spacer
spacer

PDBsum entry 1oe9

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Atpase/myosin PDB id
1oe9

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
731 a.a. *
139 a.a. *
Ligands
SO4
Waters ×333
* Residue conservation analysis
PDB id:
1oe9
Name: Atpase/myosin
Title: Crystal structure of myosin v motor with essential light chain- nucleotide-free
Structure: Myosin va. Chain: a. Fragment: motor domain, residues 1-792. Synonym: myosin 5a, dilute myosin heavy chain, non-muscle, myosin heavy chain p190, myosin-v. Engineered: yes. Myosin light chain 1, slow-twitch muscle a isoform. Chain: b. Fragment: residues 59-208.
Source: Gallus gallus. Chicken. Organism_taxid: 9031. Expressed in: spodoptera frugiperda. Expression_system_taxid: 7108. Expression_system_cell_line: sf9. Homo sapiens. Human. Organism_taxid: 9606.
Biol. unit: Dimer (from PDB file)
Resolution:
2.05Å     R-factor:   0.222     R-free:   0.264
Authors: P.-D.Coureux,A.L.Wells,J.Menetrey,C.M.Yengo,C.A.Morris,H.L.Sweeney, A.Houdusse
Key ref:
P.D.Coureux et al. (2003). A structural state of the myosin V motor without bound nucleotide. Nature, 425, 419-423. PubMed id: 14508494 DOI: 10.1038/nature01927
Date:
21-Mar-03     Release date:   26-Sep-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Q02440  (MYO5A_CHICK) -  Unconventional myosin-Va from Gallus gallus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1829 a.a.
731 a.a.*
Protein chain
P14649  (MYL6B_HUMAN) -  Myosin light chain 6B from Homo sapiens
Seq:
Struc:
208 a.a.
139 a.a.
Key:    Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 

 
DOI no: 10.1038/nature01927 Nature 425:419-423 (2003)
PubMed id: 14508494  
 
 
A structural state of the myosin V motor without bound nucleotide.
P.D.Coureux, A.L.Wells, J.Ménétrey, C.M.Yengo, C.A.Morris, H.L.Sweeney, A.Houdusse.
 
  ABSTRACT  
 
The myosin superfamily of molecular motors use ATP hydrolysis and actin-activated product release to produce directed movement and force. Although this is generally thought to involve movement of a mechanical lever arm attached to a motor core, the structural details of the rearrangement in myosin that drive the lever arm motion on actin attachment are unknown. Motivated by kinetic evidence that the processive unconventional myosin, myosin V, populates a unique state in the absence of nucleotide and actin, we obtained a 2.0 A structure of a myosin V fragment. Here we reveal a conformation of myosin without bound nucleotide. The nucleotide-binding site has adopted new conformations of the nucleotide-binding elements that reduce the affinity for the nucleotide. The major cleft in the molecule has closed, and the lever arm has assumed a position consistent with that in an actomyosin rigor complex. These changes have been accomplished by relative movements of the subdomains of the molecule, and reveal elements of the structural communication between the actin-binding interface and nucleotide-binding site of myosin that underlie the mechanism of chemo-mechanical transduction.
 
  Selected figure(s)  
 
Figure 2.
Figure 2: Nucleotide-binding site and distortion of the beta--sheet at the interface of the N-terminal and upper 50-kDa subdomains. a, Shown is an overlay of the -sheet (N-terminal subdomain superimposed) between myosin V in blue and near rigor (Dictyostelium myosin II) in grey. Note that strands 5 -7, which belong to the upper 50-kDa subdomain are distorted to allow the upper 50-kDa rotation that removes switch I from the nucleotide-binding site. b, The positions of the nucleotide-binding elements are shown for three myosin states. The yellow asterisk in the myosin V structure marks the position of the Mg2+ in the other structures. In the transition state, switch II contributes to coordination of the -phosphate of the nucleotide, but it bends in myosin V in the opposite direction and forms direct interactions (broken green lines) with the fourth -strand and the P loop of the N-terminal subdomain.
Figure 3.
Figure 3: The actin -myosin interface. a, Myosin V as viewed from the actin side of the interface reveals the positioning of putative actin-binding elements. b, The same view of myosin V is overlaid on the lower 50-kDa subdomains of Dictyostelium myosin II structures. Note the conformational change in the strut and the obvious rotation of the upper 50-kDa subdomain towards the actin filament (represented by an arrow) in the myosin V structure. c, The myosin V and transition state actin-binding elements are docked on an actin filament, maintaining the identical positioning of the lower 50-kDa subdomain in both cases. In myosin V, the HCM loop has been repositioned in such a way that it can directly contribute to actin binding.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2003, 425, 419-423) copyright 2003.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21315083 D.J.Jacobs, D.Trivedi, C.David, and C.M.Yengo (2011).
Kinetics and thermodynamics of the rate-limiting conformational change in the actomyosin V mechanochemical cycle.
  J Mol Biol, 407, 716-730.  
21518908 S.Kühner, and S.Fischer (2011).
Structural mechanism of the ATP-induced dissociation of rigor myosin from actin.
  Proc Natl Acad Sci U S A, 108, 7793-7798.  
20801044 A.Málnási-Csizmadia, and M.Kovács (2010).
Emerging complex pathways of the actomyosin powerstroke.
  Trends Biochem Sci, 35, 684-690.  
20351242 B.Takács, N.Billington, M.Gyimesi, B.Kintses, A.Málnási-Csizmadia, P.J.Knight, and M.Kovács (2010).
Myosin complexed with ADP and blebbistatin reversibly adopts a conformation resembling the start point of the working stroke.
  Proc Natl Acad Sci U S A, 107, 6799-6804.  
20160108 C.V.Sindelar, and K.H.Downing (2010).
An atomic-level mechanism for activation of the kinesin molecular motors.
  Proc Natl Acad Sci U S A, 107, 4111-4116.  
19962990 E.Prochniewicz, H.F.Chin, A.Henn, D.E.Hannemann, A.O.Olivares, D.D.Thomas, and E.M.De La Cruz (2010).
Myosin isoform determines the conformational dynamics and cooperativity of actin filaments in the strongly bound actomyosin complex.
  J Mol Biol, 396, 501-509.  
  20664766 G.Purushotham, K.Madhumohan, M.Anwaruddin, H.Nagarajaram, V.Hariram, C.Narasimhan, and M.D.Bashyam (2010).
The MYH7 p.R787H mutation causes hypertrophic cardiomyopathy in two unrelated families.
  Exp Clin Cardiol, 15, e1-e4.  
20192767 H.L.Sweeney, and A.Houdusse (2010).
Structural and functional insights into the Myosin motor mechanism.
  Annu Rev Biophys, 39, 539-557.  
  21031134 I.Ben Rebeh, M.Morinière, L.Ayadi, Z.Benzina, I.Charfedine, J.Feki, H.Ayadi, A.Ghorbel, F.Baklouti, and S.Masmoudi (2010).
Reinforcement of a minor alternative splicing event in MYO7A due to a missense mutation results in a mild form of retinopathy and deafness.
  Mol Vis, 16, 1898-1906.  
20459085 J.J.Frye, V.A.Klenchin, C.R.Bagshaw, and I.Rayment (2010).
Insights into the importance of hydrogen bonding in the gamma-phosphate binding pocket of myosin: structural and functional studies of serine 236.
  Biochemistry, 49, 4897-4907.
PDB codes: 3myh 3myk 3myl
20656787 J.T.Granados-Riveron, T.K.Ghosh, M.Pope, F.Bu'Lock, C.Thornborough, J.Eason, E.P.Kirk, D.Fatkin, M.P.Feneley, R.P.Harvey, J.A.Armour, and J.David Brook (2010).
Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects.
  Hum Mol Genet, 19, 4007-4016.  
20687691 K.Amano, T.Yoshidome, M.Iwaki, M.Suzuki, and M.Kinoshita (2010).
Entropic potential field formed for a linear-motor protein near a filament: Statistical-mechanical analyses using simple models.
  J Chem Phys, 133, 045103.  
20399183 M.Cecchini, Y.Alexeev, and M.Karplus (2010).
Pi release from myosin: a simulation analysis of possible pathways.
  Structure, 18, 458-470.  
20616041 M.Lorenz, and K.C.Holmes (2010).
The actin-myosin interface.
  Proc Natl Acad Sci U S A, 107, 12529-12534.  
20399184 R.Tehver, and D.Thirumalai (2010).
Rigor to post-rigor transition in myosin V: link between the dynamics and the supporting architecture.
  Structure, 18, 471-481.  
  20844746 S.Wu, J.Liu, M.C.Reedy, R.T.Tregear, H.Winkler, C.Franzini-Armstrong, H.Sasaki, C.Lucaveche, Y.E.Goldman, M.K.Reedy, and K.A.Taylor (2010).
Electron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions.
  PLoS One, 5, 0.
PDB codes: 2w49 2w4a 2w4g 2w4t
20226094 T.P.Burghardt, K.L.Neff, E.D.Wieben, and K.Ajtai (2010).
Myosin individualized: single nucleotide polymorphisms in energy transduction.
  BMC Genomics, 11, 172.  
19853615 V.Ovchinnikov, B.L.Trout, and M.Karplus (2010).
Mechanical coupling in myosin V: a simulation study.
  J Mol Biol, 395, 815-833.  
20174447 W.Wriggers (2010).
Using Situs for the integration of multi-resolution structures.
  Biophys Rev, 2, 21-27.  
20585540 Y.Togashi, T.Yanagida, and A.S.Mikhailov (2010).
Nonlinearity of mechanochemical motions in motor proteins.
  PLoS Comput Biol, 6, e1000814.  
20428469 D.Parker, Z.Bryant, and S.L.Delp (2009).
Coarse-Grained Structural Modeling of Molecular Motors Using Multibody Dynamics.
  Cell Mol Bioeng, 2, 366-374.  
19008235 E.Forgacs, T.Sakamoto, S.Cartwright, B.Belknap, M.Kovács, J.Tóth, M.R.Webb, J.R.Sellers, and H.D.White (2009).
Switch 1 mutation S217A converts myosin V into a low duty ratio motor.
  J Biol Chem, 284, 2138-2149.  
19408946 K.Ajtai, M.F.Halstead, M.Nyitrai, A.R.Penheiter, Y.Zheng, and T.P.Burghardt (2009).
The myosin C-loop is an allosteric actin contact sensor in actomyosin.
  Biochemistry, 48, 5263-5275.  
19308324 K.Teilum, J.G.Olsen, and B.B.Kragelund (2009).
Functional aspects of protein flexibility.
  Cell Mol Life Sci, 66, 2231-2247.  
19450497 P.Pierobon, S.Achouri, S.Courty, A.R.Dunn, J.A.Spudich, M.Dahan, and G.Cappello (2009).
Velocity, processivity, and individual steps of single myosin V molecules in live cells.
  Biophys J, 96, 4268-4275.  
19122661 R.Fedorov, M.Böhl, G.Tsiavaliaris, F.K.Hartmann, M.H.Taft, P.Baruch, B.Brenner, R.Martin, H.J.Knölker, H.O.Gutzeit, and D.J.Manstein (2009).
The mechanism of pentabromopseudilin inhibition of myosin motor activity.
  Nat Struct Mol Biol, 16, 80-88.
PDB codes: 2jhr 2jj9 3mjx
19289039 W.Zheng, and D.Thirumalai (2009).
Coupling between normal modes drives protein conformational dynamics: illustrations using allosteric transitions in myosin II.
  Biophys J, 96, 2128-2137.  
19348763 Y.L.Wong, K.A.Dietrich, N.Naber, R.Cooke, and S.E.Rice (2009).
The Kinesin-1 tail conformationally restricts the nucleotide pocket.
  Biophys J, 96, 2799-2807.  
19607837 Y.Sugimoto, O.Sato, S.Watanabe, R.Ikebe, M.Ikebe, and K.Wakabayashi (2009).
Reverse conformational changes of the light chain-binding domain of myosin V and VI processive motor heads during and after hydrolysis of ATP by small-angle X-ray solution scattering.
  J Mol Biol, 392, 420-435.  
18045988 A.Cammarato, C.M.Dambacher, A.F.Knowles, W.A.Kronert, R.Bodmer, K.Ocorr, and S.I.Bernstein (2008).
Myosin transducer mutations differentially affect motor function, myofibril structure, and the performance of skeletal and cardiac muscles.
  Mol Biol Cell, 19, 553-562.  
18223006 A.Vilfan (2008).
Myosin V passing over Arp2/3 junctions: branching ratio calculated from the elastic lever arm model.
  Biophys J, 94, 3405-3412.  
18854311 B.Kintses, Z.Yang, and A.Málnási-Csizmadia (2008).
Experimental investigation of the seesaw mechanism of the relay region that moves the Myosin lever arm.
  J Biol Chem, 283, 34121-34128.  
18725645 J.C.Klein, A.R.Burr, B.Svensson, D.J.Kennedy, J.Allingham, M.A.Titus, I.Rayment, and D.D.Thomas (2008).
Actin-binding cleft closure in myosin II probed by site-directed spin labeling and pulsed EPR.
  Proc Natl Acad Sci U S A, 105, 12867-12872.  
18046460 J.Ménétrey, P.Llinas, J.Cicolari, G.Squires, X.Liu, A.Li, H.L.Sweeney, and A.Houdusse (2008).
The post-rigor structure of myosin VI and implications for the recovery stroke.
  EMBO J, 27, 244-252.
PDB codes: 2vas 2vb6
18239852 K.M.Trybus (2008).
Myosin V from head to tail.
  Cell Mol Life Sci, 65, 1378-1389.  
18704171 M.Cecchini, A.Houdusse, and M.Karplus (2008).
Allosteric communication in myosin V: from small conformational changes to large directed movements.
  PLoS Comput Biol, 4, e1000129.  
18211892 M.Gyimesi, B.Kintses, A.Bodor, A.Perczel, S.Fischer, C.R.Bagshaw, and A.Málnási-Csizmadia (2008).
The mechanism of the reverse recovery step, phosphate release, and actin activation of Dictyostelium myosin II.
  J Biol Chem, 283, 8153-8163.  
18552179 M.Sun, M.B.Rose, S.K.Ananthanarayanan, D.J.Jacobs, and C.M.Yengo (2008).
Characterization of the pre-force-generation state in the actomyosin cross-bridge cycle.
  Proc Natl Acad Sci U S A, 105, 8631-8636.  
18556760 R.E.DeVille, and E.Vanden-Eijnden (2008).
Regular gaits and optimal velocities for motor proteins.
  Biophys J, 95, 2681-2691.  
18587628 S.Pathmanathan, S.F.Elliott, S.McSwiggen, B.Greer, P.Harriott, G.B.Irvine, and D.J.Timson (2008).
IQ motif selectivity in human IQGAP1: binding of myosin essential light chain and S100B.
  Mol Cell Biochem, 318, 43-51.  
18216256 X.D.Li, H.S.Jung, Q.Wang, R.Ikebe, R.Craig, and M.Ikebe (2008).
The globular tail domain puts on the brake to stop the ATPase cycle of myosin Va.
  Proc Natl Acad Sci U S A, 105, 1140-1145.  
17074769 A.C.Dosé, S.Ananthanarayanan, J.E.Moore, B.Burnside, and C.M.Yengo (2007).
Kinetic mechanism of human myosin IIIA.
  J Biol Chem, 282, 216-231.  
17640878 A.R.Hodges, E.B.Krementsova, and K.M.Trybus (2007).
Engineering the processive run length of Myosin V.
  J Biol Chem, 282, 27192-27197.  
17213877 B.Kintses, M.Gyimesi, D.S.Pearson, M.A.Geeves, W.Zeng, C.R.Bagshaw, and A.Málnási-Csizmadia (2007).
Reversible movement of switch 1 loop of myosin determines actin interaction.
  EMBO J, 26, 265-274.  
17848543 C.Cohen, and C.Cohen (2007).
Seeing and knowing in structural biology.
  J Biol Chem, 282, 32529-32538.  
17502095 C.R.Bagshaw (2007).
Myosin mechanochemistry.
  Structure, 15, 511-512.  
17213313 H.Park, A.Li, L.Q.Chen, A.Houdusse, P.R.Selvin, and H.L.Sweeney (2007).
The unique insert at the end of the myosin VI motor is the sole determinant of directionality.
  Proc Natl Acad Sci U S A, 104, 778-783.  
17291159 H.Yu, L.Ma, Y.Yang, and Q.Cui (2007).
Mechanochemical coupling in the myosin motor domain. I. Insights from equilibrium active-site simulations.
  PLoS Comput Biol, 3, e21.  
17305418 H.Yu, L.Ma, Y.Yang, and Q.Cui (2007).
Mechanochemical coupling in the myosin motor domain. II. Analysis of critical residues.
  PLoS Comput Biol, 3, e23.  
17628590 J.Bosch, S.Turley, C.M.Roach, T.M.Daly, L.W.Bergman, and W.G.Hol (2007).
The closed MTIP-myosin A-tail complex from the malaria parasite invasion machinery.
  J Mol Biol, 372, 77-88.
PDB code: 2qac
17259275 J.S.Davis, and N.D.Epstein (2007).
Mechanism of tension generation in muscle: an analysis of the forward and reverse rate constants.
  Biophys J, 92, 2865-2874.  
17562702 K.M.Trybus, M.I.Gushchin, H.Lui, L.Hazelwood, E.B.Krementsova, N.Volkmann, and D.Hanein (2007).
Effect of calcium on calmodulin bound to the IQ motifs of myosin V.
  J Biol Chem, 282, 23316-23325.  
17028139 N.Naber, T.J.Purcell, E.Pate, and R.Cooke (2007).
Dynamics of the nucleotide pocket of myosin measured by spin-labeled nucleotides.
  Biophys J, 92, 172-184.  
17987111 N.Volkmann, H.Lui, L.Hazelwood, K.M.Trybus, S.Lowey, and D.Hanein (2007).
The R403Q Myosin Mutation Implicated in Familial Hypertrophic Cardiomyopathy Causes Disorder at the Actomyosin Interface.
  PLoS ONE, 2, e1123.  
17900617 S.Tang, J.C.Liao, A.R.Dunn, R.B.Altman, J.A.Spudich, and J.P.Schmidt (2007).
Predicting allosteric communication in myosin via a pathway of conserved residues.
  J Mol Biol, 373, 1361-1373.  
17913331 T.P.Burghardt, J.Y.Hu, and K.Ajtai (2007).
Myosin dynamics on the millisecond time scale.
  Biophys Chem, 131, 15-28.  
17502101 Y.Yang, S.Gourinath, M.Kovács, L.Nyitray, R.Reutzel, D.M.Himmel, E.O'Neall-Hennessey, L.Reshetnikova, A.G.Szent-Györgyi, J.H.Brown, and C.Cohen (2007).
Rigor-like structures from muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor.
  Structure, 15, 553-564.
PDB codes: 2ec6 2ekv 2ekw 2os8 2otg 2ovk 2oy6 3i5f 3i5g 3i5h 3i5i
17151196 A.Houdusse, J.F.Gaucher, E.Krementsova, S.Mui, K.M.Trybus, and C.Cohen (2006).
Crystal structure of apo-calmodulin bound to the first two IQ motifs of myosin V reveals essential recognition features.
  Proc Natl Acad Sci U S A, 103, 19326-19331.
PDB code: 2ix7
16963511 G.Lan, and S.X.Sun (2006).
Flexible light-chain and helical structure of F-actin explain the movement and step size of myosin-VI.
  Biophys J, 91, 4002-4013.  
16741830 G.Offer (2006).
Fifty years on: where have we reached?
  J Muscle Res Cell Motil, 27, 205-213.  
16731631 J.C.Gebhardt, A.E.Clemen, J.Jaud, and M.Rief (2006).
Myosin-V is a mechanical ratchet.
  Proc Natl Acad Sci U S A, 103, 8680-8685.  
16378722 J.R.Sellers, and C.Veigel (2006).
Walking with myosin V.
  Curr Opin Cell Biol, 18, 68-73.  
16973442 K.Hirose, E.Akimaru, T.Akiba, S.A.Endow, and L.A.Amos (2006).
Large conformational changes in a kinesin motor catalyzed by interaction with microtubules.
  Mol Cell, 23, 913-923.  
16905607 L.S.Milescu, A.Yildiz, P.R.Selvin, and F.Sachs (2006).
Extracting dwell time sequences from processive molecular motor data.
  Biophys J, 91, 3135-3150.  
16377637 M.Sun, J.L.Oakes, S.K.Ananthanarayanan, K.H.Hawley, R.Y.Tsien, S.R.Adams, and C.M.Yengo (2006).
Dynamics of the upper 50-kDa domain of myosin V examined with fluorescence resonance energy transfer.
  J Biol Chem, 281, 5711-5717.  
16754855 R.A.Cross (2006).
Myosin's mechanical ratchet.
  Proc Natl Acad Sci U S A, 103, 8911-8912.  
16982629 S.Fujita-Becker, G.Tsiavaliaris, R.Ohkura, T.Shimada, D.J.Manstein, and K.Sutoh (2006).
Functional characterization of the N-terminal region of myosin-2.
  J Biol Chem, 281, 36102-36109.  
16450056 S.Fujita-Becker, T.F.Reubold, and K.C.Holmes (2006).
The actin-binding cleft: functional characterisation of myosin II with a strut mutation.
  J Muscle Res Cell Motil, 27, 115-123.  
16682636 W.Zheng, B.R.Brooks, and D.Thirumalai (2006).
Low-frequency normal modes that describe allosteric transitions in biological nanomachines are robust to sequence variations.
  Proc Natl Acad Sci U S A, 103, 7664-7669.  
16757473 X.D.Li, H.S.Jung, K.Mabuchi, R.Craig, and M.Ikebe (2006).
The globular tail domain of myosin Va functions as an inhibitor of the myosin Va motor.
  J Biol Chem, 281, 21789-21798.  
16645962 Y.Liu, M.Scolari, W.Im, and H.J.Woo (2006).
Protein-protein interactions in actin-myosin binding and structural effects of R405Q mutation: a molecular dynamics study.
  Proteins, 64, 156-166.  
16075160 A.Málnási-Csizmadia, J.L.Dickens, W.Zeng, and C.R.Bagshaw (2005).
Switch movements and the myosin crossbridge stroke.
  J Muscle Res Cell Motil, 26, 31-37.  
15792977 A.Vilfan (2005).
Elastic lever-arm model for myosin V.
  Biophys J, 88, 3792-3805.  
15951390 C.I.Robertson, D.P.Gaffney, L.R.Chrin, and C.L.Berger (2005).
Structural rearrangements in the active site of smooth-muscle myosin.
  Biophys J, 89, 1882-1892.  
15944696 J.Ménétrey, A.Bahloul, A.L.Wells, C.M.Yengo, C.A.Morris, H.L.Sweeney, and A.Houdusse (2005).
The structure of the myosin VI motor reveals the mechanism of directionality reversal.
  Nature, 435, 779-785.
PDB codes: 2bkh 2bki
15980429 J.Tóth, M.Kovács, F.Wang, L.Nyitray, and J.R.Sellers (2005).
Myosin V from Drosophila reveals diversity of motor mechanisms within the myosin V family.
  J Biol Chem, 280, 30594-30603.  
15642268 M.A.Ferenczi, S.Y.Bershitsky, N.Koubassova, V.Siththanandan, W.I.Helsby, P.Panine, M.Roessle, T.Narayanan, and A.K.Tsaturyan (2005).
The "roll and lock" mechanism of force generation in muscle.
  Structure, 13, 131-141.  
15705568 M.Kovács, F.Wang, and J.R.Sellers (2005).
Mechanism of action of myosin X, a membrane-associated molecular motor.
  J Biol Chem, 280, 15071-15083.  
16120677 M.Terrak, G.Rebowski, R.C.Lu, Z.Grabarek, and R.Dominguez (2005).
Structure of the light chain-binding domain of myosin V.
  Proc Natl Acad Sci U S A, 102, 12718-12723.
PDB codes: 1n2d 1n2p 1n30 1n3d 1n3v
16137617 N.Volkmann, H.Liu, L.Hazelwood, E.B.Krementsova, S.Lowey, K.M.Trybus, and D.Hanein (2005).
The structural basis of myosin V processive movement as revealed by electron cryomicroscopy.
  Mol Cell, 19, 595-605.  
15863618 S.Fischer, B.Windshügel, D.Horak, K.C.Holmes, and J.C.Smith (2005).
Structural mechanism of the recovery stroke in the myosin molecular motor.
  Proc Natl Acad Sci U S A, 102, 6873-6878.  
15579901 S.S.Rosenfeld, A.Houdusse, and H.L.Sweeney (2005).
Magnesium regulates ADP dissociation from myosin V.
  J Biol Chem, 280, 6072-6079.  
16174728 T.Kraft, E.Mählmann, T.Mattei, and B.Brenner (2005).
Initiation of the power stroke in muscle: insights from the phosphate analog AlF4.
  Proc Natl Acad Sci U S A, 102, 13861-13866.  
15879477 W.Zheng, and B.R.Brooks (2005).
Probing the local dynamics of nucleotide-binding pocket coupled to the global dynamics: myosin versus kinesin.
  Biophys J, 89, 167-178.  
15897189 X.Liu, S.Shu, M.Kovács, and E.D.Korn (2005).
Biological, biochemical, and kinetic effects of mutations of the cardiomyopathy loop of Dictyostelium myosin II: importance of ALA400.
  J Biol Chem, 280, 26974-26983.  
15647166 D.J.Manstein (2004).
Molecular engineering of myosin.
  Philos Trans R Soc Lond B Biol Sci, 359, 1907-1912.  
15184651 D.Risal, S.Gourinath, D.M.Himmel, A.G.Szent-Györgyi, and C.Cohen (2004).
Myosin subfragment 1 structures reveal a partially bound nucleotide and a complex salt bridge that helps couple nucleotide and actin binding.
  Proc Natl Acad Sci U S A, 101, 8930-8935.
PDB codes: 1s5g 1sr6
15647159 H.L.Sweeney, and A.Houdusse (2004).
The motor mechanism of myosin V: insights for muscle contraction.
  Philos Trans R Soc Lond B Biol Sci, 359, 1829-1841.  
15630612 J.R.Sellers (2004).
Fifty years of contractility research post sliding filament hypothesis.
  J Muscle Res Cell Motil, 25, 475-482.  
15711883 J.Van Dijk, C.Lafont, M.L.Knetsch, J.Derancourt, D.J.Manstein, E.C.Long, and P.Chaussepied (2004).
Conformational changes in actin-myosin isoforms probed by Ni(II).Gly-Gly-His reactivity.
  J Muscle Res Cell Motil, 25, 527-537.  
15020589 K.Ajtai, S.P.Garamszegi, S.Watanabe, M.Ikebe, and T.P.Burghardt (2004).
The myosin cardiac loop participates functionally in the actomyosin interaction.
  J Biol Chem, 279, 23415-23421.  
15647158 K.C.Holmes, R.R.Schröder, H.L.Sweeney, and A.Houdusse (2004).
The structure of the rigor complex and its implications for the power stroke.
  Philos Trans R Soc Lond B Biol Sci, 359, 1819-1828.  
15029249 K.Shipley, M.Hekmat-Nejad, J.Turner, C.Moores, R.Anderson, R.Milligan, R.Sakowicz, and R.Fletterick (2004).
Structure of a kinesin microtubule depolymerization machine.
  EMBO J, 23, 1422-1432.
PDB code: 1ry6
15510214 P.D.Coureux, H.L.Sweeney, and A.Houdusse (2004).
Three myosin V structures delineate essential features of chemo-mechanical transduction.
  EMBO J, 23, 4527-4537.
PDB codes: 1w7i 1w7j 1w8j
  15173218 R.Cooke (2004).
The sliding filament model: 1972-2004.
  J Gen Physiol, 123, 643-656.  
15254035 S.S.Rosenfeld, and H.L.Sweeney (2004).
A model of myosin V processivity.
  J Biol Chem, 279, 40100-40111.  
15326285 W.Steffen, and J.Sleep (2004).
Repriming the actomyosin crossbridge cycle.
  Proc Natl Acad Sci U S A, 101, 12904-12909.  
15647160 W.Zeng, P.B.Conibear, J.L.Dickens, R.A.Cowie, S.Wakelin, A.Málnási-Csizmadia, and C.R.Bagshaw (2004).
Dynamics of actomyosin interactions in relation to the cross-bridge cycle.
  Philos Trans R Soc Lond B Biol Sci, 359, 1843-1855.  
15647167 Y.Takagi, H.Shuman, and Y.E.Goldman (2004).
Coupling between phosphate release and force generation in muscle actomyosin.
  Philos Trans R Soc Lond B Biol Sci, 359, 1913-1920.  
14508495 K.C.Holmes, I.Angert, F.J.Kull, W.Jahn, and R.R.Schröder (2003).
Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide.
  Nature, 425, 423-427.  
14610051 R.D.Vale (2003).
Myosin V motor proteins: marching stepwise towards a mechanism.
  J Cell Biol, 163, 445-450.  
14656445 S.Gourinath, D.M.Himmel, J.H.Brown, L.Reshetnikova, A.G.Szent-Györgyi, and C.Cohen (2003).
Crystal structure of scallop Myosin s1 in the pre-power stroke state to 2.6 a resolution: flexibility and function in the head.
  Structure, 11, 1621-1627.
PDB code: 1qvi
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer