen Physiol, 125, 43-55.  
15765539 M.D.Amaral (2005).
Processing of CFTR: traversing the cellular maze--how much CFTR needs to go through to avoid cystic fibrosis?
  Pediatr Pulmonol, 39, 479-491.  
16308567 M.V.Mikhailov, J.D.Campbell, H.de Wet, K.Shimomura, B.Zadek, R.F.Collins, M.S.Sansom, R.C.Ford, and F.M.Ashcroft (2005).
3-D structural and functional characterization of the purified KATP channel complex Kir6.2-SUR1.
  EMBO J, 24, 4166-4175.  
15619636 P.H.Thibodeau, C.A.Brautigam, M.Machius, and P.J.Thomas (2005).
Side chain and backbone contributions of Phe508 to CFTR folding.
  Nat Struct Mol Biol, 12, 10-16.
PDB codes: 1xf9 1xfa
16604470 P.Melin, C.Norez, I.Callebaut, and F.Becq (2005).
The glycine residues G551 and G1349 within the ATP-binding cassette signature motifs play critical roles in the activation and inhibition of cystic fibrosis transmembrane conductance regulator channels by phloxine B.
  J Membr Biol, 208, 203-212.  
16246032 P.Vergani, C.Basso, M.Mense, A.C.Nairn, and D.C.Gadsby (2005).
Control of the CFTR channel's gates.
  Biochem Soc Trans, 33, 1003-1007.  
  15767296 S.G.Bompadre, J.H.Cho, X.Wang, X.Zou, Y.Sohma, M.Li, and T.C.Hwang (2005).
CFTR gating II: Effects of nucleotide binding on the stability of open states.
  J Gen Physiol, 125, 377-394.  
16691490 T.W.Loo, M.C.Bartlett, and D.M.Clarke (2005).
Rescue of folding defects in ABC transporters using pharmacological chaperones.
  J Bioenerg Biomembr, 37, 501-507.  
16207813 V.Arndt, C.Daniel, W.Nastainczyk, S.Alberti, and J.Höhfeld (2005).
BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP.
  Mol Biol Cell, 16, 5891-5900.  
16223764 Z.Zhou, X.Wang, M.Li, Y.Sohma, X.Zou, and T.C.Hwang (2005).
High affinity ATP/ADP analogues as new tools for studying CFTR gating.
  J Physiol, 569, 447-457.  
15551867 C.van der Does, and R.Tampé (2004).
How do ABC transporters drive transport?
  Biol Chem, 385, 927-933.  
  15277572 D.N.Sheppard (2004).
CFTR channel pharmacology: novel pore blockers identified by high-throughput screening.
  J Gen Physiol, 124, 109-113.  
15308647 E.O.Oloo, and D.P.Tieleman (2004).
Conformational transitions induced by the binding of MgATP to the vitamin B12 ATP-binding cassette (ABC) transporter BtuCD.
  J Biol Chem, 279, 45013-45019.  
15272010 E.Y.Chen, M.C.Bartlett, T.W.Loo, and D.M.Clarke (2004).
The DeltaF508 mutation disrupts packing of the transmembrane segments of the cystic fibrosis transmembrane conductance regulator.
  J Biol Chem, 279, 39620-39627.  
15284228 J.F.Kidd, M.Ramjeesingh, F.Stratford, L.J.Huan, and C.E.Bear (2004).
A heteromeric complex of the two nucleotide binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) mediates ATPase activity.
  J Biol Chem, 279, 41664-41669.  
15611333 J.M.Younger, H.Y.Ren, L.Chen, C.Y.Fan, A.Fields, C.Patterson, and D.M.Cyr (2004).
A foldable CFTR{Delta}F508 biogenic intermediate accumulates upon inhibition of the Hsc70-CHIP E3 ubiquitin ligase.
  J Cell Biol, 167, 1075-1085.  
15313236 K.P.Locher (2004).
Structure and mechanism of ABC transporters.
  Curr Opin Struct Biol, 14, 426-431.  
15247233 M.F.Rosenberg, A.B.Kamis, L.A.Aleksandrov, R.C.Ford, and J.R.Riordan (2004).
Purification and crystallization of the cystic fibrosis transmembrane conductance regulator (CFTR).
  J Biol Chem, 279, 39051-39057.  
15355964 Q.Zhao, and X.B.Chang (2004).
Mutation of the aromatic amino acid interacting with adenine moiety of ATP to a polar residue alters the properties of multidrug resistance protein 1.
  J Biol Chem, 279, 48505-48512.  
15342786 R.T.Youker, P.Walsh, T.Beilharz, T.Lithgow, and J.L.Brodsky (2004).
Distinct roles for the Hsp40 and Hsp90 molecular chaperones during cystic fibrosis transmembrane conductance regulator degradation in yeast.
  Mol Biol Cell, 15, 4787-4797.  
15247215 T.W.Loo, M.C.Bartlett, and D.M.Clarke (2004).
Processing mutations located throughout the human multidrug resistance P-glycoprotein disrupt interactions between the nucleotide binding domains.
  J Biol Chem, 279, 38395-38401.  
15479737 X.Wang, J.Matteson, Y.An, B.Moyer, J.S.Yoo, S.Bannykh, I.A.Wilson, J.R.Riordan, and W.E.Balch (2004).
COPII-dependent export of cystic fibrosis transmembrane conductance regulator from the ER uses a di-acidic exit code.
  J Cell Biol, 167, 65-74.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer