|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Bacterial infection
|
 |
|
Title:
|
 |
Internalin (listeria monocytogenes) / e-cadherin (human) recognition complex
|
|
Structure:
|
 |
Internalin a. Chain: a. Fragment: functional domain, residues 36-496. Engineered: yes. E-cadherin. Chain: b. Fragment: n-terminal domain, residues 156-253. Engineered: yes
|
|
Source:
|
 |
Listeria monocytogenes. Organism_taxid: 169963. Strain: egd-e. Variant: serovar 1/2a. Atcc: dsmz 20600. Expressed in: escherichia coli. Expression_system_taxid: 511693. Homo sapiens. Human.
|
|
Biol. unit:
|
 |
Dimer (from PDB file)
|
|
Resolution:
|
 |
|
1.80Å
|
R-factor:
|
0.171
|
R-free:
|
0.221
|
|
|
Authors:
|
 |
W.-D.Schubert,C.Urbanke,T.Ziehm,V.Beier,M.P.Machner,E.Domann, J.Wehland,T.Chakraborty,D.W.Heinz
|
Key ref:
|
 |
W.D.Schubert
et al.
(2002).
Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin.
Cell,
111,
825-836.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
13-Oct-02
|
Release date:
|
13-Dec-02
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Cell
111:825-836
(2002)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin.
|
|
W.D.Schubert,
C.Urbanke,
T.Ziehm,
V.Beier,
M.P.Machner,
E.Domann,
J.Wehland,
T.Chakraborty,
D.W.Heinz.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Listeria monocytogenes, a food-borne bacterial pathogen, enters mammalian cells
by inducing its own phagocytosis. The listerial protein internalin (InlA)
mediates bacterial adhesion and invasion of epithelial cells in the human
intestine through specific interaction with its host cell receptor E-cadherin.
We present the crystal structures of the functional domain of InlA alone and in
a complex with the extracellular, N-terminal domain of human E-cadherin (hEC1).
The leucine rich repeat (LRR) domain of InlA surrounds and specifically
recognizes hEC1. Individual interactions were probed by mutagenesis and
analytical ultracentrifugation. These include Pro16 of hEC1, a major determinant
for human susceptibility to L. monocytogenes infection that is essential for
intermolecular recognition. Our studies reveal the structural basis for host
tro-pism of this bacterium and the molecular deception L. monocytogenes employs
to exploit the E-cadherin system.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 3.
Figure 3. The N-Terminal Domain of E-CadherinSuperposition
with related murine domains: Green – hEC1 (this paper); light
blue – murine E-cadherin (Pertz et al., 1999); blue – murine
N-cadherin (Tamura et al., 1998). β strand a′ is more closely
associated with strand b in hEC1 and is important for
intermolecular contacts between hEC1 and InlA′.
|
 |
Figure 4.
Figure 4. Detailed View of the Interactions between InlA′
and hEC1(A) All residue side chains involved in direct
interactions or as ligands to bridging ions/water are indicated
in ball-and-stick representation. Residues mutated in this study
are underlined. For InlA′ β strands (1–15 and a of Ig-like
domain) and adjacent coils are shown in violet. hEC1 is
represented by a continuous coil, β strands are indicated by
dark-green shading (labels a–g, connecting loops are indicated
by two letters to indicate flanking β strands). Cyan-, yellow-
and orange-colored spheres represent water, Ca^2+, and Cl^−,
respectively.(B) View of the hydrophobic pocket in InlA′,
which accommodates Pro16 of hEC1. In addition, the neighboring
residues Phe17 (side chain omitted) and Pro18 are involved in
specific interactions with InlA′. Hydrogen bonds are indicated
by green dotted lines. In murine, E-cadherin Pro16 is replaced
by glutamate (yellow model).(C) The octahedrally coordinated
Ca^2+ bridging InlA′and hEC1. The refined 2F[O]-F[C] map
contoured at 1σ is shown as a translucent surface.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Cell
(2002,
111,
825-836)
copyright 2002.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
G.J.Wright,
and
P.Washbourne
(2011).
Neurexins, neuroligins and LRRTMs: synaptic adhesion getting fishy.
|
| |
J Neurochem,
117,
765-778.
|
 |
|
|
|
|
 |
J.She,
Z.Han,
T.W.Kim,
J.Wang,
W.Cheng,
J.Chang,
S.Shi,
J.Wang,
M.Yang,
Z.Y.Wang,
and
J.Chai
(2011).
Structural insight into brassinosteroid perception by BRI1.
|
| |
Nature,
474,
472-476.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Hothorn,
Y.Belkhadir,
M.Dreux,
T.Dabi,
J.P.Noel,
I.A.Wilson,
and
J.Chory
(2011).
Structural basis of steroid hormone perception by the receptor kinase BRI1.
|
| |
Nature,
474,
467-471.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.Jagadeesan,
O.K.Koo,
K.P.Kim,
K.M.Burkholder,
K.K.Mishra,
A.Aroonnual,
and
A.K.Bhunia
(2010).
LAP, an alcohol acetaldehyde dehydrogenase enzyme in Listeria, promotes bacterial adhesion to enterocyte-like Caco-2 cells only in pathogenic species.
|
| |
Microbiology,
156,
2782-2795.
|
 |
|
|
|
|
 |
D.Iyer,
C.Anaya-Bergman,
K.Jones,
S.Yanamandra,
D.Sengupta,
H.Miyazaki,
and
J.P.Lewis
(2010).
AdpC is a Prevotella intermedia 17 leucine-rich repeat internalin-like protein.
|
| |
Infect Immun,
78,
2385-2396.
|
 |
|
|
|
|
 |
I.R.Monk,
P.G.Casey,
C.Hill,
and
C.G.Gahan
(2010).
Directed evolution and targeted mutagenesis to murinize listeria monocytogenes internalin A for enhanced infectivity in the murine oral infection model.
|
| |
BMC Microbiol,
10,
318.
|
 |
|
|
|
|
 |
M.Pentecost,
J.Kumaran,
P.Ghosh,
and
M.R.Amieva
(2010).
Listeria monocytogenes internalin B activates junctional endocytosis to accelerate intestinal invasion.
|
| |
PLoS Pathog,
6,
e1000900.
|
 |
|
|
|
|
 |
O.J.Harrison,
F.Bahna,
P.S.Katsamba,
X.Jin,
J.Brasch,
J.Vendome,
G.Ahlsen,
K.J.Carroll,
S.R.Price,
B.Honig,
and
L.Shapiro
(2010).
Two-step adhesive binding by classical cadherins.
|
| |
Nat Struct Mol Biol,
17,
348-357.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.Velge,
and
S.M.Roche
(2010).
Variability of Listeria monocytogenes virulence: a result of the evolution between saprophytism and virulence?
|
| |
Future Microbiol,
5,
1799-1821.
|
 |
|
|
|
|
 |
R.A.Mariuzza,
C.A.Velikovsky,
L.Deng,
G.Xu,
and
Z.Pancer
(2010).
Structural insights into the evolution of the adaptive immune system: the variable lymphocyte receptors of jawless vertebrates.
|
| |
Biol Chem,
391,
753-760.
|
 |
|
|
|
|
 |
S.H.Ohk,
O.K.Koo,
T.Sen,
C.M.Yamamoto,
and
A.K.Bhunia
(2010).
Antibody-aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food.
|
| |
J Appl Microbiol,
109,
808-817.
|
 |
|
|
|
|
 |
T.J.Siddiqui,
R.Pancaroglu,
Y.Kang,
A.Rooyakkers,
and
A.M.Craig
(2010).
LRRTMs and neuroligins bind neurexins with a differential code to cooperate in glutamate synapse development.
|
| |
J Neurosci,
30,
7495-7506.
|
 |
|
|
|
|
 |
Y.Shen,
I.Kawamura,
T.Nomura,
K.Tsuchiya,
H.Hara,
S.R.Dewamitta,
S.Sakai,
H.Qu,
S.Daim,
T.Yamamoto,
and
M.Mitsuyama
(2010).
Toll-like receptor 2- and MyD88-dependent phosphatidylinositol 3-kinase and Rac1 activation facilitates the phagocytosis of Listeria monocytogenes by murine macrophages.
|
| |
Infect Immun,
78,
2857-2867.
|
 |
|
|
|
|
 |
A.Camejo,
C.Buchrieser,
E.Couvé,
F.Carvalho,
O.Reis,
P.Ferreira,
S.Sousa,
P.Cossart,
and
D.Cabanes
(2009).
In vivo transcriptional profiling of Listeria monocytogenes and mutagenesis identify new virulence factors involved in infection.
|
| |
PLoS Pathog,
5,
e1000449.
|
 |
|
|
|
|
 |
C.A.Velikovsky,
L.Deng,
S.Tasumi,
L.M.Iyer,
M.C.Kerzic,
L.Aravind,
Z.Pancer,
and
R.A.Mariuzza
(2009).
Structure of a lamprey variable lymphocyte receptor in complex with a protein antigen.
|
| |
Nat Struct Mol Biol,
16,
725-730.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Williams,
J.Castleman,
C.C.Lee,
B.Mote,
and
M.A.Smith
(2009).
Risk of fetal mortality after exposure to Listeria monocytogenes based on dose-response data from pregnant guinea pigs and primates.
|
| |
Risk Anal,
29,
1495-1505.
|
 |
|
|
|
|
 |
E.Moreno-Ruiz,
M.Galán-Díez,
W.Zhu,
E.Fernández-Ruiz,
C.d'Enfert,
S.G.Filler,
P.Cossart,
and
E.Veiga
(2009).
Candida albicans internalization by host cells is mediated by a clathrin-dependent mechanism.
|
| |
Cell Microbiol,
11,
1179-1189.
|
 |
|
|
|
|
 |
I.Botos,
L.Liu,
Y.Wang,
D.M.Segal,
and
D.R.Davies
(2009).
The toll-like receptor 3:dsRNA signaling complex.
|
| |
Biochim Biophys Acta,
1789,
667-674.
|
 |
|
|
|
|
 |
K.L.Hindle,
J.Bella,
and
S.C.Lovell
(2009).
Quantitative analysis and prediction of curvature in leucine-rich repeat proteins.
|
| |
Proteins,
77,
342-358.
|
 |
|
|
|
|
 |
M.Bonazzi,
M.Lecuit,
and
P.Cossart
(2009).
Listeria monocytogenes Internalin and E-cadherin: From Bench to Bedside.
|
| |
Cold Spring Harbor Perspect Biol,
1,
a003087.
|
 |
|
|
|
|
 |
S.G.Dashper,
C.S.Ang,
P.D.Veith,
H.L.Mitchell,
A.W.Lo,
C.A.Seers,
K.A.Walsh,
N.Slakeski,
D.Chen,
J.P.Lissel,
C.A.Butler,
N.M.O'Brien-Simpson,
I.G.Barr,
and
E.C.Reynolds
(2009).
Response of Porphyromonas gingivalis to heme limitation in continuous culture.
|
| |
J Bacteriol,
191,
1044-1055.
|
 |
|
|
|
|
 |
S.Mostowy,
and
P.Cossart
(2009).
Cytoskeleton rearrangements during Listeria infection: clathrin and septins as new players in the game.
|
| |
Cell Motil Cytoskeleton,
66,
816-823.
|
 |
|
|
|
|
 |
Y.Li,
M.Hofmann,
Q.Wang,
L.Teng,
L.K.Chlewicki,
H.Pircher,
and
R.A.Mariuzza
(2009).
Structure of natural killer cell receptor KLRG1 bound to E-cadherin reveals basis for MHC-independent missing self recognition.
|
| |
Immunity,
31,
35-46.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.H.Lu,
S.W.Huang,
Y.L.Lai,
C.P.Lin,
C.H.Shih,
C.C.Huang,
W.L.Hsu,
and
J.K.Hwang
(2008).
On the relationship between the protein structure and protein dynamics.
|
| |
Proteins,
72,
625-634.
|
 |
|
|
|
|
 |
J.Arunachalam,
and
N.Gautham
(2008).
Hydrophobic clusters in protein structures.
|
| |
Proteins,
71,
2012-2025.
|
 |
|
|
|
|
 |
M.Ragon,
T.Wirth,
F.Hollandt,
R.Lavenir,
M.Lecuit,
A.Le Monnier,
and
S.Brisse
(2008).
A new perspective on Listeria monocytogenes evolution.
|
| |
PLoS Pathog,
4,
e1000146.
|
 |
|
|
|
|
 |
O.Disson,
S.Grayo,
E.Huillet,
G.Nikitas,
F.Langa-Vives,
O.Dussurget,
M.Ragon,
A.Le Monnier,
C.Babinet,
P.Cossart,
and
M.Lecuit
(2008).
Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis.
|
| |
Nature,
455,
1114-1118.
|
 |
|
|
|
|
 |
P.McGann,
S.Raengpradub,
R.Ivanek,
M.Wiedmann,
and
K.J.Boor
(2008).
Differential regulation of Listeria monocytogenes internalin and internalin-like genes by sigmaB and PrfA as revealed by subgenomic microarray analyses.
|
| |
Foodborne Pathog Dis,
5,
417-435.
|
 |
|
|
|
|
 |
Q.R.Fan,
and
W.A.Hendrickson
(2008).
Comparative structural analysis of the binding domain of follicle stimulating hormone receptor.
|
| |
Proteins,
72,
393-401.
|
 |
|
|
|
|
 |
S.A.Dames,
E.Bang,
D.Haüssinger,
T.Ahrens,
J.Engel,
and
S.Grzesiek
(2008).
Insights into the Low Adhesive Capacity of Human T-cadherin from the NMR Structure of Its N-terminal Extracellular Domain.
|
| |
J Biol Chem,
283,
23485-23495.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Posy,
L.Shapiro,
and
B.Honig
(2008).
Sequence and structural determinants of strand swapping in cadherin domains: do all cadherins bind through the same adhesive interface?
|
| |
J Mol Biol,
378,
954-968.
|
 |
|
|
|
|
 |
D.Puett,
Y.Li,
G.DeMars,
K.Angelova,
and
F.Fanelli
(2007).
A functional transmembrane complex: the luteinizing hormone receptor with bound ligand and G protein.
|
| |
Mol Cell Endocrinol,
260,
126-136.
|
 |
|
|
|
|
 |
E.Andersen-Nissen,
K.D.Smith,
R.Bonneau,
R.K.Strong,
and
A.Aderem
(2007).
A conserved surface on Toll-like receptor 5 recognizes bacterial flagellin.
|
| |
J Exp Med,
204,
393-403.
|
 |
|
|
|
|
 |
E.Parisini,
J.M.Higgins,
J.H.Liu,
M.B.Brenner,
and
J.H.Wang
(2007).
The crystal structure of human E-cadherin domains 1 and 2, and comparison with other cadherins in the context of adhesion mechanism.
|
| |
J Mol Biol,
373,
401-411.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.H.Niemann,
V.Jäger,
P.J.Butler,
J.van den Heuvel,
S.Schmidt,
D.Ferraris,
E.Gherardi,
and
D.W.Heinz
(2007).
Structure of the human receptor tyrosine kinase met in complex with the Listeria invasion protein InlB.
|
| |
Cell,
130,
235-246.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Laurén,
F.Hu,
J.Chin,
J.Liao,
M.S.Airaksinen,
and
S.M.Strittmatter
(2007).
Characterization of myelin ligand complexes with neuronal Nogo-66 receptor family members.
|
| |
J Biol Chem,
282,
5715-5725.
|
 |
|
|
|
|
 |
K.Ireton
(2007).
Entry of the bacterial pathogen Listeria monocytogenes into mammalian cells.
|
| |
Cell Microbiol,
9,
1365-1375.
|
 |
|
|
|
|
 |
N.Matsushima,
T.Tanaka,
P.Enkhbayar,
T.Mikami,
M.Taga,
K.Yamada,
and
Y.Kuroki
(2007).
Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors.
|
| |
BMC Genomics,
8,
124.
|
 |
|
|
|
|
 |
Q.R.Fan,
and
W.A.Hendrickson
(2007).
Assembly and structural characterization of an authentic complex between human follicle stimulating hormone and a hormone-binding ectodomain of its receptor.
|
| |
Mol Cell Endocrinol,
260,
73-82.
|
 |
|
|
|
|
 |
Q.T.Phan,
C.L.Myers,
Y.Fu,
D.C.Sheppard,
M.R.Yeaman,
W.H.Welch,
A.S.Ibrahim,
J.E.Edwards,
and
S.G.Filler
(2007).
Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells.
|
| |
PLoS Biol,
5,
e64.
|
 |
|
|
|
|
 |
T.Bosse,
J.Ehinger,
A.Czuchra,
S.Benesch,
A.Steffen,
X.Wu,
K.Schloen,
H.H.Niemann,
G.Scita,
T.E.Stradal,
C.Brakebusch,
and
K.Rottner
(2007).
Cdc42 and phosphoinositide 3-kinase drive Rac-mediated actin polymerization downstream of c-Met in distinct and common pathways.
|
| |
Mol Cell Biol,
27,
6615-6628.
|
 |
|
|
|
|
 |
T.Huyton,
and
C.Wolberger
(2007).
The crystal structure of the tumor suppressor protein pp32 (Anp32a): structural insights into Anp32 family of proteins.
|
| |
Protein Sci,
16,
1308-1315.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Wollert,
B.Pasche,
M.Rochon,
S.Deppenmeier,
J.van den Heuvel,
A.D.Gruber,
D.W.Heinz,
A.Lengeling,
and
W.D.Schubert
(2007).
Extending the host range of Listeria monocytogenes by rational protein design.
|
| |
Cell,
129,
891-902.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Wollert,
D.W.Heinz,
and
W.D.Schubert
(2007).
Thermodynamically reengineering the listerial invasion complex InlA/E-cadherin.
|
| |
Proc Natl Acad Sci U S A,
104,
13960-13965.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Ooi,
S.Hussain,
A.Seyedarabi,
and
R.W.Pickersgill
(2006).
Structure of internalin C from Listeria monocytogenes.
|
| |
Acta Crystallogr D Biol Crystallogr,
62,
1287-1293.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.W.Heinz,
M.S.Weiss,
and
K.U.Wendt
(2006).
Biomacromolecular interactions, assemblies and machines: a structural view.
|
| |
Chembiochem,
7,
203-208.
|
 |
|
|
|
|
 |
G.Domínguez-Bernal,
S.Müller-Altrock,
B.González-Zorn,
M.Scortti,
P.Herrmann,
H.J.Monzó,
L.Lacharme,
J.Kreft,
and
J.A.Vázquez-Boland
(2006).
A spontaneous genomic deletion in Listeria ivanovii identifies LIPI-2, a species-specific pathogenicity island encoding sphingomyelinase and numerous internalins.
|
| |
Mol Microbiol,
59,
415-432.
|
 |
|
|
|
|
 |
J.Pizarro-Cerdá,
and
P.Cossart
(2006).
Subversion of cellular functions by Listeria monocytogenes.
|
| |
J Pathol,
208,
215-223.
|
 |
|
|
|
|
 |
J.Waldemarsson,
T.Areschoug,
G.Lindahl,
and
E.Johnsson
(2006).
The streptococcal Blr and Slr proteins define a family of surface proteins with leucine-rich repeats: camouflaging by other surface structures.
|
| |
J Bacteriol,
188,
378-388.
|
 |
|
|
|
|
 |
K.Inagaki-Ohara,
F.N.Dewi,
H.Hisaeda,
A.L.Smith,
F.Jimi,
M.Miyahira,
A.S.Abdel-Aleem,
Y.Horii,
and
Y.Nawa
(2006).
Intestinal intraepithelial lymphocytes sustain the epithelial barrier function against Eimeria vermiformis infection.
|
| |
Infect Immun,
74,
5292-5301.
|
 |
|
|
|
|
 |
L.A.Marraffini,
A.C.Dedent,
and
O.Schneewind
(2006).
Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria.
|
| |
Microbiol Mol Biol Rev,
70,
192-221.
|
 |
|
|
|
|
 |
L.Federici,
A.Di Matteo,
J.Fernandez-Recio,
D.Tsernoglou,
and
F.Cervone
(2006).
Polygalacturonase inhibiting proteins: players in plant innate immunity?
|
| |
Trends Plant Sci,
11,
65-70.
|
 |
|
|
|
|
 |
L.Mosyak,
A.Wood,
B.Dwyer,
M.Buddha,
M.Johnson,
A.Aulabaugh,
X.Zhong,
E.Presman,
S.Benard,
K.Kelleher,
J.Wilhelm,
M.L.Stahl,
R.Kriz,
Y.Gao,
Z.Cao,
H.P.Ling,
M.N.Pangalos,
F.S.Walsh,
and
W.S.Somers
(2006).
The structure of the Lingo-1 ectodomain, a module implicated in central nervous system repair inhibition.
|
| |
J Biol Chem,
281,
36378-36390.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Gao,
M.Sotomayor,
E.Villa,
E.H.Lee,
and
K.Schulten
(2006).
Molecular mechanisms of cellular mechanics.
|
| |
Phys Chem Chem Phys,
8,
3692-3706.
|
 |
|
|
|
|
 |
M.Hamon,
H.Bierne,
and
P.Cossart
(2006).
Listeria monocytogenes: a multifaceted model.
|
| |
Nat Rev Microbiol,
4,
423-434.
|
 |
|
|
|
|
 |
M.Pentecost,
G.Otto,
J.A.Theriot,
and
M.R.Amieva
(2006).
Listeria monocytogenes invades the epithelial junctions at sites of cell extrusion.
|
| |
PLoS Pathog,
2,
e3.
|
 |
|
|
|
|
 |
M.Popowska,
and
Z.Markiewicz
(2006).
Characterization of Listeria monocytogenes protein Lmo0327 with murein hydrolase activity.
|
| |
Arch Microbiol,
186,
69-86.
|
 |
|
|
|
|
 |
N.Khelef,
M.Lecuit,
H.Bierne,
and
P.Cossart
(2006).
Species specificity of the Listeria monocytogenes InlB protein.
|
| |
Cell Microbiol,
8,
457-470.
|
 |
|
|
|
|
 |
S.Fedhila,
N.Daou,
D.Lereclus,
and
C.Nielsen-LeRoux
(2006).
Identification of Bacillus cereus internalin and other candidate virulence genes specifically induced during oral infection in insects.
|
| |
Mol Microbiol,
62,
339-355.
|
 |
|
|
|
|
 |
S.Hammerschmidt
(2006).
Adherence molecules of pathogenic pneumococci.
|
| |
Curr Opin Microbiol,
9,
12-20.
|
 |
|
|
|
|
 |
Z.Pancer,
and
M.D.Cooper
(2006).
The evolution of adaptive immunity.
|
| |
Annu Rev Immunol,
24,
497-518.
|
 |
|
|
|
|
 |
B.Hao,
N.Zheng,
B.A.Schulman,
G.Wu,
J.J.Miller,
M.Pagano,
and
N.P.Pavletich
(2005).
Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase.
|
| |
Mol Cell,
20,
9.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.E.Stebbins
(2005).
Structural microbiology at the pathogen-host interface.
|
| |
Cell Microbiol,
7,
1227-1236.
|
 |
|
|
|
|
 |
C.Sabet,
M.Lecuit,
D.Cabanes,
P.Cossart,
and
H.Bierne
(2005).
LPXTG protein InlJ, a newly identified internalin involved in Listeria monocytogenes virulence.
|
| |
Infect Immun,
73,
6912-6922.
|
 |
|
|
|
|
 |
J.K.Bell,
I.Botos,
P.R.Hall,
J.Askins,
J.Shiloach,
D.M.Segal,
and
D.R.Davies
(2005).
The molecular structure of the Toll-like receptor 3 ligand-binding domain.
|
| |
Proc Natl Acad Sci U S A,
102,
10976-10980.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Lecuit
(2005).
Understanding how Listeria monocytogenes targets and crosses host barriers.
|
| |
Clin Microbiol Infect,
11,
430-436.
|
 |
|
|
|
|
 |
M.N.Alder,
I.B.Rogozin,
L.M.Iyer,
G.V.Glazko,
M.D.Cooper,
and
Z.Pancer
(2005).
Diversity and function of adaptive immune receptors in a jawless vertebrate.
|
| |
Science,
310,
1970-1973.
|
 |
|
|
|
|
 |
S.E.Girardin,
M.Jéhanno,
D.Mengin-Lecreulx,
P.J.Sansonetti,
P.M.Alzari,
and
D.J.Philpott
(2005).
Identification of the critical residues involved in peptidoglycan detection by Nod1.
|
| |
J Biol Chem,
280,
38648-38656.
|
 |
|
|
|
|
 |
S.Sousa,
D.Cabanes,
C.Archambaud,
F.Colland,
E.Lemichez,
M.Popoff,
S.Boisson-Dupuis,
E.Gouin,
M.Lecuit,
P.Legrain,
and
P.Cossart
(2005).
ARHGAP10 is necessary for alpha-catenin recruitment at adherens junctions and for Listeria invasion.
|
| |
Nat Cell Biol,
7,
954-960.
|
 |
|
|
|
|
 |
V.Liévin-Le Moal,
A.L.Servin,
and
M.H.Coconnier-Polter
(2005).
The increase in mucin exocytosis and the upregulation of MUC genes encoding for membrane-bound mucins induced by the thiol-activated exotoxin listeriolysin O is a host cell defence response that inhibits the cell-entry of Listeria monocytogenes.
|
| |
Cell Microbiol,
7,
1035-1048.
|
 |
|
|
|
|
 |
A.Grabiec,
G.Meng,
S.Fichte,
W.Bessler,
H.Wagner,
and
C.J.Kirschning
(2004).
Human but not murine toll-like receptor 2 discriminates between tri-palmitoylated and tri-lauroylated peptides.
|
| |
J Biol Chem,
279,
48004-48012.
|
 |
|
|
|
|
 |
A.W.Koch,
A.Farooq,
W.Shan,
L.Zeng,
D.R.Colman,
and
M.M.Zhou
(2004).
Structure of the neural (N-) cadherin prodomain reveals a cadherin extracellular domain-like fold without adhesive characteristics.
|
| |
Structure,
12,
793-805.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Häussinger,
T.Ahrens,
T.Aberle,
J.Engel,
J.Stetefeld,
and
S.Grzesiek
(2004).
Proteolytic E-cadherin activation followed by solution NMR and X-ray crystallography.
|
| |
EMBO J,
23,
1699-1708.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Remaut,
and
G.Waksman
(2004).
Structural biology of bacterial pathogenesis.
|
| |
Curr Opin Struct Biol,
14,
161-170.
|
 |
|
|
|
|
 |
J.A.Howitt,
N.J.Clout,
and
E.Hohenester
(2004).
Binding site for Robo receptors revealed by dissection of the leucine-rich repeat region of Slit.
|
| |
EMBO J,
23,
4406-4412.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.M.Gooding,
K.L.Yap,
and
M.Ikura
(2004).
The cadherin-catenin complex as a focal point of cell adhesion and signalling: new insights from three-dimensional structures.
|
| |
Bioessays,
26,
497-511.
|
 |
|
|
|
|
 |
K.Inamori,
S.Ariki,
and
S.Kawabata
(2004).
A Toll-like receptor in horseshoe crabs.
|
| |
Immunol Rev,
198,
106-115.
|
 |
|
|
|
|
 |
K.Rottner,
S.Lommel,
J.Wehland,
and
T.E.Stradal
(2004).
Pathogen-induced actin filament rearrangement in infectious diseases.
|
| |
J Pathol,
204,
396-406.
|
 |
|
|
|
|
 |
O.Dussurget,
J.Pizarro-Cerda,
and
P.Cossart
(2004).
Molecular determinants of Listeria monocytogenes virulence.
|
| |
Annu Rev Microbiol,
58,
587-610.
|
 |
|
|
|
|
 |
P.Cossart,
and
P.J.Sansonetti
(2004).
Bacterial invasion: the paradigms of enteroinvasive pathogens.
|
| |
Science,
304,
242-248.
|
 |
|
|
|
|
 |
P.Enkhbayar,
M.Kamiya,
M.Osaki,
T.Matsumoto,
and
N.Matsushima
(2004).
Structural principles of leucine-rich repeat (LRR) proteins.
|
| |
Proteins,
54,
394-403.
|
 |
|
|
|
|
 |
E.C.Boyle,
and
B.B.Finlay
(2003).
Bacterial pathogenesis: exploiting cellular adherence.
|
| |
Curr Opin Cell Biol,
15,
633-639.
|
 |
|
|
|
|
 |
G.Meng,
A.Grabiec,
M.Vallon,
B.Ebe,
S.Hampel,
W.Bessler,
H.Wagner,
and
C.J.Kirschning
(2003).
Cellular recognition of tri-/di-palmitoylated peptides is independent from a domain encompassing the N-terminal seven leucine-rich repeat (LRR)/LRR-like motifs of TLR2.
|
| |
J Biol Chem,
278,
39822-39829.
|
 |
|
|
|
|
 |
J.K.Bell,
G.E.Mullen,
C.A.Leifer,
A.Mazzoni,
D.R.Davies,
and
D.M.Segal
(2003).
Leucine-rich repeats and pathogen recognition in Toll-like receptors.
|
| |
Trends Immunol,
24,
528-533.
|
 |
|
|
|
|
 |
M.P.Machner,
S.Frese,
W.D.Schubert,
V.Orian-Rousseau,
E.Gherardi,
J.Wehland,
H.H.Niemann,
and
D.W.Heinz
(2003).
Aromatic amino acids at the surface of InlB are essential for host cell invasion by Listeria monocytogenes.
|
| |
Mol Microbiol,
48,
1525-1536.
|
 |
|
|
|
|
 |
S.D.Reid,
A.G.Montgomery,
J.M.Voyich,
F.R.DeLeo,
B.Lei,
R.M.Ireland,
N.M.Green,
M.Liu,
S.Lukomski,
and
J.M.Musser
(2003).
Characterization of an extracellular virulence factor made by group A Streptococcus with homology to the Listeria monocytogenes internalin family of proteins.
|
| |
Infect Immun,
71,
7043-7052.
|
 |
|
|
|
|
 |
W.D.Schubert,
and
D.W.Heinz
(2003).
Structural aspects of adhesion to and invasion of host cells by the human pathogen Listeria monocytogenes.
|
| |
Chembiochem,
4,
1285-1291.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |