spacer
spacer

PDBsum entry 1p3a

Go to PDB code: 
protein dna_rna Protein-protein interface(s) links
Structural protein/DNA PDB id
1p3a

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
98 a.a. *
79 a.a. *
107 a.a. *
91 a.a. *
81 a.a. *
DNA/RNA
Waters ×104
* Residue conservation analysis
PDB id:
1p3a
Name: Structural protein/DNA
Title: Crystallographic studies of nucleosome core particles containing histone 'sin' mutants
Structure: Palindromic 146bp human alpha-satellite DNA fragment. Chain: i, j. Engineered: yes. Histone h3. Chain: a, e. Engineered: yes. Histone h4. Chain: b, f. Engineered: yes.
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562. Expression_system_variant: hb 101. Xenopus laevis. African clawed frog. Organism_taxid: 8355.
Biol. unit: Decamer (from PQS)
Resolution:
3.00Å     R-factor:   0.203     R-free:   0.260
Authors: U.M.Muthurajan,Y.Bao,L.J.Forsberg,R.S.Edayathumangalam,P.N.Dyer, C.L.White,K.Luger
Key ref:
U.M.Muthurajan et al. (2004). Crystal structures of histone Sin mutant nucleosomes reveal altered protein-DNA interactions. EMBO J, 23, 260-271. PubMed id: 14739929 DOI: 10.1038/sj.emboj.7600046
Date:
17-Apr-03     Release date:   24-Feb-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P84233  (H32_XENLA) -  Histone H3.2 from Xenopus laevis
Seq:
Struc:
136 a.a.
98 a.a.*
Protein chain
Pfam   ArchSchema ?
P62799  (H4_XENLA) -  Histone H4 from Xenopus laevis
Seq:
Struc:
103 a.a.
79 a.a.
Protein chains
Pfam   ArchSchema ?
P06897  (H2A1_XENLA) -  Histone H2A type 1 from Xenopus laevis
Seq:
Struc:
130 a.a.
107 a.a.*
Protein chains
Pfam   ArchSchema ?
P02281  (H2B11_XENLA) -  Histone H2B 1.1 from Xenopus laevis
Seq:
Struc:
126 a.a.
91 a.a.
Protein chain
Pfam   ArchSchema ?
P62799  (H4_XENLA) -  Histone H4 from Xenopus laevis
Seq:
Struc:
103 a.a.
81 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

DNA/RNA chains
  A-T-C-A-A-T-A-T-C-C-A-C-C-T-G-C-A-G-A-T-T-C-T-A-C-C-A-A-A-A-G-T-G-T-A-T-T-T-G- 146 bases
  A-T-C-A-A-T-A-T-C-C-A-C-C-T-G-C-A-G-A-T-T-C-T-A-C-C-A-A-A-A-G-T-G-T-A-T-T-T-G- 146 bases

 

 
DOI no: 10.1038/sj.emboj.7600046 EMBO J 23:260-271 (2004)
PubMed id: 14739929  
 
 
Crystal structures of histone Sin mutant nucleosomes reveal altered protein-DNA interactions.
U.M.Muthurajan, Y.Bao, L.J.Forsberg, R.S.Edayathumangalam, P.N.Dyer, C.L.White, K.Luger.
 
  ABSTRACT  
 
Here we describe 11 crystal structures of nucleosome core particles containing individual point mutations in the structured regions of histones H3 and H4. The mutated residues are located at the two protein-DNA interfaces flanking the nucleosomal dyad. Five of the mutations partially restore the in vivo effects of SWI/SNF inactivation in yeast. We find that even nonconservative mutations of these residues (which exhibit a distinct phenotype in vivo) have only moderate effects on global nucleosome structure. Rather, local protein-DNA interactions are disrupted and weakened in a subtle and complex manner. The number of lost protein-DNA interactions correlates directly with an increased propensity of the histone octamer to reposition with respect to the DNA, and with an overall destabilization of the nucleosome. Thus, the disruption of only two to six of the approximately 120 direct histone-DNA interactions within the nucleosome has a pronounced effect on nucleosome mobility and stability. This has implications for our understanding of how these structures are made accessible to the transcription and replication machinery in vivo.
 
  Selected figure(s)  
 
Figure 1.
Figure 1 Location and structural context of histone Sin mutants. (A) Overview of the NCP structure, viewed down the superhelical axis. Only half of the DNA and associated proteins are shown. SHLs are indicated by italic numbers from 0.5 (flanking the nucleosomal dyad) to 6.5 (at the entry and exit point of the DNA). The locations of the H4 L1 loop and the H3 L2 loop are indicated in green and blue, respectively. Histone H3 is colored in blue, H4 in green, H2A in yellow, and H2B in red. The box indicates the location of Sin mutants. The nucleosomal dyad is indicated ( ). (B) Close-up of the Sin region showing the five residues affected by Sin mutations. Dotted lines represent hydrogen bonds. (C) Location of H4 Val-43 in the hydrophobic core at the underside of the L1L2 loop arrangement. The view is similar as in (B), with a slight rotation around the y-axis.
Figure 5.
Figure 5 Changed solvent structure in H3 Arg-116 mutants. (A) The 'van der Waals cup' formed by H3 Met-120, Pro-121, and Lys-122, holding the chloride ion. 2Fo-Fc electron density, contoured at 1 sigma, is shown in gold. (B) The same region is shown for H3 Arg-116-His (blue). Note the missing density for the chloride ion. (C) In H3 Arg-116-Ala, minor density is observed for the chloride ion, indicating only partial occupancy. (D) Superposition of the three structures, viewed from above with respect to the views shown in (A -C). Wild type is shown in wheat, and mutants in blue. The chloride ion is omitted for clarity.
 
  The above figures are reprinted from an Open Access publication published by Macmillan Publishers Ltd: EMBO J (2004, 23, 260-271) copyright 2004.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21332355 A.J.Andrews, and K.Luger (2011).
Nucleosome structure(s) and stability: variations on a theme.
  Annu Rev Biophys, 40, 99.  
21208404 A.Marathe, and M.Bansal (2011).
An ensemble of B-DNA dinucleotide geometries lead to characteristic nucleosomal DNA structure and provide plasticity required for gene expression.
  BMC Struct Biol, 11, 1.  
21253558 S.Ramachandran, L.Vogel, B.D.Strahl, and N.V.Dokholyan (2011).
Thermodynamic stability of histone H3 is a necessary but not sufficient driving force for its evolutionary conservation.
  PLoS Comput Biol, 7, e1001042.  
21176878 S.Tan, and C.A.Davey (2011).
Nucleosome structural studies.
  Curr Opin Struct Biol, 21, 128-136.  
19914933 A.Bowman, R.Ward, H.El-Mkami, T.Owen-Hughes, and D.G.Norman (2010).
Probing the (H3-H4)2 histone tetramer structure using pulsed EPR spectroscopy combined with site-directed spin labelling.
  Nucleic Acids Res, 38, 695-707.  
20706221 F.K.Hsieh, M.Fisher, A.Ujvári, V.M.Studitsky, and D.S.Luse (2010).
Histone Sin mutations promote nucleosome traversal and histone displacement by RNA polymerase II.
  EMBO Rep, 11, 705-710.  
20647418 F.Xu, A.V.Colasanti, Y.Li, and W.K.Olson (2010).
Long-range effects of histone point mutations on DNA remodeling revealed from computational analyses of SIN-mutant nucleosome structures.
  Nucleic Acids Res, 38, 6872-6882.  
20060707 G.D.Bowman (2010).
Mechanisms of ATP-dependent nucleosome sliding.
  Curr Opin Struct Biol, 20, 73-81.  
20498094 H.Tachiwana, W.Kagawa, A.Osakabe, K.Kawaguchi, T.Shiga, Y.Hayashi-Takanaka, H.Kimura, and H.Kurumizaka (2010).
Structural basis of instability of the nucleosome containing a testis-specific histone variant, human H3T.
  Proc Natl Acad Sci U S A, 107, 10454-10459.
PDB codes: 3a6n 3afa
19136959 M.A.Hall, A.Shundrovsky, L.Bai, R.M.Fulbright, J.T.Lis, and M.D.Wang (2009).
High-resolution dynamic mapping of histone-DNA interactions in a nucleosome.
  Nat Struct Mol Biol, 16, 124-129.  
19520870 M.Manohar, A.M.Mooney, J.A.North, R.J.Nakkula, J.W.Picking, A.Edon, R.Fishel, M.G.Poirier, and J.J.Ottesen (2009).
Acetylation of histone H3 at the nucleosome dyad alters DNA-histone binding.
  J Biol Chem, 284, 23312-23321.  
19903202 M.Sakamoto, S.Noguchi, S.Kawashima, Y.Okada, T.Enomoto, M.Seki, and M.Horikoshi (2009).
Global analysis of mutual interaction surfaces of nucleosomes with comprehensive point mutants.
  Genes Cells, 14, 1271-1330.  
19368891 N.B.Becker, and R.Everaers (2009).
DNA nanomechanics in the nucleosome.
  Structure, 17, 579-589.  
19289051 S.Balasubramanian, F.Xu, and W.K.Olson (2009).
DNA sequence-directed organization of chromatin: structure-based computational analysis of nucleosome-binding sequences.
  Biophys J, 96, 2245-2260.  
20064472 S.Javaid, M.Manohar, N.Punja, A.Mooney, J.J.Ottesen, M.G.Poirier, and R.Fishel (2009).
Nucleosome remodeling by hMSH2-hMSH6.
  Mol Cell, 36, 1086-1094.  
19596239 V.R.Ramirez-Carrozzi, D.Braas, D.M.Bhatt, C.S.Cheng, C.Hong, K.R.Doty, J.C.Black, A.Hoffmann, M.Carey, and S.T.Smale (2009).
A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling.
  Cell, 138, 114-128.  
19256884 A.Bende, F.Bogár, F.Beleznay, and J.Ladik (2008).
Calculation of the hole mobilities of the three homopolynucleotides, poly(guanilic acid), poly(adenilic acid), and polythymidine in the presence of water and Na+ ions.
  Phys Rev E Stat Nonlin Soft Matter Phys, 78, 061923.  
18477633 D.Svozil, J.Kalina, M.Omelka, and B.Schneider (2008).
DNA conformations and their sequence preferences.
  Nucleic Acids Res, 36, 3690-3706.  
18923077 H.N.Du, I.M.Fingerman, and S.D.Briggs (2008).
Histone H3 K36 methylation is mediated by a trans-histone methylation pathway involving an interaction between Set2 and histone H4.
  Genes Dev, 22, 2786-2798.  
18281699 H.Tachiwana, A.Osakabe, H.Kimura, and H.Kurumizaka (2008).
Nucleosome formation with the testis-specific histone H3 variant, H3t, by human nucleosome assembly proteins in vitro.
  Nucleic Acids Res, 36, 2208-2218.  
18345925 J.Ladik, A.Bende, and F.Bogár (2008).
The electronic structure of the four nucleotide bases in DNA, of their stacks, and of their homopolynucleotides in the absence and presence of water.
  J Chem Phys, 128, 105101.  
18658255 Q.He, C.Yu, and R.H.Morse (2008).
Dispersed mutations in histone H3 that affect transcriptional repression and chromatin structure of the CHA1 promoter in Saccharomyces cerevisiae.
  Eukaryot Cell, 7, 1649-1660.  
18508805 R.Nag, F.Gong, D.Fahy, and M.J.Smerdon (2008).
A single amino acid change in histone H4 enhances UV survival and DNA repair in yeast.
  Nucleic Acids Res, 36, 3857-3866.  
18622391 S.Nakanishi, B.W.Sanderson, K.M.Delventhal, W.D.Bradford, K.Staehling-Hampton, and A.Shilatifard (2008).
A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation.
  Nat Struct Mol Biol, 15, 881-888.  
18424496 T.C.Bishop (2008).
Geometry of the nucleosomal DNA superhelix.
  Biophys J, 95, 1007-1017.  
17387148 H.Ferreira, J.Somers, R.Webster, A.Flaus, and T.Owen-Hughes (2007).
Histone tails and the H3 alphaN helix regulate nucleosome mobility and stability.
  Mol Cell Biol, 27, 4037-4048.  
17212652 K.Matsubara, N.Sano, T.Umehara, and M.Horikoshi (2007).
Global analysis of functional surfaces of core histones with comprehensive point mutants.
  Genes Cells, 12, 13-33.  
17705705 M.S.Cosgrove (2007).
Histone proteomics and the epigenetic regulation of nucleosome mobility.
  Expert Rev Proteomics, 4, 465-478.  
17646286 S.A.Danziger, J.Zeng, Y.Wang, R.K.Brachmann, and R.H.Lathrop (2007).
Choosing where to look next in a mutation sequence space: Active Learning of informative p53 cancer rescue mutants.
  Bioinformatics, 23, i104-i114.  
17015465 C.J.Fry, A.Norris, M.Cosgrove, J.D.Boeke, and C.L.Peterson (2006).
The LRS and SIN domains: two structurally equivalent but functionally distinct nucleosomal surfaces required for transcriptional silencing.
  Mol Cell Biol, 26, 9045-9059.  
16540311 C.L.Woodcock (2006).
Chromatin architecture.
  Curr Opin Struct Biol, 16, 213-220.  
16714444 E.L.Mersfelder, and M.R.Parthun (2006).
The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure.
  Nucleic Acids Res, 34, 2653-2662.  
16506092 K.Luger (2006).
Dynamic nucleosomes.
  Chromosome Res, 14, 5.  
16648647 M.K.Gilbert, Y.Y.Tan, and C.M.Hart (2006).
The Drosophila boundary element-associated factors BEAF-32A and BEAF-32B affect chromatin structure.
  Genetics, 173, 1365-1375.  
16803903 S.Chakravarthy, and K.Luger (2006).
The histone variant macro-H2A preferentially forms "hybrid nucleosomes".
  J Biol Chem, 281, 25522-25531.  
17000768 S.Jimeno-González, F.Gómez-Herreros, P.M.Alepuz, and S.Chávez (2006).
A gene-specific requirement for FACT during transcription is related to the chromatin organization of the transcribed region.
  Mol Cell Biol, 26, 8710-8721.  
16260619 E.M.Hyland, M.S.Cosgrove, H.Molina, D.Wang, A.Pandey, R.J.Cottee, and J.D.Boeke (2005).
Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae.
  Mol Cell Biol, 25, 10060-10070.  
16209651 L.Mariño-Ramírez, M.G.Kann, B.A.Shoemaker, and D.Landsman (2005).
Histone structure and nucleosome stability.
  Expert Rev Proteomics, 2, 719-729.  
16094450 M.S.Cosgrove, and C.Wolberger (2005).
How does the histone code work?
  Biochem Cell Biol, 83, 468-476.  
15196463 A.Flaus, and T.Owen-Hughes (2004).
Mechanisms for ATP-dependent chromatin remodelling: farewell to the tuna-can octamer?
  Curr Opin Genet Dev, 14, 165-173.  
15523479 M.S.Cosgrove, J.D.Boeke, and C.Wolberger (2004).
Regulated nucleosome mobility and the histone code.
  Nat Struct Mol Biol, 11, 1037-1043.  
15257289 Y.Bao, K.Konesky, Y.J.Park, S.Rosu, P.N.Dyer, D.Rangasamy, D.J.Tremethick, P.J.Laybourn, and K.Luger (2004).
Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA.
  EMBO J, 23, 3314-3324.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer