spacer
spacer

PDBsum entry 1ndd

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Signaling protein PDB id
1ndd

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
74 a.a. *
Ligands
SO4 ×4
Metals
_CL ×2
Waters ×193
* Residue conservation analysis
PDB id:
1ndd
Name: Signaling protein
Title: Structure of nedd8
Structure: Protein (ubiquitin-like protein nedd8). Chain: a, b, c, d. Synonym: nedd8. Engineered: yes. Other_details: human nedd8 ubiquitin-like protein monomer with 4 molecules in the crystallographic asymmetric unit
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562. Other_details: expressed in e.Coli
Biol. unit: Tetramer (from PQS)
Resolution:
1.60Å     R-factor:   0.219     R-free:   0.300
Authors: F.G.Whitby,G.Xia,C.M.Pickart,C.P.Hill
Key ref:
F.G.Whitby et al. (1998). Crystal structure of the human ubiquitin-like protein NEDD8 and interactions with ubiquitin pathway enzymes. J Biol Chem, 273, 34983-34991. PubMed id: 9857030 DOI: 10.1074/jbc.273.52.34983
Date:
21-Aug-98     Release date:   23-Feb-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q15843  (NEDD8_HUMAN) -  NEDD8 from Homo sapiens
Seq:
Struc:
81 a.a.
74 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1074/jbc.273.52.34983 J Biol Chem 273:34983-34991 (1998)
PubMed id: 9857030  
 
 
Crystal structure of the human ubiquitin-like protein NEDD8 and interactions with ubiquitin pathway enzymes.
F.G.Whitby, G.Xia, C.M.Pickart, C.P.Hill.
 
  ABSTRACT  
 
The NEDD8/Rub1 class of ubiquitin-like proteins has been implicated in progression of the cell cycle from G1 into S phase. These molecules undergo a metabolism that parallels that of ubiquitin and involves specific interactions with many different proteins. We report here the crystal structure of recombinant human NEDD8 refined at 1.6-A resolution to an R factor of 21.9%. As expected from the high sequence similarity (57% identical), the NEDD8 structure closely resembles that reported previously for ubiquitin. We also show that recombinant human NEDD8 protein is activated, albeit inefficiently, by the ubiquitin-activating (E1) enzyme and that NEDD8 can be transferred from E1 to the ubiquitin conjugating enzyme E2-25K. E2-25K adds NEDD8 to a polyubiquitin chain with an efficiency similar to that of ubiquitin. A chimeric tetramer composed of three ubiquitins and one histidine-tagged NEDD8 binds to the 26 S proteasome with an affinity similar to that of tetraubiquitin. Seven residues that differ from the corresponding residues in ubiquitin, but are conserved between NEDD8 orthologs, are candidates for mediating interactions with NEDD8-specific partners. One such residue, Ala-72 (Arg in ubiquitin), is shown to perform a key role in selecting against reaction with the ubiquitin E1 enzyme, thereby acting to prevent the inappropriate diversion of NEDD8 into ubiquitin-specific pathways.
 
  Selected figure(s)  
 
Figure 3.
Fig. 3. Stereoview ribbon representation of NEDD8. N and C termini are labeled N and C. Secondary structure was defined with PROMOTIF (59). Helices are colored green: helix 1, residues 23-34; helix 2, 38-40; helix 3, 56-59. Helix 1 is type , whereas helices 2 and 3 are type 3[10]. According to the strict definitions used by PROMOTIF, helix 2 does not occur in two of the four NEDD8 molecules in the asymmetric unit, although the conformations are close to those of standard helices. strands are colored red: strand 1, residues 2-6; strand 2, 12-16; strand 3, 41-45, strand 4, 48-49; strand 5, 66-71. Strand 1 has one extra residue in one of the four molecules in the asymmetric unit. Residues discussed in the text are shown explicitly.
Figure 6.
Fig. 6. Space-filling representation of conserved and divergent residues. Three views of NEDD8 are shown. The front view is related to the orientation of Fig. 3 by a rotation about the vertical axis of approximately 90° and a twist of approximately 20°. Notice that the residues Glu-31, Glu-28, and Arg-25, are labeled at the side of the front view and are in the center of Fig. 3. The color code is the same as the text background colors of Fig. 4; invariant residues are magenta, conserved/divergent residues are yellow, and divergent residues are blue. The C terminus is labeled with a C.
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (1998, 273, 34983-34991) copyright 1998.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22466964 W.d.Besten, R.Verma, G.Kleiger, R.S.Oania, and R.J.Deshaies (2012).
NEDD8 links cullin-RING ubiquitin ligase function to the p97 pathway.
  Nat Struct Mol Biol, 19, 511.  
20208522 C.Chatterjee, R.K.McGinty, B.Fierz, and T.W.Muir (2010).
Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation.
  Nat Chem Biol, 6, 267-269.  
21145488 M.Broemer, T.Tenev, K.T.Rigbolt, S.Hempel, B.Blagoev, J.Silke, M.Ditzel, and P.Meier (2010).
Systematic in vivo RNAi analysis identifies IAPs as NEDD8-E3 ligases.
  Mol Cell, 40, 810-822.  
19352404 B.A.Schulman, and J.W.Harper (2009).
Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways.
  Nat Rev Mol Cell Biol, 10, 319-331.  
19722279 J.Song, J.K.Park, J.J.Lee, Y.S.Choi, K.S.Ryu, J.H.Kim, E.Kim, K.J.Lee, Y.H.Jeon, and E.E.Kim (2009).
Structure and interaction of ubiquitin-associated domain of human Fas-associated factor 1.
  Protein Sci, 18, 2265-2276.  
  19256548 K.R.Love, R.K.Pandya, E.Spooner, and H.L.Ploegh (2009).
Ubiquitin C-terminal electrophiles are activity-based probes for identification and mechanistic study of ubiquitin conjugating machinery.
  ACS Chem Biol, 4, 275-287.  
19073728 N.V.Giannakopoulos, E.Arutyunova, C.Lai, D.J.Lenschow, A.L.Haas, and H.W.Virgin (2009).
ISG15 Arg151 and the ISG15-conjugating enzyme UbE1L are important for innate immune control of Sindbis virus.
  J Virol, 83, 1602-1610.  
19423704 Q.S.Fu, C.J.Zhou, H.C.Gao, Y.J.Jiang, Z.R.Zhou, J.Hong, W.M.Yao, A.X.Song, D.H.Lin, and H.Y.Hu (2009).
Structural basis for ubiquitin recognition by a novel domain from human phospholipase A2-activating protein.
  J Biol Chem, 284, 19043-19052.
PDB codes: 2k89 2k8a 2k8b 2k8c
19180541 S.M.Jeram, T.Srikumar, P.G.Pedrioli, and B.Raught (2009).
Using mass spectrometry to identify ubiquitin and ubiquitin-like protein conjugation sites.
  Proteomics, 9, 922-934.  
  19246649 Y.Liu, S.V.Shah, X.Xiang, J.Wang, Z.B.Deng, C.Liu, L.Zhang, J.Wu, T.Edmonds, C.Jambor, J.C.Kappes, and H.G.Zhang (2009).
COP9-associated CSN5 regulates exosomal protein deubiquitination and sorting.
  Am J Pathol, 174, 1415-1425.  
18802447 G.Rabut, and M.Peter (2008).
Function and regulation of protein neddylation. 'Protein modifications: beyond the usual suspects' review series.
  EMBO Rep, 9, 969-976.  
18652489 J.Souphron, M.B.Waddell, A.Paydar, Z.Tokgöz-Gromley, M.F.Roussel, and B.A.Schulman (2008).
Structural dissection of a gating mechanism preventing misactivation of ubiquitin by NEDD8's E1.
  Biochemistry, 47, 8961-8969.
PDB codes: 3dbh 3dbl 3dbr
18492068 Z.Tang, C.M.Hecker, A.Scheschonka, and H.Betz (2008).
Protein interactions in the sumoylation cascade: lessons from X-ray structures.
  FEBS J, 275, 3003-3015.  
17440617 A.Catic, S.Misaghi, G.A.Korbel, and H.L.Ploegh (2007).
ElaD, a Deubiquitinating protease expressed by E. coli.
  PLoS ONE, 2, e381.  
17477837 B.T.Dye, and B.A.Schulman (2007).
Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins.
  Annu Rev Biophys Biomol Struct, 36, 131-150.  
17220875 D.T.Huang, H.W.Hunt, M.Zhuang, M.D.Ohi, J.M.Holton, and B.A.Schulman (2007).
Basis for a ubiquitin-like protein thioester switch toggling E1-E2 affinity.
  Nature, 445, 394-398.
PDB code: 2nvu
17030000 M.Staszczak (2007).
An in vitro method for selective detection of free monomeric ubiquitin by using a C-terminally biotinylated form of ubiquitin.
  Int J Biochem Cell Biol, 39, 319-326.  
17369817 S.Carter, O.Bischof, A.Dejean, and K.H.Vousden (2007).
C-terminal modifications regulate MDM2 dissociation and nuclear export of p53.
  Nat Cell Biol, 9, 428-435.  
16861300 G.Bornstein, D.Ganoth, and A.Hershko (2006).
Regulation of neddylation and deneddylation of cullin1 in SCFSkp2 ubiquitin ligase by F-box protein and substrate.
  Proc Natl Acad Sci U S A, 103, 11515-11520.  
16864801 J.Xu, J.Zhang, L.Wang, J.Zhou, H.Huang, J.Wu, Y.Zhong, and Y.Shi (2006).
Solution structure of Urm1 and its implications for the origin of protein modifiers.
  Proc Natl Acad Sci U S A, 103, 11625-11630.
PDB code: 2ax5
15775960 L.N.Shen, H.Liu, C.Dong, D.Xirodimas, J.H.Naismith, and R.T.Hay (2005).
Structural basis of NEDD8 ubiquitin discrimination by the deNEDDylating enzyme NEDP1.
  EMBO J, 24, 1341-1351.
PDB codes: 2bkq 2bkr
16210246 S.Gazdoiu, K.Yamoah, K.Wu, C.R.Escalante, I.Tappin, V.Bermudez, A.K.Aggarwal, J.Hurwitz, and Z.Q.Pan (2005).
Proximity-induced activation of human Cdc34 through heterologous dimerization.
  Proc Natl Acad Sci U S A, 102, 15053-15058.  
15987890 Y.G.Gao, A.X.Song, Y.H.Shi, Y.G.Chang, S.X.Liu, Y.Z.Yu, X.T.Cao, D.H.Lin, and H.Y.Hu (2005).
Solution structure of the ubiquitin-like domain of human DC-UbP from dendritic cells.
  Protein Sci, 14, 2044-2050.
PDB code: 1ttn
15131269 C.Zhao, S.L.Beaudenon, M.L.Kelley, M.B.Waddell, W.Yuan, B.A.Schulman, J.M.Huibregtse, and R.M.Krug (2004).
The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-alpha/beta-induced ubiquitin-like protein.
  Proc Natl Acad Sci U S A, 101, 7578-7582.  
15361859 D.T.Huang, D.W.Miller, R.Mathew, R.Cassell, J.M.Holton, M.F.Roussel, and B.A.Schulman (2004).
A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8.
  Nat Struct Mol Biol, 11, 927-935.
PDB code: 1tt5
15209382 G.Parry, and M.Estelle (2004).
Regulation of cullin-based ubiquitin ligases by the Nedd8/RUB ubiquitin-like proteins.
  Semin Cell Dev Biol, 15, 221-229.  
14673145 J.Hemelaar, A.Borodovsky, B.M.Kessler, D.Reverter, J.Cook, N.Kolli, T.Gan-Erdene, K.D.Wilkinson, G.Gill, C.D.Lima, H.L.Ploegh, and H.Ovaa (2004).
Specific and covalent targeting of conjugating and deconjugating enzymes of ubiquitin-like proteins.
  Mol Cell Biol, 24, 84-95.  
15209385 R.Hartmann-Petersen, and C.Gordon (2004).
Integral UBL domain proteins: a family of proteasome interacting proteins.
  Semin Cell Dev Biol, 15, 247-259.  
15519283 S.Song, and Y.K.Jung (2004).
Alzheimer's disease meets the ubiquitin-proteasome system.
  Trends Mol Med, 10, 565-570.  
12826404 D.C.Schwartz, and M.Hochstrasser (2003).
A superfamily of protein tags: ubiquitin, SUMO and related modifiers.
  Trends Biochem Sci, 28, 321-328.  
12646924 H.Walden, M.S.Podgorski, and B.A.Schulman (2003).
Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8.
  Nature, 422, 330-334.
PDB codes: 1ngv 1yov
14690597 H.Walden, M.S.Podgorski, D.T.Huang, D.W.Miller, R.J.Howard, D.L.Minor, J.M.Holton, and B.A.Schulman (2003).
The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1.
  Mol Cell, 12, 1427-1437.
PDB codes: 1r4m 1r4n
14608371 J.Lüders, G.Pyrowolakis, and S.Jentsch (2003).
The ubiquitin-like protein HUB1 forms SDS-resistant complexes with cellular proteins in the absence of ATP.
  EMBO Rep, 4, 1169-1174.  
14663148 S.Holmstrom, M.E.Van Antwerp, and J.A.Iñiguez-Lluhi (2003).
Direct and distinguishable inhibitory roles for SUMO isoforms in the control of transcriptional synergy.
  Proc Natl Acad Sci U S A, 100, 15758-15763.  
12970176 T.D.Mueller, and J.Feigon (2003).
Structural determinants for the binding of ubiquitin-like domains to the proteasome.
  EMBO J, 22, 4634-4645.
PDB codes: 1p98 1p9c 1p9d
12824502 T.McNally, Q.Huang, R.S.Janis, Z.Liu, E.T.Olejniczak, and R.M.Reilly (2003).
Structural analysis of UBL5, a novel ubiquitin-like modifier.
  Protein Sci, 12, 1562-1566.
PDB code: 1p0r
11395416 C.M.Pickart (2001).
Mechanisms underlying ubiquitination.
  Annu Rev Biochem, 70, 503-533.  
11533242 C.Ptak, C.Gwozd, J.T.Huzil, T.J.Gwozd, G.Garen, and M.J.Ellison (2001).
Creation of a pluripotent ubiquitin-conjugating enzyme.
  Mol Cell Biol, 21, 6537-6548.  
10944193 Y.A.Lam, C.M.Pickart, A.Alban, M.Landon, C.Jamieson, R.Ramage, R.J.Mayer, and R.Layfield (2000).
Inhibition of the ubiquitin-proteasome system in Alzheimer's disease.
  Proc Natl Acad Sci U S A, 97, 9902-9906.  
  10386876 A.M.Wyndham, R.T.Baker, and G.Chelvanayagam (1999).
The Ubp6 family of deubiquitinating enzymes contains a ubiquitin-like domain: SUb.
  Protein Sci, 8, 1268-1275.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer