 |
PDBsum entry 1oxt
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Transport protein
|
PDB id
|
|
|
|
1oxt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Transport protein
|
 |
|
Title:
|
 |
Crystal structure of glcv, the abc-atpase of the glucose abc transporter from sulfolobus solfataricus
|
|
Structure:
|
 |
Abc transporter, atp binding protein. Chain: a, b, d. Synonym: glcv, glucose. Engineered: yes
|
|
Source:
|
 |
Sulfolobus solfataricus. Organism_taxid: 2287. Gene: glcv. Expressed in: escherichia coli. Expression_system_taxid: 562.
|
|
Resolution:
|
 |
|
2.10Å
|
R-factor:
|
0.217
|
R-free:
|
0.275
|
|
|
Authors:
|
 |
G.Verdon,S.V.Albers,B.W.Dijkstra,A.J.Driessen,A.M.Thunnissen
|
Key ref:
|
 |
G.Verdon
et al.
(2003).
Crystal structures of the ATPase subunit of the glucose ABC transporter from Sulfolobus solfataricus: nucleotide-free and nucleotide-bound conformations.
J Mol Biol,
330,
343-358.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
03-Apr-03
|
Release date:
|
17-Jun-03
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
Q97UY8
(Q97UY8_SULSO) -
Glucose import ATP-binding protein GlcV from Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
353 a.a.
352 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
 |
Secondary structure |
 |
 |
CATH domain |
 |
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
J Mol Biol
330:343-358
(2003)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structures of the ATPase subunit of the glucose ABC transporter from Sulfolobus solfataricus: nucleotide-free and nucleotide-bound conformations.
|
|
G.Verdon,
S.V.Albers,
B.W.Dijkstra,
A.J.Driessen,
A.M.Thunnissen.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The ABC-ATPase GlcV energizes a binding protein-dependent ABC transporter that
mediates glucose uptake in Sulfolobus solfataricus. Here, we report
high-resolution crystal structures of GlcV in different states along its
catalytic cycle: distinct monomeric nucleotide-free states and monomeric
complexes with ADP-Mg(2+) as a product-bound state, and with AMPPNP-Mg(2+) as an
ATP-like bound state. The structure of GlcV consists of a typical ABC-ATPase
domain, comprising two subdomains, connected by a linker region to a C-terminal
domain of unknown function. Comparisons of the nucleotide-free and
nucleotide-bound structures of GlcV reveal re-orientations of the ABCalpha
subdomain and the C-terminal domain relative to the ABCalpha/beta subdomain, and
switch-like rearrangements in the P-loop and Q-loop regions. Additionally, large
conformational differences are observed between the GlcV structures and those of
other ABC-ATPases, further emphasizing the inherent flexibility of these
proteins. Notably, a comparison of the monomeric AMPPNP-Mg(2+)-bound GlcV
structure with that of the dimeric ATP-Na(+)-bound LolD-E171Q mutant reveals a
+/-20 degrees rigid body re-orientation of the ABCalpha subdomain relative to
the ABCalpha/beta subdomain, accompanied by a local conformational difference in
the Q-loop. We propose that these differences represent conformational changes
that may have a role in the mechanism of energy-transduction and/or allosteric
control of the ABC-ATPase activity in bacterial importers.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 3.
Figure 3. Stereo views of the nucleotide-binding site of
GlcV in (a) nucleotide-free form A, (b) nucleotide-free form B,
(c) the GlcV-ADP-Mg2+ complex and (d) the GlcV-AMPPNP-Mg2+
complex. For the complexes, a portion of a 2F[o] -F[c] simulated
annealing electron density omit map[63.] is shown, contoured at
1s and covering the nucleotide, the magnesium ion and its
coordinating water molecules. Residues and ligands in the
nucleotide-binding site are shown in ball-and-stick
representation. The P-loop is coloured in purple.
|
 |
Figure 4.
Figure 4. A representation of the interactions stabilizing
the nucleotide, the magnesium ion and its coordinating water
molecules (red dots) in (a) the GlcV-ADP-Mg2+ complex and (b)
the GlcV-AMPPNP-Mg2+ complex. Distances are in Å and
residue colouring is identical with that used in Figure 1 and
Figure 2.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Elsevier:
J Mol Biol
(2003,
330,
343-358)
copyright 2003.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
R.Yang,
Y.X.Hou,
C.A.Campbell,
K.Palaniyandi,
Q.Zhao,
A.J.Bordner,
and
X.B.Chang
(2011).
Glutamine residues in Q-loops of multidrug resistance protein MRP1 contribute to ATP binding via interaction with metal cofactor.
|
| |
Biochim Biophys Acta,
1808,
1790-1796.
|
 |
|
|
|
|
 |
M.Haffke,
A.Menzel,
Y.Carius,
D.Jahn,
and
D.W.Heinz
(2010).
Structures of the nucleotide-binding domain of the human ABCB6 transporter and its complexes with nucleotides.
|
| |
Acta Crystallogr D Biol Crystallogr,
66,
979-987.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.V.Cideciyan,
M.Swider,
T.S.Aleman,
Y.Tsybovsky,
S.B.Schwartz,
E.A.Windsor,
A.J.Roman,
A.Sumaroka,
J.D.Steinberg,
S.G.Jacobson,
E.M.Stone,
and
K.Palczewski
(2009).
ABCA4 disease progression and a proposed strategy for gene therapy.
|
| |
Hum Mol Genet,
18,
931-941.
|
 |
|
|
|
|
 |
D.Muallem,
and
P.Vergani
(2009).
Review. ATP hydrolysis-driven gating in cystic fibrosis transmembrane conductance regulator.
|
| |
Philos Trans R Soc Lond B Biol Sci,
364,
247-255.
|
 |
|
|
|
|
 |
J.P.Mornon,
P.Lehn,
and
I.Callebaut
(2009).
Molecular models of the open and closed states of the whole human CFTR protein.
|
| |
Cell Mol Life Sci,
66,
3469-3486.
|
 |
|
|
|
|
 |
P.M.Jones,
and
A.M.George
(2009).
Opening of the ADP-bound active site in the ABC transporter ATPase dimer: evidence for a constant contact, alternating sites model for the catalytic cycle.
|
| |
Proteins,
75,
387-396.
|
 |
|
|
|
|
 |
Y.X.Hou,
C.Z.Li,
K.Palaniyandi,
P.M.Magtibay,
L.Homolya,
B.Sarkadi,
and
X.B.Chang
(2009).
Effects of putative catalytic base mutation E211Q on ABCG2-mediated methotrexate transport.
|
| |
Biochemistry,
48,
9122-9131.
|
 |
|
|
|
|
 |
A.L.Davidson,
E.Dassa,
C.Orelle,
and
J.Chen
(2008).
Structure, function, and evolution of bacterial ATP-binding cassette systems.
|
| |
Microbiol Mol Biol Rev,
72,
317.
|
 |
|
|
|
|
 |
A.S.Ethayathulla,
Y.Bessho,
A.Shinkai,
B.Padmanabhan,
T.P.Singh,
P.Kaur,
and
S.Yokoyama
(2008).
Purification, crystallization and preliminary X-ray diffraction analysis of the putative ABC transporter ATP-binding protein from Thermotoga maritima.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
64,
498-500.
|
 |
|
|
|
|
 |
C.Oswald,
S.H.Smits,
E.Bremer,
and
L.Schmitt
(2008).
Microseeding - a powerful tool for crystallizing proteins complexed with hydrolyzable substrates.
|
| |
Int J Mol Sci,
9,
1131-1141.
|
 |
|
|
|
|
 |
I.Carrier,
and
P.Gros
(2008).
Investigating the role of the invariant carboxylate residues E552 and E1197 in the catalytic activity of Abcb1a (mouse Mdr3).
|
| |
FEBS J,
275,
3312-3324.
|
 |
|
|
|
|
 |
J.Weng,
J.Ma,
K.Fan,
and
W.Wang
(2008).
The conformational coupling and translocation mechanism of vitamin B12 ATP-binding cassette transporter BtuCD.
|
| |
Biophys J,
94,
612-621.
|
 |
|
|
|
|
 |
K.M.Westfahl,
J.A.Merten,
A.H.Buchaklian,
and
C.S.Klug
(2008).
Functionally important ATP binding and hydrolysis sites in Escherichia coli MsbA.
|
| |
Biochemistry,
47,
13878-13886.
|
 |
|
|
|
|
 |
P.C.Wen,
and
E.Tajkhorshid
(2008).
Dimer opening of the nucleotide binding domains of ABC transporters after ATP hydrolysis.
|
| |
Biophys J,
95,
5100-5110.
|
 |
|
|
|
|
 |
R.Yang,
R.Scavetta,
and
X.B.Chang
(2008).
The hydroxyl group of S685 in Walker A motif and the carboxyl group of D792 in Walker B motif of NBD1 play a crucial role for multidrug resistance protein folding and function.
|
| |
Biochim Biophys Acta,
1778,
454-465.
|
 |
|
|
|
|
 |
Y.Shi,
X.Chen,
Z.Wu,
W.Shi,
Y.Yang,
N.Cui,
C.Jiang,
and
R.W.Harrison
(2008).
cAMP-dependent protein kinase phosphorylation produces interdomain movement in SUR2B leading to activation of the vascular KATP channel.
|
| |
J Biol Chem,
283,
7523-7530.
|
 |
|
|
|
|
 |
C.A.McDevitt,
and
R.Callaghan
(2007).
How can we best use structural information on P-glycoprotein to design inhibitors?
|
| |
Pharmacol Ther,
113,
429-441.
|
 |
|
|
|
|
 |
K.J.Linton,
and
C.F.Higgins
(2007).
Structure and function of ABC transporters: the ATP switch provides flexible control.
|
| |
Pflugers Arch,
453,
555-567.
|
 |
|
|
|
|
 |
M.Herget,
and
R.Tampé
(2007).
Intracellular peptide transporters in human--compartmentalization of the "peptidome".
|
| |
Pflugers Arch,
453,
591-600.
|
 |
|
|
|
|
 |
P.M.Jones,
and
A.M.George
(2007).
Nucleotide-dependent allostery within the ABC transporter ATP-binding cassette: a computational study of the MJ0796 dimer.
|
| |
J Biol Chem,
282,
22793-22803.
|
 |
|
|
|
|
 |
S.J.Lee,
A.Böhm,
M.Krug,
and
W.Boos
(2007).
The ABC of binding-protein-dependent transport in Archaea.
|
| |
Trends Microbiol,
15,
389-397.
|
 |
|
|
|
|
 |
T.Prakash,
K.S.Sandhu,
N.K.Singh,
Y.Bhasin,
C.Ramakrishnan,
and
S.K.Brahmachari
(2007).
Structural assessment of glycyl mutations in invariantly conserved motifs.
|
| |
Proteins,
69,
617-632.
|
 |
|
|
|
|
 |
X.B.Chang
(2007).
A molecular understanding of ATP-dependent solute transport by multidrug resistance-associated protein MRP1.
|
| |
Cancer Metastasis Rev,
26,
15-37.
|
 |
|
|
|
|
 |
C.Oswald,
I.B.Holland,
and
L.Schmitt
(2006).
The motor domains of ABC-transporters. What can structures tell us?
|
| |
Naunyn Schmiedebergs Arch Pharmacol,
372,
385-399.
|
 |
|
|
|
|
 |
D.W.Zhang,
G.A.Graf,
R.D.Gerard,
J.C.Cohen,
and
H.H.Hobbs
(2006).
Functional asymmetry of nucleotide-binding domains in ABCG5 and ABCG8.
|
| |
J Biol Chem,
281,
4507-4516.
|
 |
|
|
|
|
 |
E.O.Oloo,
E.Y.Fung,
and
D.P.Tieleman
(2006).
The dynamics of the MgATP-driven closure of MalK, the energy-transducing subunit of the maltose ABC transporter.
|
| |
J Biol Chem,
281,
28397-28407.
|
 |
|
|
|
|
 |
J.M.Lubelska,
M.Jonuscheit,
C.Schleper,
S.V.Albers,
and
A.J.Driessen
(2006).
Regulation of expression of the arabinose and glucose transporter genes in the thermophilic archaeon Sulfolobus solfataricus.
|
| |
Extremophiles,
10,
383-391.
|
 |
|
|
|
|
 |
J.Zaitseva,
C.Oswald,
T.Jumpertz,
S.Jenewein,
A.Wiedenmann,
I.B.Holland,
and
L.Schmitt
(2006).
A structural analysis of asymmetry required for catalytic activity of an ABC-ATPase domain dimer.
|
| |
EMBO J,
25,
3432-3443.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Mense,
P.Vergani,
D.M.White,
G.Altberg,
A.C.Nairn,
and
D.C.Gadsby
(2006).
In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer.
|
| |
EMBO J,
25,
4728-4739.
|
 |
|
|
|
|
 |
X.Guo,
R.W.Harrison,
and
P.C.Tai
(2006).
Nucleotide-dependent dimerization of the C-terminal domain of the ABC transporter CvaB in colicin V secretion.
|
| |
J Bacteriol,
188,
2383-2391.
|
 |
|
|
|
|
 |
X.Guo,
X.Chen,
I.T.Weber,
R.W.Harrison,
and
P.C.Tai
(2006).
Molecular basis for differential nucleotide binding of the nucleotide-binding domain of ABC-transporter CvaB.
|
| |
Biochemistry,
45,
14473-14480.
|
 |
|
|
|
|
 |
Y.Ito,
H.Matsuzawa,
S.Matsuyama,
S.Narita,
and
H.Tokuda
(2006).
Genetic analysis of the mode of interplay between an ATPase subunit and membrane subunits of the lipoprotein-releasing ATP-binding cassette transporter LolCDE.
|
| |
J Bacteriol,
188,
2856-2864.
|
 |
|
|
|
|
 |
Y.Ito,
K.Kanamaru,
N.Taniguchi,
S.Miyamoto,
and
H.Tokuda
(2006).
A novel ligand bound ABC transporter, LolCDE, provides insights into the molecular mechanisms underlying membrane detachment of bacterial lipoproteins.
|
| |
Mol Microbiol,
62,
1064-1075.
|
 |
|
|
|
|
 |
A.Karcher,
K.Büttner,
B.Märtens,
R.P.Jansen,
and
K.P.Hopfner
(2005).
X-ray structure of RLI, an essential twin cassette ABC ATPase involved in ribosome biogenesis and HIV capsid assembly.
|
| |
Structure,
13,
649-659.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Pohorille,
K.Schweighofer,
and
M.A.Wilson
(2005).
The origin and early evolution of membrane channels.
|
| |
Astrobiology,
5,
1.
|
 |
|
|
|
|
 |
D.J.Schmidt,
D.J.Rose,
W.M.Saxton,
and
S.Strome
(2005).
Functional analysis of cytoplasmic dynein heavy chain in Caenorhabditis elegans with fast-acting temperature-sensitive mutations.
|
| |
Mol Biol Cell,
16,
1200-1212.
|
 |
|
|
|
|
 |
G.Lu,
J.M.Westbrooks,
A.L.Davidson,
and
J.Chen
(2005).
ATP hydrolysis is required to reset the ATP-binding cassette dimer into the resting-state conformation.
|
| |
Proc Natl Acad Sci U S A,
102,
17969-17974.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Zaitseva,
S.Jenewein,
T.Jumpertz,
I.B.Holland,
and
L.Schmitt
(2005).
H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB.
|
| |
EMBO J,
24,
1901-1910.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.Csanády,
K.W.Chan,
A.C.Nairn,
and
D.C.Gadsby
(2005).
Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain.
|
| |
J Gen Physiol,
125,
43-55.
|
 |
|
|
|
|
 |
L.Cuthbertson,
J.Powers,
and
C.Whitfield
(2005).
The C-terminal domain of the nucleotide-binding domain protein Wzt determines substrate specificity in the ATP-binding cassette transporter for the lipopolysaccharide O-antigens in Escherichia coli serotypes O8 and O9a.
|
| |
J Biol Chem,
280,
30310-30319.
|
 |
|
|
|
|
 |
O.Dalmas,
C.Orelle,
A.E.Foucher,
C.Geourjon,
S.Crouzy,
A.Di Pietro,
and
J.M.Jault
(2005).
The Q-loop disengages from the first intracellular loop during the catalytic cycle of the multidrug ABC transporter BmrA.
|
| |
J Biol Chem,
280,
36857-36864.
|
 |
|
|
|
|
 |
P.Vergani,
C.Basso,
M.Mense,
A.C.Nairn,
and
D.C.Gadsby
(2005).
Control of the CFTR channel's gates.
|
| |
Biochem Soc Trans,
33,
1003-1007.
|
 |
|
|
|
|
 |
P.Vergani,
S.W.Lockless,
A.C.Nairn,
and
D.C.Gadsby
(2005).
CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains.
|
| |
Nature,
433,
876-880.
|
 |
|
|
|
|
 |
S.G.Bompadre,
J.H.Cho,
X.Wang,
X.Zou,
Y.Sohma,
M.Li,
and
T.C.Hwang
(2005).
CFTR gating II: Effects of nucleotide binding on the stability of open states.
|
| |
J Gen Physiol,
125,
377-394.
|
 |
|
|
|
|
 |
A.Böhm,
and
W.Boos
(2004).
Gene regulation in prokaryotes by subcellular relocalization of transcription factors.
|
| |
Curr Opin Microbiol,
7,
151-156.
|
 |
|
|
|
|
 |
A.L.Davidson,
and
J.Chen
(2004).
ATP-binding cassette transporters in bacteria.
|
| |
Annu Rev Biochem,
73,
241-268.
|
 |
|
|
|
|
 |
C.F.Higgins,
and
K.J.Linton
(2004).
The ATP switch model for ABC transporters.
|
| |
Nat Struct Mol Biol,
11,
918-926.
|
 |
|
|
|
|
 |
C.van der Does,
and
R.Tampé
(2004).
How do ABC transporters drive transport?
|
| |
Biol Chem,
385,
927-933.
|
 |
|
|
|
|
 |
E.O.Oloo,
and
D.P.Tieleman
(2004).
Conformational transitions induced by the binding of MgATP to the vitamin B12 ATP-binding cassette (ABC) transporter BtuCD.
|
| |
J Biol Chem,
279,
45013-45019.
|
 |
|
|
|
|
 |
H.A.Lewis,
S.G.Buchanan,
S.K.Burley,
K.Conners,
M.Dickey,
M.Dorwart,
R.Fowler,
X.Gao,
W.B.Guggino,
W.A.Hendrickson,
J.F.Hunt,
M.C.Kearins,
D.Lorimer,
P.C.Maloney,
K.W.Post,
K.R.Rajashankar,
M.E.Rutter,
J.M.Sauder,
S.Shriver,
P.H.Thibodeau,
P.J.Thomas,
M.Zhang,
X.Zhao,
and
S.Emtage
(2004).
Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator.
|
| |
EMBO J,
23,
282-293.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Zaitseva,
I.B.Holland,
and
L.Schmitt
(2004).
The role of CAPS buffer in expanding the crystallization space of the nucleotide-binding domain of the ABC transporter haemolysin B from Escherichia coli.
|
| |
Acta Crystallogr D Biol Crystallogr,
60,
1076-1084.
|
 |
|
|
|
|
 |
K.P.Locher
(2004).
Structure and mechanism of ABC transporters.
|
| |
Curr Opin Struct Biol,
14,
426-431.
|
 |
|
|
|
|
 |
Q.Zhao,
and
X.B.Chang
(2004).
Mutation of the aromatic amino acid interacting with adenine moiety of ATP to a polar residue alters the properties of multidrug resistance protein 1.
|
| |
J Biol Chem,
279,
48505-48512.
|
 |
|
|
|
|
 |
T.Ose,
T.Fujie,
M.Yao,
N.Watanabe,
and
I.Tanaka
(2004).
Crystal structure of the ATP-binding cassette of multisugar transporter from Pyrococcus horikoshii OT3.
|
| |
Proteins,
57,
635-638.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Chen,
G.Lu,
J.Lin,
A.L.Davidson,
and
F.A.Quiocho
(2003).
A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle.
|
| |
Mol Cell,
12,
651-661.
|
 |
|
PDB codes:
|
 |
|
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |