spacer
spacer

PDBsum entry 1qmb

Go to PDB code: 
protein Protein-protein interface(s) links
Serine protease inhibitor PDB id
1qmb

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
326 a.a. *
42 a.a. *
Waters ×17
* Residue conservation analysis
PDB id:
1qmb
Name: Serine protease inhibitor
Title: Cleaved alpha-1-antitrypsin polymer
Structure: Alpha-1-antitrypsin. Chain: a. Fragment: residues 49-69,71-302,304-376. Synonym: alpha-1-proteinase inhibitor, alpha-1-pi. Engineered: yes. Mutation: yes. Alpha-1-antitrypsin. Chain: b. Fragment: residues 377-418.
Source: Homo sapiens. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562. Expression_system_taxid: 562
Biol. unit: Dimer (from PQS)
Resolution:
2.60Å     R-factor:   0.212     R-free:   0.258
Authors: J.A.Huntington,N.S.Pannu,B.Hazes,R.J.Read,D.A.Lomas,R.W.Carrell
Key ref:
J.A.Huntington et al. (1999). A 2.6 A structure of a serpin polymer and implications for conformational disease. J Mol Biol, 293, 449-455. PubMed id: 10543942 DOI: 10.1006/jmbi.1999.3184
Date:
24-Sep-99     Release date:   06-Feb-00    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P01009  (A1AT_HUMAN) -  Alpha-1-antitrypsin from Homo sapiens
Seq:
Struc:
418 a.a.
326 a.a.*
Protein chain
Pfam   ArchSchema ?
P01009  (A1AT_HUMAN) -  Alpha-1-antitrypsin from Homo sapiens
Seq:
Struc:
418 a.a.
42 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 

 
DOI no: 10.1006/jmbi.1999.3184 J Mol Biol 293:449-455 (1999)
PubMed id: 10543942  
 
 
A 2.6 A structure of a serpin polymer and implications for conformational disease.
J.A.Huntington, N.S.Pannu, B.Hazes, R.J.Read, D.A.Lomas, R.W.Carrell.
 
  ABSTRACT  
 
The function of the serpins as proteinase inhibitors depends on their ability to insert the cleaved reactive centre loop as the fourth strand in the main A beta-sheet of the molecule upon proteolytic attack at the reactive centre, P1-P1'. This mechanism is vulnerable to mutations which result in inappropriate intra- or intermolecular loop insertion in the absence of cleavage. Intermolecular loop insertion is known as serpin polymerisation and results in a variety of diseases, most notably liver cirrhosis resulting from mutations of the prototypical serpin alpha1-antitrypsin. We present here the 2.6 A structure of a polymer of alpha1-antitrypsin cleaved six residues N-terminal to the reactive centre, P7-P6 (Phe352-Leu353). After self insertion of P14 to P7, intermolecular linkage is affected by insertion of the P6-P3 residues of one molecule into the partially occupied beta-sheet A of another. This results in an infinite, linear polymer which propagates in the crystal along a 2-fold screw axis. These findings provide a framework for understanding the uncleaved alpha1-antitrypsin polymer and fibrillar and amyloid deposition of proteins seen in other conformational diseases, with the ordered array of polymers in the crystal resulting from slow accretion of the cleaved serpin over the period of a year.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. (a) Monomer of the P7-P6 cleaved Pittsburgh a[1]-antitrypsin in the classical view with b-sheet A in blue and the portion of the reactive centre loop which becomes strand 4A after cleavage in red. The normal scissile bond (P1-P1') is indicated by the arrow. Cleavage at this site results in a full occupancy of b-sheet A with the inclusion of residues P15 through P3 as s4A. The P7 and P6 residues are indicated and are separated by 70 Å. The effect of cleavage at P7-P6 is a partial occupancy of the strand 4A allowing for ready insertion of the residues C-terminal to the cleavage site, P6*-P3*, from another monomer. (b) Such intermolecular loop insertion is demonstrated in the structure of a tetramer extracted from the infinite polymer, with the P6-P3 segment of one monomer clearly visible within the b-sheet A of the other. Insertion is in register with P1-P1' cleaved a[1]-antitrypsin. The monomers which compose the polymer are related in the crystal by a 2[1]-fold screw axis parallel to the Image cell edge. (c) The view down the 3[1]-fold screw axis of the crystal lattice reveals its tube-like nature. The unusually high solvent content of 73 % is explained by the 108 Å diameter hole that extends for the length of the crystal. (d) The current model of the uncleaved a[1]-antitrypsin trimer (magenta) [Elliott et al 1996 and Mahadeva et al 1999] and the structure of the cleaved a[1]-antitrypsin trimer (cyan) in space-filling representation after superposition of the first monomer. Polymerisation for the uncleaved model is affected by in register insertion of the P8 to P3 of the reactive centre loop into the b-sheet A of the following monomer. The model is thus constrained and cannot adopt the conformation of the cleaved polymer with which it is morphologically similar by electron microscopy. The Figures were generated using Molscript [Kraulis 1991] and Raster3D [Bacon and Anderson 1988 and Merritt and Murphy 1994].
Figure 2.
Figure 2. (a) A stereo view of the cleaved a[1]-antitrypsin dimer with a s[A]-weighted omit map, contoured at four times the r.m.s. of the map, for the region extending from P15 to P5', shows the unequivocal nature of the dimer contact. Continuous density is observed for the entire length of strand 4A of the black monomer into strand 1C of the next monomer in green. Weak density is observed at the site of cleavage. (b) A close-up of the omit map at the site of cleavage. P15 to P7 is in black with P6* to P5'* of the dimer partner in green. The omit map was computed after refinement using the model of cleaved a[1]-antitrypsin with the reactive centre loop (P15-P5') removed.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (1999, 293, 449-455) copyright 1999.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21498872 T.R.Flotte, and C.Mueller (2011).
Gene therapy for alpha-1 antitrypsin deficiency.
  Hum Mol Genet, 20, R87-R92.  
20731544 J.A.Huntington, and J.C.Whisstock (2010).
Molecular contortionism - on the physical limits of serpin 'loop-sheet' polymers.
  Biol Chem, 391, 973-982.  
20855577 U.I.Ekeowa, J.Freeke, E.Miranda, B.Gooptu, M.F.Bush, J.Pérez, J.Teckman, C.V.Robinson, and D.A.Lomas (2010).
Defining the mechanism of polymerization in the serpinopathies.
  Proc Natl Acad Sci U S A, 107, 17146-17151.  
18785256 A.S.Knaupp, and S.P.Bottomley (2009).
Serpin polymerization and its role in disease--the molecular basis of alpha1-antitrypsin deficiency.
  IUBMB Life, 61, 1-5.  
19245336 B.Gooptu, and D.A.Lomas (2009).
Conformational pathology of the serpins: themes, variations, and therapeutic strategies.
  Annu Rev Biochem, 78, 147-176.  
19232354 B.Gooptu, E.Miranda, I.Nobeli, M.Mallya, A.Purkiss, S.C.Brown, C.Summers, R.L.Phillips, D.A.Lomas, and T.E.Barrett (2009).
Crystallographic and cellular characterisation of two mechanisms stabilising the native fold of alpha1-antitrypsin: implications for disease and drug design.
  J Mol Biol, 387, 857-868.
PDB codes: 3drm 3dru
19849829 M.Garrett, A.Fullaondo, L.Troxler, G.Micklem, and D.Gubb (2009).
Identification and analysis of serpin-family genes by homology and synteny across the 12 sequenced Drosophilid genomes.
  BMC Genomics, 10, 489.  
18267959 E.Miranda, I.MacLeod, M.J.Davies, J.Pérez, K.Römisch, D.C.Crowther, and D.A.Lomas (2008).
The intracellular accumulation of polymeric neuroserpin explains the severity of the dementia FENIB.
  Hum Mol Genet, 17, 1527-1539.  
18573252 R.W.Carrell, A.Mushunje, and A.Zhou (2008).
Serpins show structural basis for oligomer toxicity and amyloid ubiquity.
  FEBS Lett, 582, 2537-2541.  
18045994 S.Granell, G.Baldini, S.Mohammad, V.Nicolin, P.Narducci, B.Storrie, and G.Baldini (2008).
Sequestration of Mutated {alpha}1-Antitrypsin into Inclusion Bodies Is a Cell-protective Mechanism to Maintain Endoplasmic Reticulum Function.
  Mol Biol Cell, 19, 572-586.  
17693474 C.Liang, P.Derreumaux, and G.Wei (2007).
Structure and aggregation mechanism of beta(2)-microglobulin (83-99) peptides studied by molecular dynamics simulations.
  Biophys J, 93, 3353-3362.  
17635906 L.D.Cabrita, J.A.Irving, M.C.Pearce, J.C.Whisstock, and S.P.Bottomley (2007).
Aeropin from the extremophile Pyrobaculum aerophilum bypasses the serpin misfolding trap.
  J Biol Chem, 282, 26802-26809.  
17059411 M.Kjellberg, B.Rimac, and J.Stenflo (2007).
An immunochemical method for quantitative determination of latent antithrombin, the reactive center loop-inserted uncleaved form of antithrombin.
  J Thromb Haemost, 5, 127-132.  
17923478 P.C.Ong, S.McGowan, M.C.Pearce, J.A.Irving, W.T.Kan, S.A.Grigoryev, B.Turk, G.A.Silverman, K.Brix, S.P.Bottomley, J.C.Whisstock, and R.N.Pike (2007).
DNA accelerates the inhibition of human cathepsin v by serpins.
  J Biol Chem, 282, 36980-36986.  
17442346 P.Chowdhury, W.Wang, S.Lavender, M.R.Bunagan, J.W.Klemke, J.Tang, J.G.Saven, B.S.Cooperman, and F.Gai (2007).
Fluorescence correlation spectroscopic study of serpin depolymerization by computationally designed peptides.
  J Mol Biol, 369, 462-473.  
16698543 M.J.Bennett, M.R.Sawaya, and D.Eisenberg (2006).
Deposition diseases and 3D domain swapping.
  Structure, 14, 811-824.  
16737556 R.H.Law, Q.Zhang, S.McGowan, A.M.Buckle, G.A.Silverman, W.Wong, C.J.Rosado, C.G.Langendorf, R.N.Pike, P.I.Bird, and J.C.Whisstock (2006).
An overview of the serpin superfamily.
  Genome Biol, 7, 216.  
16563741 R.Nelson, and D.Eisenberg (2006).
Recent atomic models of amyloid fibril structure.
  Curr Opin Struct Biol, 16, 260-265.  
17042782 S.Skeldal, J.V.Larsen, K.E.Pedersen, H.H.Petersen, R.Egelund, A.Christensen, J.K.Jensen, J.Gliemann, and P.A.Andreasen (2006).
Binding areas of urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex for endocytosis receptors of the low-density lipoprotein receptor family, determined by site-directed mutagenesis.
  FEBS J, 273, 5143-5159.  
15683545 I.Nita, C.Hollander, U.Westin, and S.M.Janciauskiene (2005).
Prolastin, a pharmaceutical preparation of purified human alpha1-antitrypsin, blocks endotoxin-mediated cytokine release.
  Respir Res, 6, 12.  
16176261 J.C.Whisstock, S.P.Bottomley, P.I.Bird, R.N.Pike, and P.Coughlin (2005).
Serpins 2005 - fun between the beta-sheets. Meeting report based upon presentations made at the 4th International Symposium on Serpin Structure, Function and Biology (Cairns, Australia).
  FEBS J, 272, 4868-4873.  
15170041 D.A.Lomas, and H.Parfrey (2004).
Alpha1-antitrypsin deficiency. 4: Molecular pathophysiology.
  Thorax, 59, 529-535.  
15215529 L.N.Benning, J.C.Whisstock, J.Sun, P.I.Bird, and S.P.Bottomley (2004).
The human serpin proteinase inhibitor-9 self-associates at physiological temperatures.
  Protein Sci, 13, 1859-1864.  
15486938 S.Janciauskiene, S.Eriksson, F.Callea, M.Mallya, A.Zhou, K.Seyama, S.Hata, and D.A.Lomas (2004).
Differential detection of PAS-positive inclusions formed by the Z, Siiyama, and Mmalton variants of alpha1-antitrypsin.
  Hepatology, 40, 1203-1210.  
15131125 S.Stefansson, M.Yepes, N.Gorlatova, D.E.Day, E.G.Moore, A.Zabaleta, G.A.McMahon, and D.A.Lawrence (2004).
Mutants of plasminogen activator inhibitor-1 designed to inhibit neutrophil elastase and cathepsin G are more effective in vivo than their endogenous inhibitors.
  J Biol Chem, 279, 29981-29987.  
12930828 E.M.Springhetti, N.E.Istomina, J.C.Whisstock, T.Nikitina, C.L.Woodcock, and S.A.Grigoryev (2003).
Role of the M-loop and reactive center loop domains in the folding and bridging of nucleosome arrays by MENT.
  J Biol Chem, 278, 43384-43393.  
12649292 E.Marszal, D.Danino, and A.Shrake (2003).
A novel mode of polymerization of alpha1-proteinase inhibitor.
  J Biol Chem, 278, 19611-19618.  
12777380 N.Fay, Y.Inoue, L.Bousset, H.Taguchi, and R.Melki (2003).
Assembly of the yeast prion Ure2p into protein fibrils. Thermodynamic and kinetic characterization.
  J Biol Chem, 278, 30199-30205.  
12360234 D.A.Lomas, and R.W.Carrell (2002).
Serpinopathies and the conformational dementias.
  Nat Rev Genet, 3, 759-768.  
11821386 J.A.Irving, S.S.Shushanov, R.N.Pike, E.Y.Popova, D.Brömme, T.H.Coetzer, S.P.Bottomley, I.A.Boulynko, S.A.Grigoryev, and J.C.Whisstock (2002).
Inhibitory activity of a heterochromatin-associated serpin (MENT) against papain-like cysteine proteinases affects chromatin structure and blocks cell proliferation.
  J Biol Chem, 277, 13192-13201.  
12065404 L.Bousset, N.H.Thomson, S.E.Radford, and R.Melki (2002).
The yeast prion Ure2p retains its native alpha-helical conformation upon assembly into protein fibrils in vitro.
  EMBO J, 21, 2903-2911.  
11767949 M.K.Chow, G.L.Devlin, and S.P.Bottomley (2001).
Osmolytes as modulators of conformational changes in serpins.
  Biol Chem, 382, 1593-1599.  
  11141496 M.Yazaki, J.J.Liepnieks, J.R.Murrell, M.Takao, B.Guenther, P.Piccardo, M.R.Farlow, B.Ghetti, and M.D.Benson (2001).
Biochemical characterization of a neuroserpin variant associated with hereditary dementia.
  Am J Pathol, 158, 227-233.  
11278163 S.Janciauskiene (2001).
Conformational properties of serine proteinase inhibitors (serpins) confer multiple pathophysiological roles.
  Biochim Biophys Acta, 1535, 221-235.  
11669536 S.Nawata, Y.Suminami, H.Hirakawa, A.Murakami, K.Umayahara, H.Ogata, F.Numa, K.Nakamura, and H.Kato (2001).
Electrophoretic characterization of heat-stable squamous cell carcinoma antigen.
  Electrophoresis, 22, 3522-3526.  
11714919 S.P.Bottomley, I.D.Lawrenson, D.Tew, W.Dai, J.C.Whisstock, and R.N.Pike (2001).
The role of strand 1 of the C beta-sheet in the structure and function of alpha(1)-antitrypsin.
  Protein Sci, 10, 2518-2524.  
11080640 R.Tranter, J.A.Read, R.Jones, and R.L.Brady (2000).
Effector sites in the three-dimensional structure of mammalian sperm beta-acrosin.
  Structure, 8, 1179-1188.
PDB codes: 1fiw 1fiz
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer