spacer
spacer

PDBsum entry 1q5w

Go to PDB code: 
protein metals Protein-protein interface(s) links
Protein binding PDB id
1q5w

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
31 a.a. *
76 a.a. *
Metals
_ZN
* Residue conservation analysis
PDB id:
1q5w
Name: Protein binding
Title: Ubiquitin recognition by npl4 zinc-fingers
Structure: Homolog of yeast nuclear protein localization 4. Chain: a. Fragment: npl4 nzf domain (residues 580-608). Engineered: yes. Ubiquitin. Chain: b. Engineered: yes
Source: Rattus norvegicus. Norway rat. Organism_taxid: 10116. Gene: npl4. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008. Homo sapiens. Human. Organism_taxid: 9606.
NMR struc: 20 models
Authors: S.L.Alam,J.Sun,M.Payne,B.D.Welch,B.K.Blake,D.R.Davis,H.H.Meyer, S.D.Emr,W.I.Sundquist
Key ref:
S.L.Alam et al. (2004). Ubiquitin interactions of NZF zinc fingers. EMBO J, 23, 1411-1421. PubMed id: 15029239 DOI: 10.1038/sj.emboj.7600114
Date:
11-Aug-03     Release date:   30-Mar-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q9ES54  (NPL4_RAT) -  Nuclear protein localization protein 4 homolog from Rattus norvegicus
Seq:
Struc:
 
Seq:
Struc:
608 a.a.
31 a.a.*
Protein chain
Pfam   ArchSchema ?
P0CG48  (UBC_HUMAN) -  Polyubiquitin-C from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
685 a.a.
76 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: Chains A, B: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1038/sj.emboj.7600114 EMBO J 23:1411-1421 (2004)
PubMed id: 15029239  
 
 
Ubiquitin interactions of NZF zinc fingers.
S.L.Alam, J.Sun, M.Payne, B.D.Welch, B.K.Blake, D.R.Davis, H.H.Meyer, S.D.Emr, W.I.Sundquist.
 
  ABSTRACT  
 
Ubiquitin (Ub) functions in many different biological pathways, where it typically interacts with proteins that contain modular Ub recognition domains. One such recognition domain is the Npl4 zinc finger (NZF), a compact zinc-binding module found in many proteins that function in Ub-dependent processes. We now report the solution structure of the NZF domain from Npl4 in complex with Ub. The structure reveals that three key NZF residues (13TF14/M25) surrounding the zinc coordination site bind the hydrophobic 'Ile44' surface of Ub. Mutations in the 13TF14/M25 motif inhibit Ub binding, and naturally occurring NZF domains that lack the motif do not bind Ub. However, substitution of the 13TF14/M25 motif into the nonbinding NZF domain from RanBP2 creates Ub-binding activity, demonstrating the versatility of the NZF scaffold. Finally, NZF mutations that inhibit Ub binding by the NZF domain of Vps36/ESCRT-II also inhibit sorting of ubiquitylated proteins into the yeast vacuole. Thus, the NZF is a versatile protein recognition domain that is used to bind ubiquitylated proteins during vacuolar protein sorting, and probably many other biological processes.
 
  Selected figure(s)  
 
Figure 3.
Figure 3 Npl4 NZF/Ub interaction surfaces. (A) Stereoview of Npl4 NZF (ribbon) bound to Ub (surface). Ub residue numbers are shown. (B) Stereoview of Ub (ribbon) bound to Npl4 NZF (surface). NZF residue numbers are shown. (C) Expanded stereoview showing the key interface residues (numbered) from Npl4 NZF (blue) and Ub (red).
Figure 4.
Figure 4 Transferability of the NZF [13]TF[14]/M[25] Ub-binding motif. (A) Schematic alignment of the Npl4 and RanBP2 NZF sequences. Dark blue: highly conserved NZF residues (>50%); light blue: moderately conserved NZF residues (>20%); yellow: residues that contact Ub; and green: residues that are both highly conserved and contact Ub. NZF residue conservation was defined as in Wang et al (2003). (B) Ub binding by wt (inset) and mutant RanBP2 (L13T,V14F,A25M) NZF domains. Ub was injected in triplicate at concentrations of 0 -1500 M over GST-RanBP2 NZF proteins captured on anti-GST surfaces. Note that Ub binding by the wt RanBP2 NZF domain (inset) was negligible, even at 1500 M Ub. (C) Binding isotherms for the NZF domains of Npl4 (positive control, black), wt RanBP2 (negative control, purple), RanBP2 (L13T,V14F) (blue), RanBP2 (L13T,V14F,A25M) (green), and RanBP2 (L13T,V14F,A24E,A25M) (red). K[d] values are given in Table II.
 
  The above figures are reprinted from an Open Access publication published by Macmillan Publishers Ltd: EMBO J (2004, 23, 1411-1421) copyright 2004.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22158122 L.Zhang, X.Ding, J.Cui, H.Xu, J.Chen, Y.N.Gong, L.Hu, Y.Zhou, J.Ge, Q.Lu, L.Liu, S.Chen, and F.Shao (2012).
Cysteine methylation disrupts ubiquitin-chain sensing in NF-κB activation.
  Nature, 481, 204-208.  
22820888 Y.Kulathu, and D.Komander (2012).
Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages.
  Nat Rev Mol Cell Biol, 13, 508-523.  
21268159 F.Arnesano, B.D.Belviso, R.Caliandro, G.Falini, S.Fermani, G.Natile, and D.Siliqi (2011).
Crystallographic analysis of metal-ion binding to human ubiquitin.
  Chemistry, 17, 1569-1578.
PDB codes: 3n30 3n32
21358629 J.P.Mackay, J.Font, and D.J.Segal (2011).
The prospects for designer single-stranded RNA-binding proteins.
  Nat Struct Mol Biol, 18, 256-261.  
21292167 K.S.Inn, M.U.Gack, F.Tokunaga, M.Shi, L.Y.Wong, K.Iwai, and J.U.Jung (2011).
Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction.
  Mol Cell, 41, 354-365.  
20089837 D.P.Nickerson, M.West, R.Henry, and G.Odorizzi (2010).
Regulators of Vps4 ATPase activity at endosomes differentially influence the size and rate of formation of intralumenal vesicles.
  Mol Biol Cell, 21, 1023-1032.  
20134403 D.Teis, S.Saksena, B.L.Judson, and S.D.Emr (2010).
ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation.
  EMBO J, 29, 871-883.  
20588296 J.H.Hurley, and P.I.Hanson (2010).
Membrane budding and scission by the ESCRT machinery: it's all in the neck.
  Nat Rev Mol Cell Biol, 11, 556-566.  
20653365 J.H.Hurley (2010).
The ESCRT complexes.
  Crit Rev Biochem Mol Biol, 45, 463-487.  
20516210 J.R.Mullen, C.F.Chen, and S.J.Brill (2010).
Wss1 is a SUMO-dependent isopeptidase that interacts genetically with the Slx5-Slx8 SUMO-targeted ubiquitin ligase.
  Mol Cell Biol, 30, 3737-3748.  
20305637 T.Wollert, and J.H.Hurley (2010).
Molecular mechanism of multivesicular body biogenesis by ESCRT complexes.
  Nature, 464, 864-869.  
19722680 D.M.LeMaster, J.S.Anderson, and G.Hernández (2009).
Peptide conformer acidity analysis of protein flexibility monitored by hydrogen exchange.
  Biochemistry, 48, 9256-9265.  
19304800 F.E.Loughlin, R.E.Mansfield, P.M.Vaz, A.P.McGrath, S.Setiyaputra, R.Gamsjaeger, E.S.Chen, B.J.Morris, J.M.Guss, and J.P.Mackay (2009).
The zinc fingers of the SR-like protein ZRANB2 are single-stranded RNA-binding domains that recognize 5' splice site-like sequences.
  Proc Natl Acad Sci U S A, 106, 5581-5586.
PDB code: 3g9y
19721810 F.Mancini, G.D.Conza, and F.Moretti (2009).
MDM4 (MDMX) and its Transcript Variants.
  Curr Genomics, 10, 42-50.  
19773779 I.Dikic, S.Wakatsuki, and K.J.Walters (2009).
Ubiquitin-binding domains - from structures to functions.
  Nat Rev Mol Cell Biol, 10, 659-671.  
19505478 J.R.Partridge, and T.U.Schwartz (2009).
Crystallographic and biochemical analysis of the Ran-binding zinc finger domain.
  J Mol Biol, 391, 375-389.
PDB codes: 3gj0 3gj3 3gj4 3gj5 3gj6 3gj7 3gj8
19380877 S.B.Shields, A.J.Oestreich, S.Winistorfer, D.Nguyen, J.A.Payne, D.J.Katzmann, and R.Piper (2009).
ESCRT ubiquitin-binding domains function cooperatively during MVB cargo sorting.
  J Cell Biol, 185, 213-224.  
19935683 Y.Kulathu, M.Akutsu, A.Bremm, K.Hofmann, and D.Komander (2009).
Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain.
  Nat Struct Mol Biol, 16, 1328-1330.
PDB codes: 2wwz 2wx0 2wx1
19927120 Y.Sato, A.Yoshikawa, M.Yamashita, A.Yamagata, and S.Fukai (2009).
Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by NZF domains of TAB2 and TAB3.
  EMBO J, 28, 3903-3909.
PDB codes: 3a9j 3a9k
19878869 Y.Zhang, and H.Lu (2009).
Signaling to p53: ribosomal proteins find their way.
  Cancer Cell, 16, 369-377.  
  19052380 F.E.Loughlin, M.Lee, J.M.Guss, and J.P.Mackay (2008).
Crystallization of a ZRANB2-RNA complex.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 1175-1177.  
18281465 H.Tran, F.Hamada, T.Schwarz-Romond, and M.Bienz (2008).
Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains.
  Genes Dev, 22, 528-542.  
18562658 I.González, R.Aparicio, and A.Busturia (2008).
Functional characterization of the dRYBP gene in Drosophila.
  Genetics, 179, 1373-1388.  
18611384 N.Schrader, C.Koerner, K.Koessmeier, J.A.Bangert, A.Wittinghofer, R.Stoll, and I.R.Vetter (2008).
The crystal structure of the Ran-Nup153ZnF2 complex: a general Ran docking site at the nuclear pore complex.
  Structure, 16, 1116-1125.
PDB codes: 2k0c 3ch5
18429951 N.Tanaka, M.Kyuuma, and K.Sugamura (2008).
Endosomal sorting complex required for transport proteins in cancer pathogenesis, vesicular transport, and non-endosomal functions.
  Cancer Sci, 99, 1293-1303.  
18073212 R.Gamsjaeger, M.K.Swanton, F.J.Kobus, E.Lehtomaki, J.A.Lowry, A.H.Kwan, J.M.Matthews, and J.P.Mackay (2008).
Structural and biophysical analysis of the DNA binding properties of myelin transcription factor 1.
  J Biol Chem, 283, 5158-5167.
PDB code: 2jyd
18270205 T.E.Messick, N.S.Russell, A.J.Iwata, K.L.Sarachan, R.Shiekhattar, J.R.Shanks, F.E.Reyes-Turcu, K.D.Wilkinson, and R.Marmorstein (2008).
Structural basis for ubiquitin recognition by the Otu1 ovarian tumor domain protein.
  J Biol Chem, 283, 11038-11049.
PDB codes: 3by4 3c0r
18819927 Y.Amemiya, P.Azmi, and A.Seth (2008).
Autoubiquitination of BCA2 RING E3 ligase regulates its own stability and affects cell migration.
  Mol Cancer Res, 6, 1385-1396.  
18539118 Y.J.Im, and J.H.Hurley (2008).
Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex.
  Dev Cell, 14, 902-913.
PDB codes: 2zme 3cuq
17215868 D.J.Gill, H.Teo, J.Sun, O.Perisic, D.B.Veprintsev, S.D.Emr, and R.L.Williams (2007).
Structural insight into the ESCRT-I/-II link and its role in MVB trafficking.
  EMBO J, 26, 600-612.
PDB codes: 2j9u 2j9v 2j9w
17603537 D.P.Nickerson, M.R.Russell, and G.Odorizzi (2007).
A concentric circle model of multivesicular body cargo sorting.
  EMBO Rep, 8, 644-650.  
17645437 J.Martin-Serrano (2007).
The role of ubiquitin in retroviral egress.
  Traffic, 8, 1297-1303.  
17714434 L.Malerød, S.Stuffers, A.Brech, and H.Stenmark (2007).
Vps22/EAP30 in ESCRT-II mediates endosomal sorting of growth factor and chemokine receptors destined for lysosomal degradation.
  Traffic, 8, 1617-1629.  
17304240 M.G.Bomar, M.T.Pai, S.R.Tzeng, S.S.Li, and P.Zhou (2007).
Structure of the ubiquitin-binding zinc finger domain of human DNA Y-polymerase eta.
  EMBO Rep, 8, 247-251.
PDB code: 2i5o
17426026 M.M.Higa, S.L.Alam, W.I.Sundquist, and K.S.Ullman (2007).
Molecular characterization of the Ran-binding zinc finger domain of Nup153.
  J Biol Chem, 282, 17090-17100.
PDB code: 2gqe
17116689 M.S.Lindström, A.Jin, C.Deisenroth, G.White Wolf, and Y.Zhang (2007).
Cancer-associated mutations in the MDM2 zinc finger domain disrupt ribosomal protein interaction and attenuate MDM2-induced p53 degradation.
  Mol Cell Biol, 27, 1056-1068.  
18056634 M.Zhadina, M.O.McClure, M.C.Johnson, and P.D.Bieniasz (2007).
Ubiquitin-dependent virus particle budding without viral protein ubiquitination.
  Proc Natl Acad Sci U S A, 104, 20031-20036.  
17506697 R.C.Piper, and D.J.Katzmann (2007).
Biogenesis and function of multivesicular bodies.
  Annu Rev Cell Dev Biol, 23, 519-547.  
17450176 R.L.Williams, and S.Urbé (2007).
The emerging shape of the ESCRT machinery.
  Nat Rev Mol Cell Biol, 8, 355-368.  
17202270 V.E.Pye, F.Beuron, C.A.Keetch, C.McKeown, C.V.Robinson, H.H.Meyer, X.Zhang, and P.S.Freemont (2007).
Structural insights into the p97-Ufd1-Npl4 complex.
  Proc Natl Acad Sci U S A, 104, 467-472.  
16314393 A.J.Prunuske, J.Liu, S.Elgort, J.Joseph, M.Dasso, and K.S.Ullman (2006).
Nuclear envelope breakdown is coordinated by both Nup358/RanBP2 and Nup153, two nucleoporins with zinc finger modules.
  Mol Biol Cell, 17, 760-769.  
16810319 C.Boyault, B.Gilquin, Y.Zhang, V.Rybin, E.Garman, W.Meyer-Klaucke, P.Matthias, C.W.Müller, and S.Khochbin (2006).
HDAC6-p97/VCP controlled polyubiquitin chain turnover.
  EMBO J, 25, 3357-3366.  
16973552 C.Langelier, U.K.von Schwedler, R.D.Fisher, I.De Domenico, P.L.White, C.P.Hill, J.Kaplan, D.Ward, and W.I.Sundquist (2006).
Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release.
  J Virol, 80, 9465-9480.  
16564012 F.E.Reyes-Turcu, J.R.Horton, J.E.Mullally, A.Heroux, X.Cheng, and K.D.Wilkinson (2006).
The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin.
  Cell, 124, 1197-1208.
PDB codes: 2g43 2g45
16385008 G.W.Yu, M.D.Allen, A.Andreeva, A.R.Fersht, and M.Bycroft (2006).
Solution structure of the C4 zinc finger domain of HDM2.
  Protein Sci, 15, 384-389.
PDB codes: 2c6a 2c6b
16615893 H.Teo, D.J.Gill, J.Sun, O.Perisic, D.B.Veprintsev, Y.Vallis, S.D.Emr, and R.L.Williams (2006).
ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes.
  Cell, 125, 99.
PDB codes: 2cay 2caz
16689637 J.H.Hurley, and S.D.Emr (2006).
The ESCRT complexes: structure and mechanism of a membrane-trafficking network.
  Annu Rev Biophys Biomol Struct, 35, 277-298.  
16371348 K.Bowers, S.C.Piper, M.A.Edeling, S.R.Gray, D.J.Owen, P.J.Lehner, and J.P.Luzio (2006).
Degradation of endocytosed epidermal growth factor and virally ubiquitinated major histocompatibility complex class I is independent of mammalian ESCRTII.
  J Biol Chem, 281, 5094-5105.  
16499958 L.Penengo, M.Mapelli, A.G.Murachelli, S.Confalonieri, L.Magri, A.Musacchio, P.P.Di Fiore, S.Polo, and T.R.Schneider (2006).
Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin.
  Cell, 124, 1183-1195.
PDB codes: 2c7m 2c7n
16781134 M.R.Russell, D.P.Nickerson, and G.Odorizzi (2006).
Molecular mechanisms of late endosome morphology, identity and sorting.
  Curr Opin Cell Biol, 18, 422-428.  
16615894 M.S.Kostelansky, J.Sun, S.Lee, J.Kim, R.Ghirlando, A.Hierro, S.D.Emr, and J.H.Hurley (2006).
Structural and functional organization of the ESCRT-I trafficking complex.
  Cell, 125, 113-126.
PDB codes: 2f66 2f6m
16462748 S.Hirano, M.Kawasaki, H.Ura, R.Kato, C.Raiborg, H.Stenmark, and S.Wakatsuki (2006).
Double-sided ubiquitin binding of Hrs-UIM in endosomal protein sorting.
  Nat Struct Mol Biol, 13, 272-277.
PDB code: 2d3g
17057714 S.Hirano, N.Suzuki, T.Slagsvold, M.Kawasaki, D.Trambaiolo, R.Kato, H.Stenmark, and S.Wakatsuki (2006).
Structural basis of ubiquitin recognition by mammalian Eap45 GLUE domain.
  Nat Struct Mol Biol, 13, 1031-1032.
PDB code: 2dx5
17057716 S.L.Alam, C.Langelier, F.G.Whitby, S.Koirala, H.Robinson, C.P.Hill, and W.I.Sundquist (2006).
Structural basis for ubiquitin recognition by the human ESCRT-II EAP45 GLUE domain.
  Nat Struct Mol Biol, 13, 1029-1030.
PDB code: 2hth
16462746 S.Lee, Y.C.Tsai, R.Mattera, W.J.Smith, M.S.Kostelansky, A.M.Weissman, J.S.Bonifacino, and J.H.Hurley (2006).
Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5.
  Nat Struct Mol Biol, 13, 264-271.
PDB codes: 2fid 2fif
17145965 T.Chu, J.Sun, S.Saksena, and S.D.Emr (2006).
New component of ESCRT-I regulates endosomal sorting complex assembly.
  J Cell Biol, 175, 815-823.  
16716591 T.Slagsvold, K.Pattni, L.Malerød, and H.Stenmark (2006).
Endosomal and non-endosomal functions of ESCRT proteins.
  Trends Cell Biol, 16, 317-326.  
16488176 V.Winter, and M.T.Hauser (2006).
Exploring the ESCRTing machinery in eukaryotes.
  Trends Plant Sci, 11, 115-123.  
16731964 Y.G.Chang, A.X.Song, Y.G.Gao, Y.H.Shi, X.J.Lin, X.T.Cao, D.H.Lin, and H.Y.Hu (2006).
Solution structure of the ubiquitin-associated domain of human BMSC-UbP and its complex with ubiquitin.
  Protein Sci, 15, 1248-1259.
PDB codes: 2cwb 2den
16122968 A.M.Bonvin, R.Boelens, and R.Kaptein (2005).
NMR analysis of protein interactions.
  Curr Opin Chem Biol, 9, 501-508.  
15837191 A.Ohno, J.Jee, K.Fujiwara, T.Tenno, N.Goda, H.Tochio, H.Kobayashi, H.Hiroaki, and M.Shirakawa (2005).
Structure of the UBA domain of Dsk2p in complex with ubiquitin molecular determinants for ubiquitin recognition.
  Structure, 13, 521-532.
PDB code: 1wr1
15772086 C.Tsui, A.Raguraj, and C.M.Pickart (2005).
Ubiquitin binding site of the ubiquitin E2 variant (UEV) protein Mms2 is required for DNA damage tolerance in the yeast RAD6 pathway.
  J Biol Chem, 280, 19829-19835.  
15694336 D.T.Huang, A.Paydar, M.Zhuang, M.B.Waddell, J.M.Holton, and B.A.Schulman (2005).
Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1.
  Mol Cell, 17, 341-350.
PDB code: 1y8x
15701688 G.Prag, S.Lee, R.Mattera, C.N.Arighi, B.M.Beach, J.S.Bonifacino, and J.H.Hurley (2005).
Structural mechanism for ubiquitinated-cargo recognition by the Golgi-localized, gamma-ear-containing, ADP-ribosylation-factor-binding proteins.
  Proc Natl Acad Sci U S A, 102, 2334-2339.
PDB code: 1yd8
15935782 J.Kim, S.Sitaraman, A.Hierro, B.M.Beach, G.Odorizzi, and J.H.Hurley (2005).
Structural basis for endosomal targeting by the Bro1 domain.
  Dev Cell, 8, 937-947.
PDB code: 1zb1
15623582 J.Martin-Serrano, S.W.Eastman, W.Chung, and P.D.Bieniasz (2005).
HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway.
  J Cell Biol, 168, 89.  
16204249 J.Song, Z.Zhang, W.Hu, and Y.Chen (2005).
Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation.
  J Biol Chem, 280, 40122-40129.
PDB code: 2asq
16064137 L.Hicke, H.L.Schubert, and C.P.Hill (2005).
Ubiquitin-binding domains.
  Nat Rev Mol Cell Biol, 6, 610-621.  
15569240 M.Babst (2005).
A protein's final ESCRT.
  Traffic, 6, 2-9.  
16137616 M.Gao, and M.Karin (2005).
Regulating the regulators: control of protein ubiquitination and ubiquitin-like modifications by extracellular stimuli.
  Mol Cell, 19, 581-593.  
15966896 M.Kawasaki, T.Shiba, Y.Shiba, Y.Yamaguchi, N.Matsugaki, N.Igarashi, M.Suzuki, R.Kato, K.Kato, K.Nakayama, and S.Wakatsuki (2005).
Molecular mechanism of ubiquitin recognition by GGA3 GAT domain.
  Genes Cells, 10, 639-654.
PDB code: 1wr6
16252250 R.L.Rich, and D.G.Myszka (2005).
Survey of the year 2004 commercial optical biosensor literature.
  J Mol Recognit, 18, 431-478.  
15870296 S.Chupreta, S.Holmstrom, L.Subramanian, and J.A.Iñiguez-Lluhí (2005).
A small conserved surface in SUMO is the critical structural determinant of its transcriptional inhibitory properties.
  Mol Cell Biol, 25, 4272-4282.  
16056265 S.Elsasser, and D.Finley (2005).
Delivery of ubiquitinated substrates to protein-unfolding machines.
  Nat Cell Biol, 7, 742-749.  
15755741 T.Slagsvold, R.Aasland, S.Hirano, K.G.Bache, C.Raiborg, D.Trambaiolo, S.Wakatsuki, and H.Stenmark (2005).
Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain.
  J Biol Chem, 280, 19600-19606.  
15590654 Y.Hirano, S.Yoshinaga, R.Takeya, N.N.Suzuki, M.Horiuchi, M.Kohjima, H.Sumimoto, and F.Inagaki (2005).
Structure of a cell polarity regulator, a complex between atypical PKC and Par6 PB1 domains.
  J Biol Chem, 280, 9653-9661.
PDB code: 1wmh
15329733 A.Hierro, J.Sun, A.S.Rusnak, J.Kim, G.Prag, S.D.Emr, and J.H.Hurley (2004).
Structure of the ESCRT-II endosomal trafficking complex.
  Nature, 431, 221-225.
PDB code: 1u5t
15579210 A.K.Wernimont, and W.Weissenhorn (2004).
Crystal structure of subunit VPS25 of the endosomal trafficking complex ESCRT-II.
  BMC Struct Biol, 4, 10.
PDB code: 1xb4
15556404 C.M.Pickart, and D.Fushman (2004).
Polyubiquitin chains: polymeric protein signals.
  Curr Opin Chem Biol, 8, 610-616.  
15473846 E.Morita, and W.I.Sundquist (2004).
Retrovirus budding.
  Annu Rev Cell Dev Biol, 20, 395-425.  
15194809 E.Stang, F.D.Blystad, M.Kazazic, V.Bertelsen, T.Brodahl, C.Raiborg, H.Stenmark, and I.H.Madshus (2004).
Cbl-dependent ubiquitination is required for progression of EGF receptors into clathrin-coated pits.
  Mol Biol Cell, 15, 3591-3604.  
15258613 M.H.Nanao, S.O.Tcherniuk, J.Chroboczek, O.Dideberg, A.Dessen, and M.Y.Balakirev (2004).
Crystal structure of human otubain 2.
  EMBO Rep, 5, 783-788.
PDB code: 1tff
15494413 P.S.Bilodeau, S.C.Winistorfer, M.M.Allaman, K.Surendhran, W.R.Kearney, A.D.Robertson, and R.C.Piper (2004).
The GAT domains of clathrin-associated GGA proteins have two ubiquitin binding motifs.
  J Biol Chem, 279, 54808-54816.  
15371428 R.M.Bruderer, C.Brasseur, and H.H.Meyer (2004).
The AAA ATPase p97/VCP interacts with its alternative co-factors, Ufd1-Npl4 and p47, through a common bipartite binding mechanism.
  J Biol Chem, 279, 49609-49616.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer