|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
402 a.a.
|
 |
|
|
|
|
|
|
|
131 a.a.
|
 |
|
|
|
|
|
|
|
11 a.a.
|
 |
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Signaling protein
|
 |
|
Title:
|
 |
Structure of a beta-trcp1-skp1-beta-catenin complex: destruction motif binding and lysine specificity on the scfbeta-trcp1 ubiquitin ligase
|
|
Structure:
|
 |
F-box/wd-repeat protein 1a. Chain: a. Synonym: f-box and wd-repeats protein beta-trcp, e3rsikappab, pikappabalpha-e3 receptor subunit. Engineered: yes. Skp1. Chain: b. Engineered: yes. Beta-catenin.
|
|
Source:
|
 |
Homo sapiens. Human. Organism_taxid: 9606. Expressed in: spodoptera frugiperda. Expression_system_taxid: 7108. Expression_system_cell_line: sf9. Gene: ctnnb1 or ctnnb.
|
|
Biol. unit:
|
 |
Trimer (from
)
|
|
Resolution:
|
 |
|
2.95Å
|
R-factor:
|
0.233
|
R-free:
|
0.286
|
|
|
Authors:
|
 |
G.Wu,G.Xu,B.A.Schulman,P.D.Jeffrey,J.W.Harper,N.P.Pavletich
|
Key ref:
|
 |
G.Wu
et al.
(2003).
Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase.
Mol Cell,
11,
1445-1456.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
14-Apr-03
|
Release date:
|
08-Jul-03
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
Q9Y297
(FBW1A_HUMAN) -
F-box/WD repeat-containing protein 1A from Homo sapiens
|
|
|
|
Seq: Struc:
|
 |
 |
 |
605 a.a.
402 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Mol Cell
11:1445-1456
(2003)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase.
|
|
G.Wu,
G.Xu,
B.A.Schulman,
P.D.Jeffrey,
J.W.Harper,
N.P.Pavletich.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The SCF ubiquitin ligases catalyze protein ubiquitination in diverse cellular
processes. SCFs bind substrates through the interchangeable F box protein
subunit, with the >70 human F box proteins allowing the recognition of a wide
range of substrates. The F box protein beta-TrCP1 recognizes the doubly
phosphorylated DpSGphiXpS destruction motif, present in beta-catenin and
IkappaB, and directs the SCF(beta-TrCP1) to ubiquitinate these proteins at
specific lysines. The 3.0 A structure of a beta-TrCP1-Skp1-beta-catenin complex
reveals the basis of substrate recognition by the beta-TrCP1 WD40 domain. The
structure, together with the previous SCF(Skp2) structure, leads to the model of
SCF catalyzing ubiquitination by increasing the effective concentration of the
substrate lysine at the E2 active site. The model's prediction that the
lysine-destruction motif spacing is a determinant of ubiquitination efficiency
is confirmed by measuring ubiquitination rates of mutant beta-catenin peptides,
solidifying the model and also providing a mechanistic basis for lysine
selection.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 3.
Figure 3. The #-TrCP1-Skp1 Interface Is Similar to that in the Skp1-Skp2 Complex
|
 |
Figure 5.
Figure 5. The Rate of Ubiquitination by the SCF
#-TrCP1
Is Dependent on the Spacing between the Ubiquitination-Site Lysine and the Destruction
Motif
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Mol Cell
(2003,
11,
1445-1456)
copyright 2003.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.Werner,
A.Disanza,
N.Reifenberger,
G.Habeck,
J.Becker,
M.Calabrese,
H.Urlaub,
H.Lorenz,
B.Schulman,
G.Scita,
and
F.Melchior
(2012).
SCF(Fbxw5) mediates transient degradation of actin remodeller Eps8 to allow proper mitotic progression.
|
| |
Nat Cell Biol,
15,
179-188.
|
 |
|
|
|
|
 |
A.Saha,
S.Lewis,
G.Kleiger,
B.Kuhlman,
and
R.J.Deshaies
(2011).
Essential role for ubiquitin-ubiquitin-conjugating enzyme interaction in ubiquitin discharge from Cdc34 to substrate.
|
| |
Mol Cell,
42,
75-83.
|
 |
|
|
|
|
 |
C.Nibau,
D.J.Gibbs,
K.A.Bunting,
L.A.Moody,
E.J.Smiles,
J.A.Tubby,
S.J.Bradshaw,
and
J.C.Coates
(2011).
ARABIDILLO proteins have a novel and conserved domain structure important for the regulation of their stability.
|
| |
Plant Mol Biol,
75,
77-92.
|
 |
|
|
|
|
 |
C.Xu,
and
J.Min
(2011).
Structure and function of WD40 domain proteins.
|
| |
Protein Cell,
2,
202-214.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.M.Duda,
D.C.Scott,
M.F.Calabrese,
E.S.Zimmerman,
N.Zheng,
and
B.A.Schulman
(2011).
Structural regulation of cullin-RING ubiquitin ligase complexes.
|
| |
Curr Opin Struct Biol,
21,
257-264.
|
 |
|
|
|
|
 |
G.Xu,
Y.C.Lo,
Q.Li,
G.Napolitano,
X.Wu,
X.Jiang,
M.Dreano,
M.Karin,
and
H.Wu
(2011).
Crystal structure of inhibitor of κB kinase β.
|
| |
Nature,
472,
325-330.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Q.Zhou,
K.Zhu,
and
H.Cheng
(2011).
Ubiquitination in host immune response to human papillomavirus infection.
|
| |
Arch Dermatol Res,
303,
217-230.
|
 |
|
|
|
|
 |
Z.Hua,
and
R.D.Vierstra
(2011).
The cullin-RING ubiquitin-protein ligases.
|
| |
Annu Rev Plant Biol,
62,
299-334.
|
 |
|
|
|
|
 |
A.Peschiaroli,
J.R.Skaar,
M.Pagano,
and
G.Melino
(2010).
The ubiquitin-specific protease USP47 is a novel beta-TRCP interactor regulating cell survival.
|
| |
Oncogene,
29,
1384-1393.
|
 |
|
|
|
|
 |
A.Y.Hung,
C.C.Sung,
I.L.Brito,
and
M.Sheng
(2010).
Degradation of postsynaptic scaffold GKAP and regulation of dendritic spine morphology by the TRIM3 ubiquitin ligase in rat hippocampal neurons.
|
| |
PLoS One,
5,
e9842.
|
 |
|
|
|
|
 |
B.Khurana,
L.Zhuang,
P.K.Moitra,
T.S.Stantchev,
C.C.Broder,
M.L.Cutler,
and
P.D'Arpa
(2010).
Human TOP1 residues implicated in species specificity of HIV-1 infection are required for interaction with BTBD2, and RNAi of BTBD2 in old world monkey and human cells increases permissiveness to HIV-1 infection.
|
| |
Virol J,
7,
332.
|
 |
|
|
|
|
 |
B.Zhao,
L.Li,
K.Tumaneng,
C.Y.Wang,
and
K.L.Guan
(2010).
A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP).
|
| |
Genes Dev,
24,
72-85.
|
 |
|
|
|
|
 |
C.U.Stirnimann,
E.Petsalaki,
R.B.Russell,
and
C.W.Müller
(2010).
WD40 proteins propel cellular networks.
|
| |
Trends Biochem Sci,
35,
565-574.
|
 |
|
|
|
|
 |
C.W.Vander Kooi,
L.Ren,
P.Xu,
M.D.Ohi,
K.L.Gould,
and
W.J.Chazin
(2010).
The Prp19 WD40 domain contains a conserved protein interaction region essential for its function.
|
| |
Structure,
18,
584-593.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Xu,
C.Bian,
W.Yang,
M.Galka,
H.Ouyang,
C.Chen,
W.Qiu,
H.Liu,
A.E.Jones,
F.MacKenzie,
P.Pan,
S.S.Li,
H.Wang,
and
J.Min
(2010).
Binding of different histone marks differentially regulates the activity and specificity of polycomb repressive complex 2 (PRC2).
|
| |
Proc Natl Acad Sci U S A,
107,
19266-19271.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.C.Scott,
J.K.Monda,
C.R.Grace,
D.M.Duda,
R.W.Kriwacki,
T.Kurz,
and
B.A.Schulman
(2010).
A dual E3 mechanism for Rub1 ligation to Cdc53.
|
| |
Mol Cell,
39,
784-796.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Wu,
and
W.Pan
(2010).
GSK3: a multifaceted kinase in Wnt signaling.
|
| |
Trends Biochem Sci,
35,
161-168.
|
 |
|
|
|
|
 |
G.H.Braus,
S.Irniger,
and
O.Bayram
(2010).
Fungal development and the COP9 signalosome.
|
| |
Curr Opin Microbiol,
13,
672-676.
|
 |
|
|
|
|
 |
H.Inuzuka,
A.Tseng,
D.Gao,
B.Zhai,
Q.Zhang,
S.Shaik,
L.Wan,
X.L.Ang,
C.Mock,
H.Yin,
J.M.Stommel,
S.Gygi,
G.Lahav,
J.Asara,
Z.X.Xiao,
W.G.Kaelin,
J.W.Harper,
and
W.Wei
(2010).
Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(beta-TRCP) ubiquitin ligase.
|
| |
Cancer Cell,
18,
147-159.
|
 |
|
|
|
|
 |
J.D.Godin,
G.Poizat,
M.A.Hickey,
F.Maschat,
and
S.Humbert
(2010).
Mutant huntingtin-impaired degradation of beta-catenin causes neurotoxicity in Huntington's disease.
|
| |
EMBO J,
29,
2433-2445.
|
 |
|
|
|
|
 |
J.Liu,
and
R.Nussinov
(2010).
Molecular dynamics reveal the essential role of linker motions in the function of cullin-RING E3 ligases.
|
| |
J Mol Biol,
396,
1508-1523.
|
 |
|
|
|
|
 |
K.Wu,
J.Kovacev,
and
Z.Q.Pan
(2010).
Priming and extending: a UbcH5/Cdc34 E2 handoff mechanism for polyubiquitination on a SCF substrate.
|
| |
Mol Cell,
37,
784-796.
|
 |
|
|
|
|
 |
M.Sadowski,
and
B.Sarcevic
(2010).
Mechanisms of mono- and poly-ubiquitination: Ubiquitination specificity depends on compatibility between the E2 catalytic core and amino acid residues proximal to the lysine.
|
| |
Cell Div,
5,
19.
|
 |
|
|
|
|
 |
M.Sadowski,
R.Suryadinata,
X.Lai,
J.Heierhorst,
and
B.Sarcevic
(2010).
Molecular basis for lysine specificity in the yeast ubiquitin-conjugating enzyme Cdc34.
|
| |
Mol Cell Biol,
30,
2316-2329.
|
 |
|
|
|
|
 |
M.do Carmo Costa,
F.Bajanca,
A.J.Rodrigues,
R.J.Tomé,
G.Corthals,
S.Macedo-Ribeiro,
H.L.Paulson,
E.Logarinho,
and
P.Maciel
(2010).
Ataxin-3 plays a role in mouse myogenic differentiation through regulation of integrin subunit levels.
|
| |
PLoS One,
5,
e11728.
|
 |
|
|
|
|
 |
N.Kanarek,
N.London,
O.Schueler-Furman,
and
Y.Ben-Neriah
(2010).
Ubiquitination and degradation of the inhibitors of NF-kappaB.
|
| |
Cold Spring Harb Perspect Biol,
2,
a000166.
|
 |
|
|
|
|
 |
N.Popov,
C.Schülein,
L.A.Jaenicke,
and
M.Eilers
(2010).
Ubiquitylation of the amino terminus of Myc by SCF(β-TrCP) antagonizes SCF(Fbw7)-mediated turnover.
|
| |
Nat Cell Biol,
12,
973-981.
|
 |
|
|
|
|
 |
P.Radivojac,
V.Vacic,
C.Haynes,
R.R.Cocklin,
A.Mohan,
J.W.Heyen,
M.G.Goebl,
and
L.M.Iakoucheva
(2010).
Identification, analysis, and prediction of protein ubiquitination sites.
|
| |
Proteins,
78,
365-380.
|
 |
|
|
|
|
 |
Q.Cheng,
and
J.Chen
(2010).
Mechanism of p53 stabilization by ATM after DNA damage.
|
| |
Cell Cycle,
9,
472-478.
|
 |
|
|
|
|
 |
S.Banerjee,
J.W.Zmijewski,
E.Lorne,
G.Liu,
Y.Sha,
and
E.Abraham
(2010).
Modulation of SCF beta-TrCP-dependent I kappaB alpha ubiquitination by hydrogen peroxide.
|
| |
J Biol Chem,
285,
2665-2675.
|
 |
|
|
|
|
 |
T.Li,
E.I.Robert,
P.C.van Breugel,
M.Strubin,
and
N.Zheng
(2010).
A promiscuous alpha-helical motif anchors viral hijackers and substrate receptors to the CUL4-DDB1 ubiquitin ligase machinery.
|
| |
Nat Struct Mol Biol,
17,
105-111.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
X.H.Wu,
H.Zhang,
and
Y.D.Wu
(2010).
Is Asp-His-Ser/Thr-Trp tetrad hydrogen-bond network important to WD40-repeat proteins: a statistical and theoretical study.
|
| |
Proteins,
78,
1186-1194.
|
 |
|
|
|
|
 |
C.T.Tang,
S.Li,
C.Long,
J.Cha,
G.Huang,
L.Li,
S.Chen,
and
Y.Liu
(2009).
Setting the pace of the Neurospora circadian clock by multiple independent FRQ phosphorylation events.
|
| |
Proc Natl Acad Sci U S A,
106,
10722-10727.
|
 |
|
|
|
|
 |
E.A.Kimbrel,
and
A.L.Kung
(2009).
The F-box Protein {beta}-TrCp1/Fbw1a Interacts with p300 to Enhance {beta}-Catenin Transcriptional Activity.
|
| |
J Biol Chem,
284,
13033-13044.
|
 |
|
|
|
|
 |
G.Banumathy,
N.Somaiah,
R.Zhang,
Y.Tang,
J.Hoffmann,
M.Andrake,
H.Ceulemans,
D.Schultz,
R.Marmorstein,
and
P.D.Adams
(2009).
Human UBN1 is an ortholog of yeast Hpc2p and has an essential role in the HIRA/ASF1a chromatin-remodeling pathway in senescent cells.
|
| |
Mol Cell Biol,
29,
758-770.
|
 |
|
|
|
|
 |
G.Wu,
H.Huang,
J.Garcia Abreu,
and
X.He
(2009).
Inhibition of GSK3 phosphorylation of beta-catenin via phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6.
|
| |
PLoS ONE,
4,
e4926.
|
 |
|
|
|
|
 |
J.Liu,
and
R.Nussinov
(2009).
The mechanism of ubiquitination in the cullin-RING E3 ligase machinery: conformational control of substrate orientation.
|
| |
PLoS Comput Biol,
5,
e1000527.
|
 |
|
|
|
|
 |
K.Corcoran,
X.Wang,
and
L.Lybarger
(2009).
Adapter-mediated substrate selection for endoplasmic reticulum-associated degradation.
|
| |
J Biol Chem,
284,
17475-17487.
|
 |
|
|
|
|
 |
M.Zhang,
Y.Yan,
Y.B.Lim,
D.Tang,
R.Xie,
A.Chen,
P.Tai,
S.E.Harris,
L.Xing,
Y.X.Qin,
and
D.Chen
(2009).
BMP-2 modulates beta-catenin signaling through stimulation of Lrp5 expression and inhibition of beta-TrCP expression in osteoblasts.
|
| |
J Cell Biochem,
108,
896-905.
|
 |
|
|
|
|
 |
N.Ito,
M.Watanabe-Matsui,
K.Igarashi,
and
K.Murayama
(2009).
Crystal structure of the Bach1 BTB domain and its regulation of homodimerization.
|
| |
Genes Cells,
14,
167-178.
|
 |
|
|
|
|
 |
N.Qvit,
A.Hatzubai,
D.E.Shalev,
A.Friedler,
Y.Ben-Neriah,
and
C.Gilon
(2009).
Design and synthesis of backbone cyclic phosphorylated peptides: The IkappaB model.
|
| |
Biopolymers,
91,
157-168.
|
 |
|
|
|
|
 |
N.W.Pierce,
G.Kleiger,
S.O.Shan,
and
R.J.Deshaies
(2009).
Detection of sequential polyubiquitylation on a millisecond timescale.
|
| |
Nature,
462,
615-619.
|
 |
|
|
|
|
 |
O.Barbash,
E.Egan,
L.L.Pontano,
J.Kosak,
and
J.A.Diehl
(2009).
Lysine 269 is essential for cyclin D1 ubiquitylation by the SCF(Fbx4/alphaB-crystallin) ligase and subsequent proteasome-dependent degradation.
|
| |
Oncogene,
28,
4317-4325.
|
 |
|
|
|
|
 |
R.J.Deshaies,
and
C.A.Joazeiro
(2009).
RING domain E3 ubiquitin ligases.
|
| |
Annu Rev Biochem,
78,
399-434.
|
 |
|
|
|
|
 |
R.S.Mitchell,
C.Katsura,
M.A.Skasko,
K.Fitzpatrick,
D.Lau,
A.Ruiz,
E.B.Stephens,
F.Margottin-Goguet,
R.Benarous,
and
J.C.Guatelli
(2009).
Vpu antagonizes BST-2-mediated restriction of HIV-1 release via beta-TrCP and endo-lysosomal trafficking.
|
| |
PLoS Pathog,
5,
e1000450.
|
 |
|
|
|
|
 |
S.J.Werden,
J.Lanchbury,
D.Shattuck,
C.Neff,
M.Dufford,
and
G.McFadden
(2009).
The myxoma virus m-t5 ankyrin repeat host range protein is a novel adaptor that coordinately links the cellular signaling pathways mediated by Akt and Skp1 in virus-infected cells.
|
| |
J Virol,
83,
12068-12083.
|
 |
|
|
|
|
 |
S.Sonnberg,
S.B.Fleming,
and
A.A.Mercer
(2009).
A truncated two-{alpha}-helix F-box present in poxvirus ankyrin-repeat proteins is sufficient for binding the SCF1 ubiquitin ligase complex.
|
| |
J Gen Virol,
90,
1224-1228.
|
 |
|
|
|
|
 |
S.Wei,
H.C.Chuang,
W.C.Tsai,
H.C.Yang,
S.R.Ho,
A.J.Paterson,
S.K.Kulp,
and
C.S.Chen
(2009).
Thiazolidinediones mimic glucose starvation in facilitating Sp1 degradation through the up-regulation of beta-transducin repeat-containing protein.
|
| |
Mol Pharmacol,
76,
47-57.
|
 |
|
|
|
|
 |
T.Isobe,
T.Hattori,
K.Kitagawa,
C.Uchida,
Y.Kotake,
I.Kosugi,
T.Oda,
and
M.Kitagawa
(2009).
Adenovirus E1A inhibits SCF(Fbw7) ubiquitin ligase.
|
| |
J Biol Chem,
284,
27766-27779.
|
 |
|
|
|
|
 |
X.Li,
J.Liu,
and
T.Gao
(2009).
beta-TrCP-mediated ubiquitination and degradation of PHLPP1 are negatively regulated by Akt.
|
| |
Mol Cell Biol,
29,
6192-6205.
|
 |
|
|
|
|
 |
X.Tan,
and
N.Zheng
(2009).
Hormone signaling through protein destruction: a lesson from plants.
|
| |
Am J Physiol Endocrinol Metab,
296,
E223-E227.
|
 |
|
|
|
|
 |
A.Ferdous,
M.O'Neal,
K.Nalley,
D.Sikder,
T.Kodadek,
and
S.A.Johnston
(2008).
Phosphorylation of the Gal4 DNA-binding domain is essential for activator mono-ubiquitylation and efficient promoter occupancy.
|
| |
Mol Biosyst,
4,
1116-1125.
|
 |
|
|
|
|
 |
A.K.Dunker,
and
V.N.Uversky
(2008).
Signal transduction via unstructured protein conduits.
|
| |
Nat Chem Biol,
4,
229-230.
|
 |
|
|
|
|
 |
A.Saha,
and
R.J.Deshaies
(2008).
Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation.
|
| |
Mol Cell,
32,
21-31.
|
 |
|
|
|
|
 |
A.Scrima,
R.Konícková,
B.K.Czyzewski,
Y.Kawasaki,
P.D.Jeffrey,
R.Groisman,
Y.Nakatani,
S.Iwai,
N.P.Pavletich,
and
N.H.Thomä
(2008).
Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex.
|
| |
Cell,
135,
1213-1223.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Guardavaccaro,
D.Frescas,
N.V.Dorrello,
A.Peschiaroli,
A.S.Multani,
T.Cardozo,
A.Lasorella,
A.Iavarone,
S.Chang,
E.Hernando,
and
M.Pagano
(2008).
Control of chromosome stability by the beta-TrCP-REST-Mad2 axis.
|
| |
Nature,
452,
365-369.
|
 |
|
|
|
|
 |
D.Ju,
X.Wang,
H.Xu,
and
Y.Xie
(2008).
Genome-wide analysis identifies MYND-domain protein Mub1 as an essential factor for Rpn4 ubiquitylation.
|
| |
Mol Cell Biol,
28,
1404-1412.
|
 |
|
|
|
|
 |
D.M.Duda,
L.A.Borg,
D.C.Scott,
H.W.Hunt,
M.Hammel,
and
B.A.Schulman
(2008).
Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation.
|
| |
Cell,
134,
995.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.R.Bosu,
and
E.T.Kipreos
(2008).
Cullin-RING ubiquitin ligases: global regulation and activation cycles.
|
| |
Cell Div,
3,
7.
|
 |
|
|
|
|
 |
J.C.Chiu,
J.T.Vanselow,
A.Kramer,
and
I.Edery
(2008).
The phospho-occupancy of an atypical SLIMB-binding site on PERIOD that is phosphorylated by DOUBLETIME controls the pace of the clock.
|
| |
Genes Dev,
22,
1758-1772.
|
 |
|
|
|
|
 |
K.Cadwell,
and
L.Coscoy
(2008).
The specificities of Kaposi's sarcoma-associated herpesvirus-encoded E3 ubiquitin ligases are determined by the positions of lysine or cysteine residues within the intracytoplasmic domains of their targets.
|
| |
J Virol,
82,
4184-4189.
|
 |
|
|
|
|
 |
M.Buscarlet,
A.Perin,
A.Laing,
J.M.Brickman,
and
S.Stifani
(2008).
Inhibition of Cortical Neuron Differentiation by Groucho/TLE1 Requires Interaction with WRPW, but Not Eh1, Repressor Peptides.
|
| |
J Biol Chem,
283,
24881-24888.
|
 |
|
|
|
|
 |
N.V.Valeyev,
A.K.Downing,
J.Sondek,
and
C.Deane
(2008).
Electrostatic and Functional Analysis of the Seven-Bladed WD beta-Propellers.
|
| |
Evol Bioinform Online,
4,
203-216.
|
 |
|
|
|
|
 |
P.J.Chang,
D.Shedd,
and
G.Miller
(2008).
A mobile functional region of Kaposi's sarcoma-associated herpesvirus ORF50 protein independently regulates DNA binding and protein abundance.
|
| |
J Virol,
82,
9700-9716.
|
 |
|
|
|
|
 |
S.Sonnberg,
B.T.Seet,
T.Pawson,
S.B.Fleming,
and
A.A.Mercer
(2008).
Poxvirus ankyrin repeat proteins are a unique class of F-box proteins that associate with cellular SCF1 ubiquitin ligase complexes.
|
| |
Proc Natl Acad Sci U S A,
105,
10955-10960.
|
 |
|
|
|
|
 |
S.Wei,
H.C.Yang,
H.C.Chuang,
J.Yang,
S.K.Kulp,
P.J.Lu,
M.D.Lai,
and
C.S.Chen
(2008).
A novel mechanism by which thiazolidinediones facilitate the proteasomal degradation of cyclin D1 in cancer cells.
|
| |
J Biol Chem,
283,
26759-26770.
|
 |
|
|
|
|
 |
T.F.Westbrook,
G.Hu,
X.L.Ang,
P.Mulligan,
N.N.Pavlova,
A.Liang,
Y.Leng,
R.Maehr,
Y.Shi,
J.W.Harper,
and
S.J.Elledge
(2008).
SCFbeta-TRCP controls oncogenic transformation and neural differentiation through REST degradation.
|
| |
Nature,
452,
370-374.
|
 |
|
|
|
|
 |
T.Jadhav,
T.Geetha,
J.Jiang,
and
M.W.Wooten
(2008).
Identification of a consensus site for TRAF6/p62 polyubiquitination.
|
| |
Biochem Biophys Res Commun,
371,
521-524.
|
 |
|
|
|
|
 |
T.Ravid,
and
M.Hochstrasser
(2008).
Diversity of degradation signals in the ubiquitin-proteasome system.
|
| |
Nat Rev Mol Cell Biol,
9,
679-690.
|
 |
|
|
|
|
 |
X.Chen,
J.Yang,
P.M.Evans,
and
C.Liu
(2008).
Wnt signaling: the good and the bad.
|
| |
Acta Biochim Biophys Sin (Shanghai),
40,
577-594.
|
 |
|
|
|
|
 |
X.L.Ang,
D.P.Seeburg,
M.Sheng,
and
J.W.Harper
(2008).
Regulation of postsynaptic RapGAP SPAR by Polo-like kinase 2 and the SCFbeta-TRCP ubiquitin ligase in hippocampal neurons.
|
| |
J Biol Chem,
283,
29424-29432.
|
 |
|
|
|
|
 |
B.Hao,
S.Oehlmann,
M.E.Sowa,
J.W.Harper,
and
N.P.Pavletich
(2007).
Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases.
|
| |
Mol Cell,
26,
131-143.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.T.Dye,
and
B.A.Schulman
(2007).
Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins.
|
| |
Annu Rev Biophys Biomol Struct,
36,
131-150.
|
 |
|
|
|
|
 |
C.Lobry,
T.Lopez,
A.Israël,
and
R.Weil
(2007).
Negative feedback loop in T cell activation through IkappaB kinase-induced phosphorylation and degradation of Bcl10.
|
| |
Proc Natl Acad Sci U S A,
104,
908-913.
|
 |
|
|
|
|
 |
D.M.Virshup,
E.J.Eide,
D.B.Forger,
M.Gallego,
and
E.V.Harnish
(2007).
Reversible protein phosphorylation regulates circadian rhythms.
|
| |
Cold Spring Harb Symp Quant Biol,
72,
413-420.
|
 |
|
|
|
|
 |
D.Setoyama,
M.Yamashita,
and
N.Sagata
(2007).
Mechanism of degradation of CPEB during Xenopus oocyte maturation.
|
| |
Proc Natl Acad Sci U S A,
104,
18001-18006.
|
 |
|
|
|
|
 |
H.Yu
(2007).
Cdc20: a WD40 activator for a cell cycle degradation machine.
|
| |
Mol Cell,
27,
3.
|
 |
|
|
|
|
 |
K.G.Kumar,
H.Barriere,
C.J.Carbone,
J.Liu,
G.Swaminathan,
P.Xu,
Y.Li,
D.P.Baker,
J.Peng,
G.L.Lukacs,
and
S.Y.Fuchs
(2007).
Site-specific ubiquitination exposes a linear motif to promote interferon-alpha receptor endocytosis.
|
| |
J Cell Biol,
179,
935-950.
|
 |
|
|
|
|
 |
M.G.Smelkinson,
Q.Zhou,
and
D.Kalderon
(2007).
Regulation of Ci-SCFSlimb binding, Ci proteolysis, and hedgehog pathway activity by Ci phosphorylation.
|
| |
Dev Cell,
13,
481-495.
|
 |
|
|
|
|
 |
M.Thome,
and
R.Weil
(2007).
Post-translational modifications regulate distinct functions of CARMA1 and BCL10.
|
| |
Trends Immunol,
28,
281-288.
|
 |
|
|
|
|
 |
P.Knipscheer,
and
T.K.Sixma
(2007).
Protein-protein interactions regulate Ubl conjugation.
|
| |
Curr Opin Struct Biol,
17,
665-673.
|
 |
|
|
|
|
 |
P.van Kerkhof,
J.Putters,
and
G.J.Strous
(2007).
The ubiquitin ligase SCF(betaTrCP) regulates the degradation of the growth hormone receptor.
|
| |
J Biol Chem,
282,
20475-20483.
|
 |
|
|
|
|
 |
S.D.Taverna,
H.Li,
A.J.Ruthenburg,
C.D.Allis,
and
D.J.Patel
(2007).
How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers.
|
| |
Nat Struct Mol Biol,
14,
1025-1040.
|
 |
|
|
|
|
 |
S.Xu,
M.Abbasian,
P.Patel,
K.Jensen-Pergakes,
C.R.Lombardo,
B.E.Cathers,
W.Xie,
F.Mercurio,
M.Pagano,
D.Giegel,
and
S.Cox
(2007).
Substrate recognition and ubiquitination of SCFSkp2/Cks1 ubiquitin-protein isopeptide ligase.
|
| |
J Biol Chem,
282,
15462-15470.
|
 |
|
|
|
|
 |
T.Cardozo,
and
M.Pagano
(2007).
Wrenches in the works: drug discovery targeting the SCF ubiquitin ligase and APC/C complexes.
|
| |
BMC Biochem,
8,
S9.
|
 |
|
|
|
|
 |
T.Hunter
(2007).
The age of crosstalk: phosphorylation, ubiquitination, and beyond.
|
| |
Mol Cell,
28,
730-738.
|
 |
|
|
|
|
 |
T.Mizushima,
Y.Yoshida,
T.Kumanomidou,
Y.Hasegawa,
A.Suzuki,
T.Yamane,
and
K.Tanaka
(2007).
Structural basis for the selection of glycosylated substrates by SCF(Fbs1) ubiquitin ligase.
|
| |
Proc Natl Acad Sci U S A,
104,
5777-5781.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
X.Tang,
S.Orlicky,
Z.Lin,
A.Willems,
D.Neculai,
D.Ceccarelli,
F.Mercurio,
B.H.Shilton,
F.Sicheri,
and
M.Tyers
(2007).
Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination.
|
| |
Cell,
129,
1165-1176.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Chen
(2007).
The enzymes in ubiquitin-like post-translational modifications.
|
| |
Biosci Trends,
1,
16-25.
|
 |
|
|
|
|
 |
Y.Yoshida,
A.Murakami,
K.Iwai,
and
K.Tanaka
(2007).
A neural-specific F-box protein Fbs1 functions as a chaperone suppressing glycoprotein aggregation.
|
| |
J Biol Chem,
282,
7137-7144.
|
 |
|
|
|
|
 |
Z.Han,
X.Xing,
M.Hu,
Y.Zhang,
P.Liu,
and
J.Chai
(2007).
Structural basis of EZH2 recognition by EED.
|
| |
Structure,
15,
1306-1315.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.A.Yunus,
and
C.D.Lima
(2006).
Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway.
|
| |
Nat Struct Mol Biol,
13,
491-499.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.M.Gurtan,
P.Stuckert,
and
A.D.D'Andrea
(2006).
The WD40 repeats of FANCL are required for Fanconi anemia core complex assembly.
|
| |
J Biol Chem,
281,
10896-10905.
|
 |
|
|
|
|
 |
A.Peschiaroli,
N.V.Dorrello,
D.Guardavaccaro,
M.Venere,
T.Halazonetis,
N.E.Sherman,
and
M.Pagano
(2006).
SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response.
|
| |
Mol Cell,
23,
319-329.
|
 |
|
|
|
|
 |
B.A.Appleton,
P.Wu,
and
C.Wiesmann
(2006).
The crystal structure of murine coronin-1: a regulator of actin cytoskeletal dynamics in lymphocytes.
|
| |
Structure,
14,
87-96.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.H.Jennings,
L.M.Pickles,
S.M.Wainwright,
S.M.Roe,
L.H.Pearl,
and
D.Ish-Horowicz
(2006).
Molecular recognition of transcriptional repressor motifs by the WD domain of the Groucho/TLE corepressor.
|
| |
Mol Cell,
22,
645-655.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.W.Vander Kooi,
M.D.Ohi,
J.A.Rosenberg,
M.L.Oldham,
M.E.Newcomer,
K.L.Gould,
and
W.J.Chazin
(2006).
The Prp19 U-box crystal structure suggests a common dimeric architecture for a class of oligomeric E3 ubiquitin ligases.
|
| |
Biochemistry,
45,
121-130.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Ju,
and
Y.Xie
(2006).
Identification of the preferential ubiquitination site and ubiquitin-dependent degradation signal of Rpn4.
|
| |
J Biol Chem,
281,
10657-10662.
|
 |
|
|
|
|
 |
D.Kimelman,
and
W.Xu
(2006).
beta-catenin destruction complex: insights and questions from a structural perspective.
|
| |
Oncogene,
25,
7482-7491.
|
 |
|
|
|
|
 |
D.Tempé,
M.Casas,
S.Karaz,
M.F.Blanchet-Tournier,
and
J.P.Concordet
(2006).
Multisite protein kinase A and glycogen synthase kinase 3beta phosphorylation leads to Gli3 ubiquitination by SCFbetaTrCP.
|
| |
Mol Cell Biol,
26,
4316-4326.
|
 |
|
|
|
|
 |
G.Nalepa,
M.Rolfe,
and
J.W.Harper
(2006).
Drug discovery in the ubiquitin-proteasome system.
|
| |
Nat Rev Drug Discov,
5,
596-613.
|
 |
|
|
|
|
 |
I.S.Winer,
G.T.Bommer,
N.Gonik,
and
E.R.Fearon
(2006).
Lysine residues Lys-19 and Lys-49 of beta-catenin regulate its levels and function in T cell factor transcriptional activation and neoplastic transformation.
|
| |
J Biol Chem,
281,
26181-26187.
|
 |
|
|
|
|
 |
J.F.Couture,
E.Collazo,
and
R.C.Trievel
(2006).
Molecular recognition of histone H3 by the WD40 protein WDR5.
|
| |
Nat Struct Mol Biol,
13,
698-703.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.S.Woo,
H.Y.Suh,
S.Y.Park,
and
B.H.Oh
(2006).
Structural basis for protein recognition by B30.2/SPRY domains.
|
| |
Mol Cell,
24,
967-976.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.I.Tong,
A.Kobayashi,
F.Katsuoka,
and
M.Yamamoto
(2006).
Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism.
|
| |
Biol Chem,
387,
1311-1320.
|
 |
|
|
|
|
 |
M.D.Petroski,
G.Kleiger,
and
R.J.Deshaies
(2006).
Evaluation of a diffusion-driven mechanism for substrate ubiquitination by the SCF-Cdc34 ubiquitin ligase complex.
|
| |
Mol Cell,
24,
523-534.
|
 |
|
|
|
|
 |
M.G.Smelkinson,
and
D.Kalderon
(2006).
Processing of the Drosophila hedgehog signaling effector Ci-155 to the repressor Ci-75 is mediated by direct binding to the SCF component Slimb.
|
| |
Curr Biol,
16,
110-116.
|
 |
|
|
|
|
 |
M.McMahon,
N.Thomas,
K.Itoh,
M.Yamamoto,
and
J.D.Hayes
(2006).
Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a "tethering" mechanism: a two-site interaction model for the Nrf2-Keap1 complex.
|
| |
J Biol Chem,
281,
24756-24768.
|
 |
|
|
|
|
 |
S.C.Lo,
and
M.Hannink
(2006).
PGAM5, a Bcl-XL-interacting protein, is a novel substrate for the redox-regulated Keap1-dependent ubiquitin ligase complex.
|
| |
J Biol Chem,
281,
37893-37903.
|
 |
|
|
|
|
 |
S.C.Lo,
X.Li,
M.T.Henzl,
L.J.Beamer,
and
M.Hannink
(2006).
Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling.
|
| |
EMBO J,
25,
3605-3617.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.F.Li,
D.Chen,
Q.Wu,
M.Chen,
T.J.Sheu,
E.M.Schwarz,
H.Drissi,
M.Zuscik,
and
R.J.O'Keefe
(2006).
Transforming growth factor-beta stimulates cyclin D1 expression through activation of beta-catenin signaling in chondrocytes.
|
| |
J Biol Chem,
281,
21296-21304.
|
 |
|
|
|
|
 |
Z.Han,
L.Guo,
H.Wang,
Y.Shen,
X.W.Deng,
and
J.Chai
(2006).
Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5.
|
| |
Mol Cell,
22,
137-144.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Z.Liu,
and
R.A.Butow
(2006).
Mitochondrial retrograde signaling.
|
| |
Annu Rev Genet,
40,
159-185.
|
 |
|
|
|
|
 |
B.Hao,
N.Zheng,
B.A.Schulman,
G.Wu,
J.J.Miller,
M.Pagano,
and
N.P.Pavletich
(2005).
Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase.
|
| |
Mol Cell,
20,
9.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.J.Gingerich,
J.M.Gagne,
D.W.Salter,
H.Hellmann,
M.Estelle,
L.Ma,
and
R.D.Vierstra
(2005).
Cullins 3a and 3b assemble with members of the broad complex/tramtrack/bric-a-brac (BTB) protein family to form essential ubiquitin-protein ligases (E3s) in Arabidopsis.
|
| |
J Biol Chem,
280,
18810-18821.
|
 |
|
|
|
|
 |
D.T.Huang,
A.Paydar,
M.Zhuang,
M.B.Waddell,
J.M.Holton,
and
B.A.Schulman
(2005).
Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1.
|
| |
Mol Cell,
17,
341-350.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Ungermannova,
Y.Gao,
and
X.Liu
(2005).
Ubiquitination of p27Kip1 requires physical interaction with cyclin E and probable phosphate recognition by SKP2.
|
| |
J Biol Chem,
280,
30301-30309.
|
 |
|
|
|
|
 |
E.J.Eide,
M.F.Woolf,
H.Kang,
P.Woolf,
W.Hurst,
F.Camacho,
E.L.Vielhaber,
A.Giovanni,
and
D.M.Virshup
(2005).
Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation.
|
| |
Mol Cell Biol,
25,
2795-2807.
|
 |
|
|
|
|
 |
E.Provost,
A.McCabe,
J.Stern,
I.Lizardi,
T.G.D'Aquila,
and
D.L.Rimm
(2005).
Functional correlates of mutation of the Asp32 and Gly34 residues of beta-catenin.
|
| |
Oncogene,
24,
2667-2676.
|
 |
|
|
|
|
 |
H.Ishikawa,
M.Kato,
H.Hori,
K.Ishimori,
T.Kirisako,
F.Tokunaga,
and
K.Iwai
(2005).
Involvement of heme regulatory motif in heme-mediated ubiquitination and degradation of IRP2.
|
| |
Mol Cell,
19,
171-181.
|
 |
|
|
|
|
 |
I.Lassot,
E.Estrabaud,
S.Emiliani,
M.Benkirane,
R.Benarous,
and
F.Margottin-Goguet
(2005).
p300 modulates ATF4 stability and transcriptional activity independently of its acetyltransferase domain.
|
| |
J Biol Chem,
280,
41537-41545.
|
 |
|
|
|
|
 |
L.E.Brunson,
C.Dixon,
A.LeFebvre,
L.Sun,
and
N.Mathias
(2005).
Identification of residues in the WD-40 repeat motif of the F-box protein Met30p required for interaction with its substrate Met4p.
|
| |
Mol Genet Genomics,
273,
361-370.
|
 |
|
|
|
|
 |
M.D.Ohi,
C.W.Vander Kooi,
J.A.Rosenberg,
L.Ren,
J.P.Hirsch,
W.J.Chazin,
T.Walz,
and
K.L.Gould
(2005).
Structural and functional analysis of essential pre-mRNA splicing factor Prp19p.
|
| |
Mol Cell Biol,
25,
451-460.
|
 |
|
|
|
|
 |
M.D.Petroski,
and
R.J.Deshaies
(2005).
Function and regulation of cullin-RING ubiquitin ligases.
|
| |
Nat Rev Mol Cell Biol,
6,
9.
|
 |
|
|
|
|
 |
M.D.Petroski,
and
R.J.Deshaies
(2005).
Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34.
|
| |
Cell,
123,
1107-1120.
|
 |
|
|
|
|
 |
M.Dentice,
A.Bandyopadhyay,
B.Gereben,
I.Callebaut,
M.A.Christoffolete,
B.W.Kim,
S.Nissim,
J.P.Mornon,
A.M.Zavacki,
A.Zeöld,
L.P.Capelo,
C.Curcio-Morelli,
R.Ribeiro,
J.W.Harney,
C.J.Tabin,
and
A.C.Bianco
(2005).
The Hedgehog-inducible ubiquitin ligase subunit WSB-1 modulates thyroid hormone activation and PTHrP secretion in the developing growth plate.
|
| |
Nat Cell Biol,
7,
698-705.
|
 |
|
|
|
|
 |
N.Watanabe,
H.Arai,
J.Iwasaki,
M.Shiina,
K.Ogata,
T.Hunter,
and
H.Osada
(2005).
Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Wee1 via multiple pathways.
|
| |
Proc Natl Acad Sci U S A,
102,
11663-11668.
|
 |
|
|
|
|
 |
P.J.Stogios,
G.S.Downs,
J.J.Jauhal,
S.K.Nandra,
and
G.G.Privé
(2005).
Sequence and structural analysis of BTB domain proteins.
|
| |
Genome Biol,
6,
R82.
|
 |
|
|
|
|
 |
P.Zhou
(2005).
Targeted protein degradation.
|
| |
Curr Opin Chem Biol,
9,
51-55.
|
 |
|
|
|
|
 |
R.Barbey,
P.Baudouin-Cornu,
T.A.Lee,
A.Rouillon,
P.Zarzov,
M.Tyers,
and
D.Thomas
(2005).
Inducible dissociation of SCF(Met30) ubiquitin ligase mediates a rapid transcriptional response to cadmium.
|
| |
EMBO J,
24,
521-532.
|
 |
|
|
|
|
 |
R.S.Carter,
K.N.Pennington,
P.Arrate,
E.M.Oltz,
and
D.W.Ballard
(2005).
Site-specific monoubiquitination of IkappaB kinase IKKbeta regulates its phosphorylation and persistent activation.
|
| |
J Biol Chem,
280,
43272-43279.
|
 |
|
|
|
|
 |
S.Matsuzawa,
M.Cuddy,
T.Fukushima,
and
J.C.Reed
(2005).
Method for targeting protein destruction by using a ubiquitin-independent, proteasome-mediated degradation pathway.
|
| |
Proc Natl Acad Sci U S A,
102,
14982-14987.
|
 |
|
|
|
|
 |
S.Megy,
G.Bertho,
J.Gharbi-Benarous,
N.Evrard-Todeschi,
G.Coadou,
E.Ségéral,
C.Iehle,
E.Quéméneur,
R.Benarous,
and
J.P.Girault
(2005).
STD and TRNOESY NMR studies on the conformation of the oncogenic protein beta-catenin containing the phosphorylated motif DpSGXXpS bound to the beta-TrCP protein.
|
| |
J Biol Chem,
280,
29107-29116.
|
 |
|
|
|
|
 |
T.Shirogane,
J.Jin,
X.L.Ang,
and
J.W.Harper
(2005).
SCFbeta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein.
|
| |
J Biol Chem,
280,
26863-26872.
|
 |
|
|
|
|
 |
X.L.Ang,
and
J.Wade Harper
(2005).
SCF-mediated protein degradation and cell cycle control.
|
| |
Oncogene,
24,
2860-2870.
|
 |
|
|
|
|
 |
Y.Kanemori,
K.Uto,
and
N.Sagata
(2005).
Beta-TrCP recognizes a previously undescribed nonphosphorylated destruction motif in Cdc25A and Cdc25B phosphatases.
|
| |
Proc Natl Acad Sci U S A,
102,
6279-6284.
|
 |
|
|
|
|
 |
D.D.Zhang,
S.C.Lo,
J.V.Cross,
D.J.Templeton,
and
M.Hannink
(2004).
Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex.
|
| |
Mol Cell Biol,
24,
10941-10953.
|
 |
|
|
|
|
 |
D.Garcin,
J.B.Marq,
F.Iseni,
S.Martin,
and
D.Kolakofsky
(2004).
A short peptide at the amino terminus of the Sendai virus C protein acts as an independent element that induces STAT1 instability.
|
| |
J Virol,
78,
8799-8811.
|
 |
|
|
|
|
 |
D.V.Hansen,
A.V.Loktev,
K.H.Ban,
and
P.K.Jackson
(2004).
Plk1 regulates activation of the anaphase promoting complex by phosphorylating and triggering SCFbetaTrCP-dependent destruction of the APC Inhibitor Emi1.
|
| |
Mol Biol Cell,
15,
5623-5634.
|
 |
|
|
|
|
 |
E.Chiari,
I.Lamsoul,
J.Lodewick,
C.Chopin,
F.Bex,
and
C.Pique
(2004).
Stable ubiquitination of human T-cell leukemia virus type 1 tax is required for proteasome binding.
|
| |
J Virol,
78,
11823-11832.
|
 |
|
|
|
|
 |
G.Wu,
C.Liu,
and
X.He
(2004).
Ozz; a new name on the long list of beta-catenin's nemeses.
|
| |
Mol Cell,
13,
451-453.
|
 |
|
|
|
|
 |
J.Shackelford,
and
J.S.Pagano
(2004).
Tumor viruses and cell signaling pathways: deubiquitination versus ubiquitination.
|
| |
Mol Cell Biol,
24,
5089-5093.
|
 |
|
|
|
|
 |
J.Smalle,
and
R.D.Vierstra
(2004).
The ubiquitin 26S proteasome proteolytic pathway.
|
| |
Annu Rev Plant Biol,
55,
555-590.
|
 |
|
|
|
|
 |
K.G.Kumar,
J.J.Krolewski,
and
S.Y.Fuchs
(2004).
Phosphorylation and specific ubiquitin acceptor sites are required for ubiquitination and degradation of the IFNAR1 subunit of type I interferon receptor.
|
| |
J Biol Chem,
279,
46614-46620.
|
 |
|
|
|
|
 |
L.Wang,
X.Mao,
D.Ju,
and
Y.Xie
(2004).
Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase.
|
| |
J Biol Chem,
279,
55218-55223.
|
 |
|
|
|
|
 |
M.Goto,
and
E.M.Eddy
(2004).
Speriolin is a novel spermatogenic cell-specific centrosomal protein associated with the seventh WD motif of Cdc20.
|
| |
J Biol Chem,
279,
42128-42138.
|
 |
|
|
|
|
 |
N.Watanabe,
H.Arai,
Y.Nishihara,
M.Taniguchi,
N.Watanabe,
T.Hunter,
and
H.Osada
(2004).
M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP.
|
| |
Proc Natl Acad Sci U S A,
101,
4419-4424.
|
 |
|
|
|
|
 |
P.Coulombe,
G.Rodier,
E.Bonneil,
P.Thibault,
and
S.Meloche
(2004).
N-Terminal ubiquitination of extracellular signal-regulated kinase 3 and p21 directs their degradation by the proteasome.
|
| |
Mol Cell Biol,
24,
6140-6150.
|
 |
|
|
|
|
 |
S.J.Goldenberg,
T.C.Cascio,
S.D.Shumway,
K.C.Garbutt,
J.Liu,
Y.Xiong,
and
N.Zheng
(2004).
Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases.
|
| |
Cell,
119,
517-528.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.O'Connor,
S.D.Shumway,
I.J.Amanna,
C.E.Hayes,
and
S.Miyamoto
(2004).
Regulation of constitutive p50/c-Rel activity via proteasome inhibitor-resistant IkappaBalpha degradation in B cells.
|
| |
Mol Cell Biol,
24,
4895-4908.
|
 |
|
|
|
|
 |
T.Cardozo,
and
M.Pagano
(2004).
The SCF ubiquitin ligase: insights into a molecular machine.
|
| |
Nat Rev Mol Cell Biol,
5,
739-751.
|
 |
|
|
|
|
 |
T.Mizushima,
T.Hirao,
Y.Yoshida,
S.J.Lee,
T.Chiba,
K.Iwai,
Y.Yamaguchi,
K.Kato,
T.Tsukihara,
and
K.Tanaka
(2004).
Structural basis of sugar-recognizing ubiquitin ligase.
|
| |
Nat Struct Mol Biol,
11,
365-370.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
V.Perissi,
A.Aggarwal,
C.K.Glass,
D.W.Rose,
and
M.G.Rosenfeld
(2004).
A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors.
|
| |
Cell,
116,
511-526.
|
 |
|
|
|
|
 |
X.Li,
D.Zhang,
M.Hannink,
and
L.J.Beamer
(2004).
Crystallization and initial crystallographic analysis of the Kelch domain from human Keap1.
|
| |
Acta Crystallogr D Biol Crystallogr,
60,
2346-2348.
|
 |
|
|
|
|
 |
X.Li,
D.Zhang,
M.Hannink,
and
L.J.Beamer
(2004).
Crystal structure of the Kelch domain of human Keap1.
|
| |
J Biol Chem,
279,
54750-54758.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
X.Ye,
G.Nalepa,
M.Welcker,
B.M.Kessler,
E.Spooner,
J.Qin,
S.J.Elledge,
B.E.Clurman,
and
J.W.Harper
(2004).
Recognition of phosphodegron motifs in human cyclin E by the SCF(Fbw7) ubiquitin ligase.
|
| |
J Biol Chem,
279,
50110-50119.
|
 |
|
|
|
|
 |
Y.Li,
S.Gazdoiu,
Z.Q.Pan,
and
S.Y.Fuchs
(2004).
Stability of homologue of Slimb F-box protein is regulated by availability of its substrate.
|
| |
J Biol Chem,
279,
11074-11080.
|
 |
|
|
|
|
 |
Z.Cheng,
Y.Liu,
C.Wang,
R.Parker,
and
H.Song
(2004).
Crystal structure of Ski8p, a WD-repeat protein with dual roles in mRNA metabolism and meiotic recombination.
|
| |
Protein Sci,
13,
2673-2684.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.A.Cope,
and
R.J.Deshaies
(2003).
COP9 signalosome: a multifunctional regulator of SCF and other cullin-based ubiquitin ligases.
|
| |
Cell,
114,
663-671.
|
 |
|
|
|
|
 |
J.Jin,
T.Shirogane,
L.Xu,
G.Nalepa,
J.Qin,
S.J.Elledge,
and
J.W.Harper
(2003).
SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase.
|
| |
Genes Dev,
17,
3062-3074.
|
 |
|
|
|
|
 |
J.Zhang,
N.Zheng,
and
P.Zhou
(2003).
Exploring the functional complexity of cellular proteins by protein knockout.
|
| |
Proc Natl Acad Sci U S A,
100,
14127-14132.
|
 |
|
|
|
|
 |
L.Busino,
M.Donzelli,
M.Chiesa,
D.Guardavaccaro,
D.Ganoth,
N.V.Dorrello,
A.Hershko,
M.Pagano,
and
G.F.Draetta
(2003).
Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage.
|
| |
Nature,
426,
87-91.
|
 |
|
|
|
|
 |
W.Tang,
O.A.Pavlish,
V.S.Spiegelman,
A.A.Parkhitko,
and
S.Y.Fuchs
(2003).
Interaction of Epstein-Barr virus latent membrane protein 1 with SCFHOS/beta-TrCP E3 ubiquitin ligase regulates extent of NF-kappaB activation.
|
| |
J Biol Chem,
278,
48942-48949.
|
 |
|
|
|
|
 |
Y.Su,
S.Ishikawa,
M.Kojima,
and
B.Liu
(2003).
Eradication of pathogenic beta-catenin by Skp1/Cullin/F box ubiquitination machinery.
|
| |
Proc Natl Acad Sci U S A,
100,
12729-12734.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |
|