 |
PDBsum entry 1q1e
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Transport protein
|
PDB id
|
|
|
|
1q1e
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.7.5.2.1
- ABC-type maltose transporter.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
D-maltose(out) + ATP + H2O = D-maltose(in) + ADP + phosphate + H+
|
 |
 |
 |
 |
 |
D-maltose(out)
|
+
|
ATP
|
+
|
H2O
|
=
|
D-maltose(in)
|
+
|
ADP
|
+
|
phosphate
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Mol Cell
12:651-661
(2003)
|
|
PubMed id:
|
|
|
|
|
| |
|
A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle.
|
|
J.Chen,
G.Lu,
J.Lin,
A.L.Davidson,
F.A.Quiocho.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The ATPase components of ATP binding cassette (ABC) transporters power the
transporters by binding and hydrolyzing ATP. Major conformational changes of an
ATPase are revealed by crystal structures of MalK, the ATPase subunit of the
maltose transporter from Escherichia coli, in three different dimeric
configurations. While other nucleotide binding domains or subunits display low
affinity for each other in the absence of the transmembrane segments, the MalK
dimer is stabilized through interactions of the additional C-terminal domains.
In the two nucleotide-free structures, the N-terminal nucleotide binding domains
are separated to differing degrees, and the dimer is maintained through contacts
of the C-terminal regulatory domains. In the ATP-bound form, the nucleotide
binding domains make contact and two ATPs lie buried along the dimer interface.
The two nucleotide binding domains of the dimer open and close like a pair of
tweezers, suggesting a regulatory mechanism for ATPase activity that may be
tightly coupled to translocation.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 4.
Figure 4. Closed, Semi-Open, and Open Structures of MalK
Homodimer with Superimposed RDsThe distances between two H89
residues in a homodimer are indicated.(A) Superimposed closed
form with bound ATP (yellow) and semi-open form without bound
ATP (blue). The excellent overlap of the RDs is evident by the
green color resulting from the combination of yellow and blue
colors.(B) Overlay of the semi-open (blue) and the open (red)
nucleotide-free structures.
|
 |
Figure 5.
Figure 5. A Model of the Interaction between the EAA Loops
of MalF and MalG Transmembrane Proteins and the Q Loop of
MalK(A) Model of the docking of the L loop of BtuC to the Q loop
of MalK. To obtain this model, the NBD of MalK from the
ATP-bound structure was aligned with the NBD of BtuCD. Color
codes: cyan, the BtuC L loop; blue, the Q loop of MalK; red and
purple, the Walker A motif of one subunit and the LSGGQ motif of
the other subunit, respectively. ATP is shown in
ball-and-stick.(B) Predicted helix-loop-helix motif of the EAA
loops of MalF and MalG. The L loop in the crystal structure of
BtuCD, which displays a helix-loop-helix configuration (Locher
et al., 2002), is the equivalent of the EAA loops.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Mol Cell
(2003,
12,
651-661)
copyright 2003.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
D.Pakotiprapha,
M.Samuels,
K.Shen,
J.H.Hu,
and
D.Jeruzalmi
(2012).
Structure and mechanism of the UvrA-UvrB DNA damage sensor.
|
| |
Nat Struct Mol Biol,
19,
291-298.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Hohl,
C.Briand,
M.G.Grütter,
and
M.A.Seeger
(2012).
Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation.
|
| |
Nat Struct Mol Biol,
19,
395-402.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Barthelme,
S.Dinkelaker,
S.V.Albers,
P.Londei,
U.Ermler,
and
R.Tampé
(2011).
Ribosome recycling depends on a mechanistic link between the FeS cluster domain and a conformational switch of the twin-ATPase ABCE1.
|
| |
Proc Natl Acad Sci U S A,
108,
3228-3233.
|
 |
|
|
|
|
 |
D.Klaiman,
and
G.Kaufmann
(2011).
Phage T4-induced dTTP accretion bolsters a tRNase-based host defense.
|
| |
Virology,
414,
97.
|
 |
|
|
|
|
 |
R.P.Gupta,
P.Kueppers,
L.Schmitt,
and
R.Ernst
(2011).
The multidrug transporter Pdr5: a molecular diode?
|
| |
Biol Chem,
392,
53-60.
|
 |
|
|
|
|
 |
R.Yang,
Y.X.Hou,
C.A.Campbell,
K.Palaniyandi,
Q.Zhao,
A.J.Bordner,
and
X.B.Chang
(2011).
Glutamine residues in Q-loops of multidrug resistance protein MRP1 contribute to ATP binding via interaction with metal cofactor.
|
| |
Biochim Biophys Acta,
1808,
1790-1796.
|
 |
|
|
|
|
 |
T.Eitinger,
D.A.Rodionov,
M.Grote,
and
E.Schneider
(2011).
Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions.
|
| |
FEMS Microbiol Rev,
35,
3.
|
 |
|
|
|
|
 |
A.Szollosi,
P.Vergani,
and
L.Csanády
(2010).
Involvement of F1296 and N1303 of CFTR in induced-fit conformational change in response to ATP binding at NBD2.
|
| |
J Gen Physiol,
136,
407-423.
|
 |
|
|
|
|
 |
C.Orelle,
F.J.Alvarez,
M.L.Oldham,
A.Orelle,
T.E.Wiley,
J.Chen,
and
A.L.Davidson
(2010).
Dynamics of alpha-helical subdomain rotation in the intact maltose ATP-binding cassette transporter.
|
| |
Proc Natl Acad Sci U S A,
107,
20293-20298.
|
 |
|
|
|
|
 |
E.Bordignon,
M.Grote,
and
E.Schneider
(2010).
The maltose ATP-binding cassette transporter in the 21st century--towards a structural dynamic perspective on its mode of action.
|
| |
Mol Microbiol,
77,
1354-1366.
|
 |
|
|
|
|
 |
H.Shimizu,
Y.C.Yu,
K.Kono,
T.Kubota,
M.Yasui,
M.Li,
T.C.Hwang,
and
Y.Sohma
(2010).
A stable ATP binding to the nucleotide binding domain is important for reliable gating cycle in an ABC transporter CFTR.
|
| |
J Physiol Sci,
60,
353-362.
|
 |
|
|
|
|
 |
I.D.Kerr,
P.M.Jones,
and
A.M.George
(2010).
Multidrug efflux pumps: the structures of prokaryotic ATP-binding cassette transporter efflux pumps and implications for our understanding of eukaryotic P-glycoproteins and homologues.
|
| |
FEBS J,
277,
550-563.
|
 |
|
|
|
|
 |
J.Aittoniemi,
H.de Wet,
F.M.Ashcroft,
and
M.S.Sansom
(2010).
Asymmetric switching in a homodimeric ABC transporter: a simulation study.
|
| |
PLoS Comput Biol,
6,
e1000762.
|
 |
|
|
|
|
 |
J.W.Weng,
K.N.Fan,
and
W.N.Wang
(2010).
The conformational transition pathway of ATP binding cassette transporter MsbA revealed by atomistic simulations.
|
| |
J Biol Chem,
285,
3053-3063.
|
 |
|
|
|
|
 |
K.Okuda,
S.Yanagihara,
T.Sugayama,
T.Zendo,
J.Nakayama,
and
K.Sonomoto
(2010).
Functional significance of the E loop, a novel motif conserved in the lantibiotic immunity ATP-binding cassette transport systems.
|
| |
J Bacteriol,
192,
2801-2808.
|
 |
|
|
|
|
 |
M.F.Tsai,
M.Li,
and
T.C.Hwang
(2010).
Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel.
|
| |
J Gen Physiol,
135,
399-414.
|
 |
|
|
|
|
 |
M.Haffke,
A.Menzel,
Y.Carius,
D.Jahn,
and
D.W.Heinz
(2010).
Structures of the nucleotide-binding domain of the human ABCB6 transporter and its complexes with nucleotides.
|
| |
Acta Crystallogr D Biol Crystallogr,
66,
979-987.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
O.Doppelt-Azeroual,
F.Delfaud,
F.Moriaud,
and
A.G.de Brevern
(2010).
Fast and automated functional classification with MED-SuMo: an application on purine-binding proteins.
|
| |
Protein Sci,
19,
847-867.
|
 |
|
|
|
|
 |
O.Polgar,
C.Ierano,
A.Tamaki,
B.Stanley,
Y.Ward,
D.Xia,
N.Tarasova,
R.W.Robey,
and
S.E.Bates
(2010).
Mutational analysis of threonine 402 adjacent to the GXXXG dimerization motif in transmembrane segment 1 of ABCG2.
|
| |
Biochemistry,
49,
2235-2245.
|
 |
|
|
|
|
 |
S.Atwell,
C.G.Brouillette,
K.Conners,
S.Emtage,
T.Gheyi,
W.B.Guggino,
J.Hendle,
J.F.Hunt,
H.A.Lewis,
F.Lu,
I.I.Protasevich,
L.A.Rodgers,
R.Romero,
S.R.Wasserman,
P.C.Weber,
D.Wetmore,
F.F.Zhang,
and
X.Zhao
(2010).
Structures of a minimal human CFTR first nucleotide-binding domain as a monomer, head-to-tail homodimer, and pathogenic mutant.
|
| |
Protein Eng Des Sel,
23,
375-384.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
V.Eckey,
D.Weidlich,
H.Landmesser,
U.Bergmann,
and
E.Schneider
(2010).
The second extracellular loop of pore-forming subunits of ATP-binding cassette transporters for basic amino acids plays a crucial role in interaction with the cognate solute binding protein(s).
|
| |
J Bacteriol,
192,
2150-2159.
|
 |
|
|
|
|
 |
Z.Ni,
Z.Bikadi,
M.F.Rosenberg,
and
Q.Mao
(2010).
Structure and function of the human breast cancer resistance protein (BCRP/ABCG2).
|
| |
Curr Drug Metab,
11,
603-617.
|
 |
|
|
|
|
 |
A.D.Gould,
P.G.Telmer,
and
B.H.Shilton
(2009).
Stimulation of the maltose transporter ATPase by unliganded maltose binding protein.
|
| |
Biochemistry,
48,
8051-8061.
|
 |
|
|
|
|
 |
A.M.Brandt,
W.Raksajit,
P.Mulo,
A.Incharoensakdi,
T.A.Salminen,
and
P.Mäenpää
(2009).
Transcriptional regulation and structural modeling of the FutC subunit of an ABC-type iron transporter in Synechocystis sp. strain PCC 6803.
|
| |
Arch Microbiol,
191,
561-570.
|
 |
|
|
|
|
 |
C.A.McDevitt,
R.Collins,
I.D.Kerr,
and
R.Callaghan
(2009).
Purification and structural analyses of ABCG2.
|
| |
Adv Drug Deliv Rev,
61,
57-65.
|
 |
|
|
|
|
 |
C.Schölz,
and
R.Tampé
(2009).
The peptide-loading complex--antigen translocation and MHC class I loading.
|
| |
Biol Chem,
390,
783-794.
|
 |
|
|
|
|
 |
D.C.Rees,
E.Johnson,
and
O.Lewinson
(2009).
ABC transporters: the power to change.
|
| |
Nat Rev Mol Cell Biol,
10,
218-227.
|
 |
|
|
|
|
 |
D.Khare,
M.L.Oldham,
C.Orelle,
A.L.Davidson,
and
J.Chen
(2009).
Alternating access in maltose transporter mediated by rigid-body rotations.
|
| |
Mol Cell,
33,
528-536.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Muallem,
and
P.Vergani
(2009).
Review. ATP hydrolysis-driven gating in cystic fibrosis transmembrane conductance regulator.
|
| |
Philos Trans R Soc Lond B Biol Sci,
364,
247-255.
|
 |
|
|
|
|
 |
G.M.Seibold,
M.Wurst,
and
B.J.Eikmanns
(2009).
Roles of maltodextrin and glycogen phosphorylases in maltose utilization and glycogen metabolism in Corynebacterium glutamicum.
|
| |
Microbiology,
155,
347-358.
|
 |
|
|
|
|
 |
G.Oancea,
M.L.O'Mara,
W.F.Bennett,
D.P.Tieleman,
R.Abele,
and
R.Tampé
(2009).
Structural arrangement of the transmission interface in the antigen ABC transport complex TAP.
|
| |
Proc Natl Acad Sci U S A,
106,
5551-5556.
|
 |
|
|
|
|
 |
H.T.Lin,
V.N.Bavro,
N.P.Barrera,
H.M.Frankish,
S.Velamakanni,
H.W.van Veen,
C.V.Robinson,
M.I.Borges-Walmsley,
and
A.R.Walmsley
(2009).
MacB ABC Transporter Is a Dimer Whose ATPase Activity and Macrolide-binding Capacity Are Regulated by the Membrane Fusion Protein MacA.
|
| |
J Biol Chem,
284,
1145-1154.
|
 |
|
|
|
|
 |
J.P.Mornon,
P.Lehn,
and
I.Callebaut
(2009).
Molecular models of the open and closed states of the whole human CFTR protein.
|
| |
Cell Mol Life Sci,
66,
3469-3486.
|
 |
|
|
|
|
 |
J.Weng,
J.Ma,
K.Fan,
and
W.Wang
(2009).
Asymmetric conformational flexibility in the ATP-binding cassette transporter HI1470/1.
|
| |
Biophys J,
96,
1918-1930.
|
 |
|
|
|
|
 |
K.P.Locher
(2009).
Review. Structure and mechanism of ATP-binding cassette transporters.
|
| |
Philos Trans R Soc Lond B Biol Sci,
364,
239-245.
|
 |
|
|
|
|
 |
M.F.Tsai,
H.Shimizu,
Y.Sohma,
M.Li,
and
T.C.Hwang
(2009).
State-dependent modulation of CFTR gating by pyrophosphate.
|
| |
J Gen Physiol,
133,
405-419.
|
 |
|
|
|
|
 |
M.L.Daus,
M.Grote,
and
E.Schneider
(2009).
The MalF P2 loop of the ATP-binding cassette transporter MalFGK2 from Escherichia coli and Salmonella enterica serovar typhimurium interacts with maltose binding protein (MalE) throughout the catalytic cycle.
|
| |
J Bacteriol,
191,
754-761.
|
 |
|
|
|
|
 |
N.Matsumoto,
M.Yamada,
Y.Kurakata,
H.Yoshida,
S.Kamitori,
A.Nishikawa,
and
T.Tonozuka
(2009).
Crystal structures of open and closed forms of cyclo/maltodextrin-binding protein.
|
| |
FEBS J,
276,
3008-3019.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.M.Jones,
and
A.M.George
(2009).
Opening of the ADP-bound active site in the ABC transporter ATPase dimer: evidence for a constant contact, alternating sites model for the catalytic cycle.
|
| |
Proteins,
75,
387-396.
|
 |
|
|
|
|
 |
P.M.Jones,
M.L.O'Mara,
and
A.M.George
(2009).
ABC transporters: a riddle wrapped in a mystery inside an enigma.
|
| |
Trends Biochem Sci,
34,
520-531.
|
 |
|
|
|
|
 |
S.Lukman,
and
G.H.Grant
(2009).
A network of dynamically conserved residues deciphers the motions of maltose transporter.
|
| |
Proteins,
76,
588-597.
|
 |
|
|
|
|
 |
S.Newstead,
P.W.Fowler,
P.Bilton,
E.P.Carpenter,
P.J.Sadler,
D.J.Campopiano,
M.S.Sansom,
and
S.Iwata
(2009).
Insights into how nucleotide-binding domains power ABC transport.
|
| |
Structure,
17,
1213-1222.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Y.Huang,
D.Bolser,
H.Y.Liu,
T.C.Hwang,
and
X.Zou
(2009).
Molecular modeling of the heterodimer of human CFTR's nucleotide-binding domains using a protein-protein docking approach.
|
| |
J Mol Graph Model,
27,
822-828.
|
 |
|
|
|
|
 |
T.P.Roosild,
S.Castronovo,
S.Miller,
C.Li,
T.Rasmussen,
W.Bartlett,
B.Gunasekera,
S.Choe,
and
I.R.Booth
(2009).
KTN (RCK) domains regulate K+ channels and transporters by controlling the dimer-hinge conformation.
|
| |
Structure,
17,
893-903.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
U.A.Hellmich,
and
C.Glaubitz
(2009).
NMR and EPR studies of membrane transporters.
|
| |
Biol Chem,
390,
815-834.
|
 |
|
|
|
|
 |
V.Kos,
and
R.C.Ford
(2009).
The ATP-binding cassette family: a structural perspective.
|
| |
Cell Mol Life Sci,
66,
3111-3126.
|
 |
|
|
|
|
 |
X.Wang,
S.G.Bompadre,
M.Li,
and
T.C.Hwang
(2009).
Mutations at the signature sequence of CFTR create a Cd(2+)-gated chloride channel.
|
| |
J Gen Physiol,
133,
69-77.
|
 |
|
|
|
|
 |
Y.X.Hou,
C.Z.Li,
K.Palaniyandi,
P.M.Magtibay,
L.Homolya,
B.Sarkadi,
and
X.B.Chang
(2009).
Effects of putative catalytic base mutation E211Q on ABCG2-mediated methotrexate transport.
|
| |
Biochemistry,
48,
9122-9131.
|
 |
|
|
|
|
 |
A.Karcher,
A.Schele,
and
K.P.Hopfner
(2008).
X-ray structure of the complete ABC enzyme ABCE1 from Pyrococcus abyssi.
|
| |
J Biol Chem,
283,
7962-7971.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.L.Davidson,
E.Dassa,
C.Orelle,
and
J.Chen
(2008).
Structure, function, and evolution of bacterial ATP-binding cassette systems.
|
| |
Microbiol Mol Biol Rev,
72,
317.
|
 |
|
|
|
|
 |
C.Orelle,
T.Ayvaz,
R.M.Everly,
C.S.Klug,
and
A.L.Davidson
(2008).
Both maltose-binding protein and ATP are required for nucleotide-binding domain closure in the intact maltose ABC transporter.
|
| |
Proc Natl Acad Sci U S A,
105,
12837-12842.
|
 |
|
|
|
|
 |
D.Pakotiprapha,
Y.Inuzuka,
B.R.Bowman,
G.F.Moolenaar,
N.Goosen,
D.Jeruzalmi,
and
G.L.Verdine
(2008).
Crystal structure of Bacillus stearothermophilus UvrA provides insight into ATP-modulated dimerization, UvrB interaction, and DNA binding.
|
| |
Mol Cell,
29,
122-133.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Schillers
(2008).
Imaging CFTR in its native environment.
|
| |
Pflugers Arch,
456,
163-177.
|
 |
|
|
|
|
 |
J.R.Riordan
(2008).
CFTR function and prospects for therapy.
|
| |
Annu Rev Biochem,
77,
701-726.
|
 |
|
|
|
|
 |
J.Weng,
J.Ma,
K.Fan,
and
W.Wang
(2008).
The conformational coupling and translocation mechanism of vitamin B12 ATP-binding cassette transporter BtuCD.
|
| |
Biophys J,
94,
612-621.
|
 |
|
|
|
|
 |
J.Y.Lee,
I.L.Urbatsch,
A.E.Senior,
and
S.Wilkens
(2008).
Nucleotide-induced structural changes in P-glycoprotein observed by electron microscopy.
|
| |
J Biol Chem,
283,
5769-5779.
|
 |
|
|
|
|
 |
M.Grote,
E.Bordignon,
Y.Polyhach,
G.Jeschke,
H.J.Steinhoff,
and
E.Schneider
(2008).
A comparative electron paramagnetic resonance study of the nucleotide-binding domains' catalytic cycle in the assembled maltose ATP-binding cassette importer.
|
| |
Biophys J,
95,
2924-2938.
|
 |
|
|
|
|
 |
M.K.Doeven,
G.van den Bogaart,
V.Krasnikov,
and
B.Poolman
(2008).
Probing receptor-translocator interactions in the oligopeptide ABC transporter by fluorescence correlation spectroscopy.
|
| |
Biophys J,
94,
3956-3965.
|
 |
|
|
|
|
 |
M.L.Oldham,
A.L.Davidson,
and
J.Chen
(2008).
Structural insights into ABC transporter mechanism.
|
| |
Curr Opin Struct Biol,
18,
726-733.
|
 |
|
|
|
|
 |
N.S.Kadaba,
J.T.Kaiser,
E.Johnson,
A.Lee,
and
D.C.Rees
(2008).
The high-affinity E. coli methionine ABC transporter: structure and allosteric regulation.
|
| |
Science,
321,
250-253.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.C.Wen,
and
E.Tajkhorshid
(2008).
Dimer opening of the nucleotide binding domains of ABC transporters after ATP hydrolysis.
|
| |
Biophys J,
95,
5100-5110.
|
 |
|
|
|
|
 |
R.Yang,
R.Scavetta,
and
X.B.Chang
(2008).
The hydroxyl group of S685 in Walker A motif and the carboxyl group of D792 in Walker B motif of NBD1 play a crucial role for multidrug resistance protein folding and function.
|
| |
Biochim Biophys Acta,
1778,
454-465.
|
 |
|
|
|
|
 |
S.Gerber,
M.Comellas-Bigler,
B.A.Goetz,
and
K.P.Locher
(2008).
Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter.
|
| |
Science,
321,
246-250.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Pagant,
E.Y.Brovman,
J.J.Halliday,
and
E.A.Miller
(2008).
Mapping of interdomain interfaces required for the functional architecture of Yor1p, a eukaryotic ATP-binding cassette (ABC) transporter.
|
| |
J Biol Chem,
283,
26444-26451.
|
 |
|
|
|
|
 |
S.Park,
B.B.Lim,
C.Perez-Terzic,
G.Mer,
and
A.Terzic
(2008).
Interaction of asymmetric ABCC9-encoded nucleotide binding domains determines KATP channel SUR2A catalytic activity.
|
| |
J Proteome Res,
7,
1721-1728.
|
 |
|
|
|
|
 |
A.Ward,
C.L.Reyes,
J.Yu,
C.B.Roth,
and
G.Chang
(2007).
Flexibility in the ABC transporter MsbA: Alternating access with a twist.
|
| |
Proc Natl Acad Sci U S A,
104,
19005-19010.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Wilks,
and
K.A.Burkhard
(2007).
Heme and virulence: how bacterial pathogens regulate, transport and utilize heme.
|
| |
Nat Prod Rep,
24,
511-522.
|
 |
|
|
|
|
 |
D.Klaiman,
M.Amitsur,
S.Blanga-Kanfi,
M.Chai,
D.R.Davis,
and
G.Kaufmann
(2007).
Parallel dimerization of a PrrC-anticodon nuclease region implicated in tRNALys recognition.
|
| |
Nucleic Acids Res,
35,
4704-4714.
|
 |
|
|
|
|
 |
H.W.Pinkett,
A.T.Lee,
P.Lum,
K.P.Locher,
and
D.C.Rees
(2007).
An inward-facing conformation of a putative metal-chelate-type ABC transporter.
|
| |
Science,
315,
373-377.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Mc Intyre,
E.G.Muller,
S.Weitzer,
B.E.Snydsman,
T.N.Davis,
and
F.Uhlmann
(2007).
In vivo analysis of cohesin architecture using FRET in the budding yeast Saccharomyces cerevisiae.
|
| |
EMBO J,
26,
3783-3793.
|
 |
|
|
|
|
 |
J.Sonne,
C.Kandt,
G.H.Peters,
F.Y.Hansen,
M.Ã.˜.Jensen,
and
D.P.Tieleman
(2007).
Simulation of the coupling between nucleotide binding and transmembrane domains in the ATP binding cassette transporter BtuCD.
|
| |
Biophys J,
92,
2727-2734.
|
 |
|
|
|
|
 |
K.Hollenstein,
D.C.Frei,
and
K.P.Locher
(2007).
Structure of an ABC transporter in complex with its binding protein.
|
| |
Nature,
446,
213-216.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.J.Linton,
and
C.F.Higgins
(2007).
Structure and function of ABC transporters: the ATP switch provides flexible control.
|
| |
Pflugers Arch,
453,
555-567.
|
 |
|
|
|
|
 |
L.Cuthbertson,
M.S.Kimber,
and
C.Whitfield
(2007).
Substrate binding by a bacterial ABC transporter involved in polysaccharide export.
|
| |
Proc Natl Acad Sci U S A,
104,
19529-19534.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Herget,
and
R.Tampé
(2007).
Intracellular peptide transporters in human--compartmentalization of the "peptidome".
|
| |
Pflugers Arch,
453,
591-600.
|
 |
|
|
|
|
 |
M.L.Daus,
M.Grote,
P.Müller,
M.Doebber,
A.Herrmann,
H.J.Steinhoff,
E.Dassa,
and
E.Schneider
(2007).
ATP-driven MalK dimer closure and reopening and conformational changes of the "EAA" motifs are crucial for function of the maltose ATP-binding cassette transporter (MalFGK2).
|
| |
J Biol Chem,
282,
22387-22396.
|
 |
|
|
|
|
 |
M.L.Daus,
S.Berendt,
S.Wuttge,
and
E.Schneider
(2007).
Maltose binding protein (MalE) interacts with periplasmic loops P2 and P1 respectively of the MalFG subunits of the maltose ATP binding cassette transporter (MalFGK(2)) from Escherichia coli/Salmonella during the transport cycle.
|
| |
Mol Microbiol,
66,
1107-1122.
|
 |
|
|
|
|
 |
M.L.Oldham,
D.Khare,
F.A.Quiocho,
A.L.Davidson,
and
J.Chen
(2007).
Crystal structure of a catalytic intermediate of the maltose transporter.
|
| |
Nature,
450,
515-521.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.M.Jones,
and
A.M.George
(2007).
Nucleotide-dependent allostery within the ABC transporter ATP-binding cassette: a computational study of the MJ0796 dimer.
|
| |
J Biol Chem,
282,
22793-22803.
|
 |
|
|
|
|
 |
P.P.Borbat,
K.Surendhran,
M.Bortolus,
P.Zou,
J.H.Freed,
and
H.S.Mchaourab
(2007).
Conformational motion of the ABC transporter MsbA induced by ATP hydrolysis.
|
| |
PLoS Biol,
5,
e271.
|
 |
|
|
|
|
 |
R.J.Dawson,
K.Hollenstein,
and
K.P.Locher
(2007).
Uptake or extrusion: crystal structures of full ABC transporters suggest a common mechanism.
|
| |
Mol Microbiol,
65,
250-257.
|
 |
|
|
|
|
 |
R.N.Hvorup,
B.A.Goetz,
M.Niederer,
K.Hollenstein,
E.Perozo,
and
K.P.Locher
(2007).
Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD-BtuF.
|
| |
Science,
317,
1387-1390.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Yang,
and
X.B.Chang
(2007).
Hydrogen-bond formation of the residue in H-loop of the nucleotide binding domain 2 with the ATP in this site and/or other residues of multidrug resistance protein MRP1 plays a crucial role during ATP-dependent solute transport.
|
| |
Biochim Biophys Acta,
1768,
324-335.
|
 |
|
|
|
|
 |
S.J.Lee,
A.Böhm,
M.Krug,
and
W.Boos
(2007).
The ABC of binding-protein-dependent transport in Archaea.
|
| |
Trends Microbiol,
15,
389-397.
|
 |
|
|
|
|
 |
W.Wang,
K.Bernard,
G.Li,
and
K.L.Kirk
(2007).
Curcumin opens cystic fibrosis transmembrane conductance regulator channels by a novel mechanism that requires neither ATP binding nor dimerization of the nucleotide-binding domains.
|
| |
J Biol Chem,
282,
4533-4544.
|
 |
|
|
|
|
 |
X.B.Chang
(2007).
A molecular understanding of ATP-dependent solute transport by multidrug resistance-associated protein MRP1.
|
| |
Cancer Metastasis Rev,
26,
15-37.
|
 |
|
|
|
|
 |
Z.E.Sauna,
I.W.Kim,
and
S.V.Ambudkar
(2007).
Genomics and the mechanism of P-glycoprotein (ABCB1).
|
| |
J Bioenerg Biomembr,
39,
481-487.
|
 |
|
|
|
|
 |
A.H.Buchaklian,
and
C.S.Klug
(2006).
Characterization of the LSGGQ and H motifs from the Escherichia coli lipid A transporter MsbA.
|
| |
Biochemistry,
45,
12539-12546.
|
 |
|
|
|
|
 |
C.L.Perria,
V.Rajamanickam,
P.E.Lapinski,
and
M.Raghavan
(2006).
Catalytic site modifications of TAP1 and TAP2 and their functional consequences.
|
| |
J Biol Chem,
281,
39839-39851.
|
 |
|
|
|
|
 |
C.Oswald,
I.B.Holland,
and
L.Schmitt
(2006).
The motor domains of ABC-transporters. What can structures tell us?
|
| |
Naunyn Schmiedebergs Arch Pharmacol,
372,
385-399.
|
 |
|
|
|
|
 |
C.van der Does,
C.Presenti,
K.Schulze,
S.Dinkelaker,
and
R.Tampé
(2006).
Kinetics of the ATP hydrolysis cycle of the nucleotide-binding domain of Mdl1 studied by a novel site-specific labeling technique.
|
| |
J Biol Chem,
281,
5694-5701.
|
 |
|
|
|
|
 |
D.C.Gadsby,
P.Vergani,
and
L.Csanády
(2006).
The ABC protein turned chloride channel whose failure causes cystic fibrosis.
|
| |
Nature,
440,
477-483.
|
 |
|
|
|
|
 |
D.L.Croteau,
M.J.DellaVecchia,
H.Wang,
R.J.Bienstock,
M.A.Melton,
and
B.Van Houten
(2006).
The C-terminal zinc finger of UvrA does not bind DNA directly but regulates damage-specific DNA binding.
|
| |
J Biol Chem,
281,
26370-26381.
|
 |
|
|
|
|
 |
D.Murat,
P.Bance,
I.Callebaut,
and
E.Dassa
(2006).
ATP hydrolysis is essential for the function of the Uup ATP-binding cassette ATPase in precise excision of transposons.
|
| |
J Biol Chem,
281,
6850-6859.
|
 |
|
|
|
|
 |
D.P.Tieleman
(2006).
Computer simulations of transport through membranes: passive diffusion, pores, channels and transporters.
|
| |
Clin Exp Pharmacol Physiol,
33,
893-903.
|
 |
|
|
|
|
 |
D.W.Zhang,
G.A.Graf,
R.D.Gerard,
J.C.Cohen,
and
H.H.Hobbs
(2006).
Functional asymmetry of nucleotide-binding domains in ABCG5 and ABCG8.
|
| |
J Biol Chem,
281,
4507-4516.
|
 |
|
|
|
|
 |
E.Biemans-Oldehinkel,
N.A.Mahmood,
and
B.Poolman
(2006).
A sensor for intracellular ionic strength.
|
| |
Proc Natl Acad Sci U S A,
103,
10624-10629.
|
 |
|
|
|
|
 |
E.O.Oloo,
C.Kandt,
M.L.O'Mara,
and
D.P.Tieleman
(2006).
Computer simulations of ABC transporter components.
|
| |
Biochem Cell Biol,
84,
900-911.
|
 |
|
|
|
|
 |
E.O.Oloo,
E.Y.Fung,
and
D.P.Tieleman
(2006).
The dynamics of the MgATP-driven closure of MalK, the energy-transducing subunit of the maltose ABC transporter.
|
| |
J Biol Chem,
281,
28397-28407.
|
 |
|
|
|
|
 |
E.Procko,
I.Ferrin-O'Connell,
S.L.Ng,
and
R.Gaudet
(2006).
Distinct structural and functional properties of the ATPase sites in an asymmetric ABC transporter.
|
| |
Mol Cell,
24,
51-62.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Deutscher,
C.Francke,
and
P.W.Postma
(2006).
How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria.
|
| |
Microbiol Mol Biol Rev,
70,
939.
|
 |
|
|
|
|
 |
J.M.Lubelska,
M.Jonuscheit,
C.Schleper,
S.V.Albers,
and
A.J.Driessen
(2006).
Regulation of expression of the arabinose and glucose transporter genes in the thermophilic archaeon Sulfolobus solfataricus.
|
| |
Extremophiles,
10,
383-391.
|
 |
|
|
|
|
 |
J.Zaitseva,
C.Oswald,
T.Jumpertz,
S.Jenewein,
A.Wiedenmann,
I.B.Holland,
and
L.Schmitt
(2006).
A structural analysis of asymmetry required for catalytic activity of an ABC-ATPase domain dimer.
|
| |
EMBO J,
25,
3432-3443.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Anand,
B.Balar,
R.Ulloque,
S.R.Gross,
and
T.G.Kinzy
(2006).
Domain and nucleotide dependence of the interaction between Saccharomyces cerevisiae translation elongation factors 3 and 1A.
|
| |
J Biol Chem,
281,
32318-32326.
|
 |
|
|
|
|
 |
M.L.Daus,
H.Landmesser,
A.Schlosser,
P.Müller,
A.Herrmann,
and
E.Schneider
(2006).
ATP induces conformational changes of periplasmic loop regions of the maltose ATP-binding cassette transporter.
|
| |
J Biol Chem,
281,
3856-3865.
|
 |
|
|
|
|
 |
M.Mense,
P.Vergani,
D.M.White,
G.Altberg,
A.C.Nairn,
and
D.C.Gadsby
(2006).
In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer.
|
| |
EMBO J,
25,
4728-4739.
|
 |
|
|
|
|
 |
R.Ernst,
J.Koch,
C.Horn,
R.Tampé,
and
L.Schmitt
(2006).
Engineering ATPase activity in the isolated ABC cassette of human TAP1.
|
| |
J Biol Chem,
281,
27471-27480.
|
 |
|
|
|
|
 |
R.J.Dawson,
and
K.P.Locher
(2006).
Structure of a bacterial multidrug ABC transporter.
|
| |
Nature,
443,
180-185.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Blanga-Kanfi,
M.Amitsur,
A.Azem,
and
G.Kaufmann
(2006).
PrrC-anticodon nuclease: functional organization of a prototypical bacterial restriction RNase.
|
| |
Nucleic Acids Res,
34,
3209-3219.
|
 |
|
|
|
|
 |
S.P.Cole,
and
R.G.Deeley
(2006).
Transport of glutathione and glutathione conjugates by MRP1.
|
| |
Trends Pharmacol Sci,
27,
438-446.
|
 |
|
|
|
|
 |
T.Hirano
(2006).
At the heart of the chromosome: SMC proteins in action.
|
| |
Nat Rev Mol Cell Biol,
7,
311-322.
|
 |
|
|
|
|
 |
X.Guo,
R.W.Harrison,
and
P.C.Tai
(2006).
Nucleotide-dependent dimerization of the C-terminal domain of the ABC transporter CvaB in colicin V secretion.
|
| |
J Bacteriol,
188,
2383-2391.
|
 |
|
|
|
|
 |
X.Guo,
X.Chen,
I.T.Weber,
R.W.Harrison,
and
P.C.Tai
(2006).
Molecular basis for differential nucleotide binding of the nucleotide-binding domain of ABC-transporter CvaB.
|
| |
Biochemistry,
45,
14473-14480.
|
 |
|
|
|
|
 |
Y.Ito,
K.Kanamaru,
N.Taniguchi,
S.Miyamoto,
and
H.Tokuda
(2006).
A novel ligand bound ABC transporter, LolCDE, provides insights into the molecular mechanisms underlying membrane detachment of bacterial lipoproteins.
|
| |
Mol Microbiol,
62,
1064-1075.
|
 |
|
|
|
|
 |
Y.Matsumura,
N.Ban,
K.Ueda,
and
N.Inagaki
(2006).
Characterization and classification of ATP-binding cassette transporter ABCA3 mutants in fatal surfactant deficiency.
|
| |
J Biol Chem,
281,
34503-34514.
|
 |
|
|
|
|
 |
Z.E.Sauna,
K.Nandigama,
and
S.V.Ambudkar
(2006).
Exploiting reaction intermediates of the ATPase reaction to elucidate the mechanism of transport by P-glycoprotein (ABCB1).
|
| |
J Biol Chem,
281,
26501-26511.
|
 |
|
|
|
|
 |
Z.Zhou,
X.Wang,
H.Y.Liu,
X.Zou,
M.Li,
and
T.C.Hwang
(2006).
The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics.
|
| |
J Gen Physiol,
128,
413-422.
|
 |
|
|
|
|
 |
A.Karcher,
K.Büttner,
B.Märtens,
R.P.Jansen,
and
K.P.Hopfner
(2005).
X-ray structure of RLI, an essential twin cassette ABC ATPase involved in ribosome biogenesis and HIV capsid assembly.
|
| |
Structure,
13,
649-659.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.L.Davidson,
and
J.Chen
(2005).
Structural biology. Flipping lipids: is the third time the charm?
|
| |
Science,
308,
963-965.
|
 |
|
|
|
|
 |
C.O.Randak,
and
M.J.Welsh
(2005).
Adenylate kinase activity in ABC transporters.
|
| |
J Biol Chem,
280,
34385-34388.
|
 |
|
|
|
|
 |
C.Schölz,
and
R.Tampé
(2005).
The intracellular antigen transport machinery TAP in adaptive immunity and virus escape mechanisms.
|
| |
J Bioenerg Biomembr,
37,
509-515.
|
 |
|
|
|
|
 |
G.Lu,
J.M.Westbrooks,
A.L.Davidson,
and
J.Chen
(2005).
ATP hydrolysis is required to reset the ATP-binding cassette dimer into the resting-state conformation.
|
| |
Proc Natl Acad Sci U S A,
102,
17969-17974.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.Tombline,
and
A.E.Senior
(2005).
The occluded nucleotide conformation of p-glycoprotein.
|
| |
J Bioenerg Biomembr,
37,
497-500.
|
 |
|
|
|
|
 |
J.Dong,
R.Lai,
J.L.Jennings,
A.J.Link,
and
A.G.Hinnebusch
(2005).
The novel ATP-binding cassette protein ARB1 is a shuttling factor that stimulates 40S and 60S ribosome biogenesis.
|
| |
Mol Cell Biol,
25,
9859-9873.
|
 |
|
|
|
|
 |
J.H.Lebbink,
and
T.K.Sixma
(2005).
Variations on the ABC.
|
| |
Structure,
13,
498-500.
|
 |
|
|
|
|
 |
J.R.Riordan
(2005).
Assembly of functional CFTR chloride channels.
|
| |
Annu Rev Physiol,
67,
701-718.
|
 |
|
|
|
|
 |
J.Zaitseva,
S.Jenewein,
T.Jumpertz,
I.B.Holland,
and
L.Schmitt
(2005).
H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB.
|
| |
EMBO J,
24,
1901-1910.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.Csanády,
D.Seto-Young,
K.W.Chan,
C.Cenciarelli,
B.B.Angel,
J.Qin,
D.T.McLachlin,
A.N.Krutchinsky,
B.T.Chait,
A.C.Nairn,
and
D.C.Gadsby
(2005).
Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA.
|
| |
J Gen Physiol,
125,
171-186.
|
 |
|
|
|
|
 |
L.Csanády,
K.W.Chan,
A.C.Nairn,
and
D.C.Gadsby
(2005).
Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain.
|
| |
J Gen Physiol,
125,
43-55.
|
 |
|
|
|
|
 |
M.V.Mikhailov,
J.D.Campbell,
H.de Wet,
K.Shimomura,
B.Zadek,
R.F.Collins,
M.S.Sansom,
R.C.Ford,
and
F.M.Ashcroft
(2005).
3-D structural and functional characterization of the purified KATP channel complex Kir6.2-SUR1.
|
| |
EMBO J,
24,
4166-4175.
|
 |
|
|
|
|
 |
O.Dalmas,
C.Orelle,
A.E.Foucher,
C.Geourjon,
S.Crouzy,
A.Di Pietro,
and
J.M.Jault
(2005).
The Q-loop disengages from the first intracellular loop during the catalytic cycle of the multidrug ABC transporter BmrA.
|
| |
J Biol Chem,
280,
36857-36864.
|
 |
|
|
|
|
 |
P.L.Pedersen
(2005).
Transport ATPases: structure, motors, mechanism and medicine: a brief overview.
|
| |
J Bioenerg Biomembr,
37,
349-357.
|
 |
|
|
|
|
 |
P.Vergani,
C.Basso,
M.Mense,
A.C.Nairn,
and
D.C.Gadsby
(2005).
Control of the CFTR channel's gates.
|
| |
Biochem Soc Trans,
33,
1003-1007.
|
 |
|
|
|
|
 |
P.Vergani,
S.W.Lockless,
A.C.Nairn,
and
D.C.Gadsby
(2005).
CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains.
|
| |
Nature,
433,
876-880.
|
 |
|
|
|
|
 |
R.Dippel,
and
W.Boos
(2005).
The maltodextrin system of Escherichia coli: metabolism and transport.
|
| |
J Bacteriol,
187,
8322-8331.
|
 |
|
|
|
|
 |
S.G.Bompadre,
J.H.Cho,
X.Wang,
X.Zou,
Y.Sohma,
M.Li,
and
T.C.Hwang
(2005).
CFTR gating II: Effects of nucleotide binding on the stability of open states.
|
| |
J Gen Physiol,
125,
377-394.
|
 |
|
|
|
|
 |
S.Sharma,
J.A.Davis,
T.Ayvaz,
B.Traxler,
and
A.L.Davidson
(2005).
Functional reassembly of the Escherichia coli maltose transporter following purification of a MalF-MalG subassembly.
|
| |
J Bacteriol,
187,
2908-2911.
|
 |
|
|
|
|
 |
W.Wang,
C.Oliva,
G.Li,
A.Holmgren,
C.H.Lillig,
and
K.L.Kirk
(2005).
Reversible silencing of CFTR chloride channels by glutathionylation.
|
| |
J Gen Physiol,
125,
127-141.
|
 |
|
|
|
|
 |
Z.Zhou,
X.Wang,
M.Li,
Y.Sohma,
X.Zou,
and
T.C.Hwang
(2005).
High affinity ATP/ADP analogues as new tools for studying CFTR gating.
|
| |
J Physiol,
569,
447-457.
|
 |
|
|
|
|
 |
A.Böhm,
and
W.Boos
(2004).
Gene regulation in prokaryotes by subcellular relocalization of transcription factors.
|
| |
Curr Opin Microbiol,
7,
151-156.
|
 |
|
|
|
|
 |
A.L.Davidson,
and
J.Chen
(2004).
ATP-binding cassette transporters in bacteria.
|
| |
Annu Rev Biochem,
73,
241-268.
|
 |
|
|
|
|
 |
C.F.Higgins,
and
K.J.Linton
(2004).
The ATP switch model for ABC transporters.
|
| |
Nat Struct Mol Biol,
11,
918-926.
|
 |
|
|
|
|
 |
C.H.Haering,
D.Schoffnegger,
T.Nishino,
W.Helmhart,
K.Nasmyth,
and
J.Löwe
(2004).
Structure and stability of cohesin's Smc1-kleisin interaction.
|
| |
Mol Cell,
15,
951-964.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.van der Does,
and
R.Tampé
(2004).
How do ABC transporters drive transport?
|
| |
Biol Chem,
385,
927-933.
|
 |
|
|
|
|
 |
C.van der Does,
and
R.Tampé
(2004).
Changing orders--primary and secondary membrane transporters revised.
|
| |
Chembiochem,
5,
1171-1175.
|
 |
|
|
|
|
 |
E.O.Oloo,
and
D.P.Tieleman
(2004).
Conformational transitions induced by the binding of MgATP to the vitamin B12 ATP-binding cassette (ABC) transporter BtuCD.
|
| |
J Biol Chem,
279,
45013-45019.
|
 |
|
|
|
|
 |
G.Tombline,
L.A.Bartholomew,
G.A.Tyndall,
K.Gimi,
I.L.Urbatsch,
and
A.E.Senior
(2004).
Properties of P-glycoprotein with mutations in the "catalytic carboxylate" glutamate residues.
|
| |
J Biol Chem,
279,
46518-46526.
|
 |
|
|
|
|
 |
G.Tombline,
L.A.Bartholomew,
I.L.Urbatsch,
and
A.E.Senior
(2004).
Combined mutation of catalytic glutamate residues in the two nucleotide binding domains of P-glycoprotein generates a conformation that binds ATP and ADP tightly.
|
| |
J Biol Chem,
279,
31212-31220.
|
 |
|
|
|
|
 |
G.Tombline,
L.Bartholomew,
K.Gimi,
G.A.Tyndall,
and
A.E.Senior
(2004).
Synergy between conserved ABC signature Ser residues in P-glycoprotein catalysis.
|
| |
J Biol Chem,
279,
5363-5373.
|
 |
|
|
|
|
 |
H.A.Lewis,
S.G.Buchanan,
S.K.Burley,
K.Conners,
M.Dickey,
M.Dorwart,
R.Fowler,
X.Gao,
W.B.Guggino,
W.A.Hendrickson,
J.F.Hunt,
M.C.Kearins,
D.Lorimer,
P.C.Maloney,
K.W.Post,
K.R.Rajashankar,
M.E.Rutter,
J.M.Sauder,
S.Shriver,
P.H.Thibodeau,
P.J.Thomas,
M.Zhang,
X.Zhao,
and
S.Emtage
(2004).
Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator.
|
| |
EMBO J,
23,
282-293.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.D.Campbell,
S.S.Deol,
F.M.Ashcroft,
I.D.Kerr,
and
M.S.Sansom
(2004).
Nucleotide-dependent conformational changes in HisP: molecular dynamics simulations of an ABC transporter nucleotide-binding domain.
|
| |
Biophys J,
87,
3703-3715.
|
 |
|
|
|
|
 |
J.Dong,
R.Lai,
K.Nielsen,
C.A.Fekete,
H.Qiu,
and
A.G.Hinnebusch
(2004).
The essential ATP-binding cassette protein RLI1 functions in translation by promoting preinitiation complex assembly.
|
| |
J Biol Chem,
279,
42157-42168.
|
 |
|
|
|
|
 |
J.Zaitseva,
I.B.Holland,
and
L.Schmitt
(2004).
The role of CAPS buffer in expanding the crystallization space of the nucleotide-binding domain of the ABC transporter haemolysin B from Escherichia coli.
|
| |
Acta Crystallogr D Biol Crystallogr,
60,
1076-1084.
|
 |
|
|
|
|
 |
K.P.Locher
(2004).
Structure and mechanism of ABC transporters.
|
| |
Curr Opin Struct Biol,
14,
426-431.
|
 |
|
|
|
|
 |
M.Chen,
R.Abele,
and
R.Tampé
(2004).
Functional non-equivalence of ATP-binding cassette signature motifs in the transporter associated with antigen processing (TAP).
|
| |
J Biol Chem,
279,
46073-46081.
|
 |
|
|
|
|
 |
M.I.Austermuhle,
J.A.Hall,
C.S.Klug,
and
A.L.Davidson
(2004).
Maltose-binding protein is open in the catalytic transition state for ATP hydrolysis during maltose transport.
|
| |
J Biol Chem,
279,
28243-28250.
|
 |
|
|
|
|
 |
N.Joly,
A.Böhm,
W.Boos,
and
E.Richet
(2004).
MalK, the ATP-binding cassette component of the Escherichia coli maltodextrin transporter, inhibits the transcriptional activator malt by antagonizing inducer binding.
|
| |
J Biol Chem,
279,
33123-33130.
|
 |
|
|
|
|
 |
Q.Zhao,
and
X.B.Chang
(2004).
Mutation of the aromatic amino acid interacting with adenine moiety of ATP to a polar residue alters the properties of multidrug resistance protein 1.
|
| |
J Biol Chem,
279,
48505-48512.
|
 |
|
|
|
|
 |
T.Ai,
S.G.Bompadre,
X.Wang,
S.Hu,
M.Li,
and
T.C.Hwang
(2004).
Capsaicin potentiates wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride-channel currents.
|
| |
Mol Pharmacol,
65,
1415-1426.
|
 |
|
|
|
|
 |
T.Ose,
T.Fujie,
M.Yao,
N.Watanabe,
and
I.Tanaka
(2004).
Crystal structure of the ATP-binding cassette of multisugar transporter from Pyrococcus horikoshii OT3.
|
| |
Proteins,
57,
635-638.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.W.Loo,
M.C.Bartlett,
and
D.M.Clarke
(2004).
Processing mutations located throughout the human multidrug resistance P-glycoprotein disrupt interactions between the nucleotide binding domains.
|
| |
J Biol Chem,
279,
38395-38401.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |