spacer
spacer

PDBsum entry 1mzl

Go to PDB code: 
protein links
Lipid transport PDB id
1mzl
Jmol
Contents
Protein chain
93 a.a. *
Waters ×51
* Residue conservation analysis
PDB id:
1mzl
Name: Lipid transport
Title: Maize nonspecific lipid transfer protein
Structure: Maize nonspecific lipid transfer protein. Chain: a
Source: Zea mays. Organism_taxid: 4577
Resolution:
1.90Å     R-factor:   0.197     R-free:   0.219
Authors: D.H.Shin,J.Y.Lee,K.Y.Hwang,K.K.Kim,S.W.Suh
Key ref:
D.H.Shin et al. (1995). High-resolution crystal structure of the non-specific lipid-transfer protein from maize seedlings. Structure, 3, 189-199. PubMed id: 7735835 DOI: 10.1016/S0969-2126(01)00149-6
Date:
26-Jan-95     Release date:   01-Aug-96    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P19656  (NLTP_MAIZE) -  Non-specific lipid-transfer protein
Seq:
Struc:
120 a.a.
93 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     apoplast   4 terms 
  Biological process     transport   2 terms 
  Biochemical function     lipid binding     2 terms  

 

 
DOI no: 10.1016/S0969-2126(01)00149-6 Structure 3:189-199 (1995)
PubMed id: 7735835  
 
 
High-resolution crystal structure of the non-specific lipid-transfer protein from maize seedlings.
D.H.Shin, J.Y.Lee, K.Y.Hwang, K.K.Kim, S.W.Suh.
 
  ABSTRACT  
 
BACKGROUND: The movement of lipids between membranes is aided by lipid-transfer proteins (LTPs). Some LTPs exhibit broad specificity, transferring many classes of lipids, and are termed non-specific LTPs (ns-LTPs). Despite their apparently similar mode of action, no sequence homology exists between mammalian and plant ns-LTPs and no three-dimensional structure has been reported for any plant ns-LTP. RESULTS: We have determined the crystal structure of ns-LTP from maize seedlings by multiple isomorphous replacement and refined the structure to 1.9 A resolution. The protein comprises a single compact domain with four alpha-helices and a long C-terminal region. The eight conserved cysteines form four disulfide bridges (assigned as Cys4-Cys52, Cys14-Cys29, Cys30-Cys75, and Cys50-Cys89) resolving the ambiguity that remained from the chemical determination of pairings in the homologous protein from castor bean. Two of the bonds, Cys4-Cys52 and Cys50-Cys89, differ from what would have been predicted from sequence alignment with soybean hydrophobic protein. The complex between maize ns-LTP and hexadecanoate (palmitate) has also been crystallized and its structure refined to 1.8 A resolution. CONCLUSIONS: The fold of maize ns-LTP places it in a new category of all-alpha-type structure, first described for soybean hydrophobic protein. In the absence of a bound ligand, the protein has a tunnel-like hydrophobic cavity, which is large enough to accommodate a long fatty acyl chain. In the structure of the complex with palmitate, most of the acyl chain is buried inside this hydrophobic cavity.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Comparison of disulfide bridge patterns and secondary structures of maize ns-LTP (a) and hydrophobic protein from soybean (b). H, α-helix; G, 3[10]-helix; S, β-strand; L, loop. Figure 3. Comparison of disulfide bridge patterns and secondary structures of maize ns-LTP (a) and hydrophobic protein from soybean (b). H, α-helix; G, 3[10]-helix; S, β-strand; L, loop.
Figure 4.
Figure 4. Stereo diagram showing the amino acid distribution in uncomplexed maize ns-LTP. Basic residues (Arg, Lys) are colored cyan; acidic residues (Asp), red; neutral polar residues (Asn, Gln, Gly, Ser, Thr), orange; Tyr, white; hydrophobic residues (Ala, Ile, Leu, Pro, Val), pink; Cys, yellow. Figure 4. Stereo diagram showing the amino acid distribution in uncomplexed maize ns-LTP. Basic residues (Arg, Lys) are colored cyan; acidic residues (Asp), red; neutral polar residues (Asn, Gln, Gly, Ser, Thr), orange; Tyr, white; hydrophobic residues (Ala, Ile, Leu, Pro, Val), pink; Cys, yellow.
 
  The above figures are reprinted by permission from Cell Press: Structure (1995, 3, 189-199) copyright 1995.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20667964 K.Chae, B.J.Gonong, S.C.Kim, C.A.Kieslich, D.Morikis, S.Balasubramanian, and E.M.Lord (2010).
A multifaceted study of stigma/style cysteine-rich adhesin (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction.
  J Exp Bot, 61, 4277-4290.  
19161349 G.Gao, L.P.Jin, K.Y.Xie, and D.Y.Qu (2009).
The potato StLTPa7 gene displays a complex Ca-associated pattern of expression during the early stage of potato-Ralstonia solanacearum interaction.
  Mol Plant Pathol, 10, 15-27.  
19236482 R.González-Rioja, J.A.Asturias, A.Martínez, F.M.Goñi, and A.R.Viguera (2009).
Par j 1 and Par j 2, the two major allergens in Parietaria judaica, bind preferentially to monoacylated negative lipids.
  FEBS J, 276, 1762-1775.  
19089429 S.Sarowar, Y.J.Kim, K.D.Kim, B.K.Hwang, S.H.Ok, and J.S.Shin (2009).
Overexpression of lipid transfer protein (LTP) genes enhances resistance to plant pathogens and LTP functions in long-distance systemic signaling in tobacco.
  Plant Cell Rep, 28, 419-427.  
18257684 J.Y.Sun, D.A.Gaudet, Z.X.Lu, M.Frick, B.Puchalski, and A.Laroche (2008).
Characterization and antifungal properties of wheat nonspecific lipid transfer proteins.
  Mol Plant Microbe Interact, 21, 346-360.  
18552128 M.B.Lascombe, B.Bakan, N.Buhot, D.Marion, J.P.Blein, V.Larue, C.Lamb, and T.Prangé (2008).
The structure of "defective in induced resistance" protein of Arabidopsis thaliana, DIR1, reveals a new type of lipid transfer protein.
  Protein Sci, 17, 1522-1530.
PDB code: 2rkn
18096636 T.H.Yeats, and J.K.Rose (2008).
The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs).
  Protein Sci, 17, 191-198.  
18338386 Y.T.Lai, C.S.Cheng, Y.N.Liu, Y.J.Liu, and P.C.Lyu (2008).
Effects of ligand binding on the dynamics of rice nonspecific lipid transfer protein 1: a model from molecular simulations.
  Proteins, 72, 1189-1198.  
17384226 E.J.Choi, J.Mao, and S.L.Mayo (2007).
Computational design and biochemical characterization of maize nonspecific lipid transfer protein variants for biosensor applications.
  Protein Sci, 16, 582-588.  
17878166 K.Chae, K.Zhang, L.Zhang, D.Morikis, S.T.Kim, J.C.Mollet, N.de la Rosa, K.Tan, and E.M.Lord (2007).
Two SCA (stigma/style cysteine-rich adhesin) isoforms show structural differences that correlate with their levels of in vitro pollen tube adhesion activity.
  J Biol Chem, 282, 33845-33858.  
17489047 L.Zuidmeer, and R.van Ree (2007).
Lipid transfer protein allergy: primary food allergy or pollen/food syndrome in some cases.
  Curr Opin Allergy Clin Immunol, 7, 269-273.  
16177913 K.Liu, H.Jiang, S.L.Moore, C.B.Watkins, and M.M.Jahn (2006).
Isolation and characterization of a lipid transfer protein expressed in ripening fruit of Capsicum chinense.
  Planta, 223, 672-683.  
16555311 P.Da Silva, C.Landon, R.Beltoise, M.Ponchet, and F.Vovelle (2006).
Accessibility of tobacco lipid transfer protein cavity revealed by 15N NMR relaxation studies and molecular dynamics simulations.
  Proteins, 64, 124-132.  
16134992 A.I.Sancho, N.M.Rigby, L.Zuidmeer, R.Asero, G.Mistrello, S.Amato, E.González-Mancebo, M.Fernández-Rivas, R.van Ree, and E.N.Mills (2005).
The effect of thermal processing on the IgE reactivity of the non-specific lipid transfer protein from apple, Mal d 3.
  Allergy, 60, 1262-1268.  
16462858 A.J.De Lucca, T.E.Cleveland, and D.E.Wedge (2005).
Plant-derived antifungal proteins and peptides.
  Can J Microbiol, 51, 1001-1014.  
15692564 A.P.Turnbull, D.Kümmel, B.Prinz, C.Holz, J.Schultchen, C.Lang, F.H.Niesen, K.P.Hofmann, H.Delbrück, J.Behlke, E.C.Müller, E.Jarosch, T.Sommer, and U.Heinemann (2005).
Structure of palmitoylated BET3: insights into TRAPP complex assembly and membrane localization.
  EMBO J, 24, 875-884.
PDB code: 1sz7
15805594 F.Hoh, J.L.Pons, M.F.Gautier, F.de Lamotte, and C.Dumas (2005).
Structure of a liganded type 2 non-specific lipid-transfer protein from wheat and the molecular basis of lipid binding.
  Acta Crystallogr D Biol Crystallogr, 61, 397-406.
PDB code: 1tuk
15864088 H.Breiteneder, and C.Mills (2005).
Nonspecific lipid-transfer proteins in plant foods and pollens: an important allergen class.
  Curr Opin Allergy Clin Immunol, 5, 275-279.  
15726627 P.Da Silva, C.Landon, B.Industri, A.Marais, D.Marion, M.Ponchet, and F.Vovelle (2005).
Solution structure of a tobacco lipid transfer protein exhibiting new biophysical and biological features.
  Proteins, 59, 356-367.
PDB code: 1t12
15295114 H.C.Cheng, P.T.Cheng, P.Peng, P.C.Lyu, and Y.J.Sun (2004).
Lipid binding in rice nonspecific lipid transfer protein-1 complexes from Oryza sativa.
  Protein Sci, 13, 2304-2315.
PDB codes: 1uva 1uvb 1uvc
15583398 S.Y.Wang, K.J.Zhou, X.Y.Ye, Z.B.Xu, J.H.Wu, and P.F.Rao (2004).
Crystallization and preliminary X-ray crystallographic analysis of a non-specific lipid-transfer protein with antipathogenic activity from Phaseolus mungo.
  Acta Crystallogr D Biol Crystallogr, 60, 2391-2393.  
12525478 J.L.Pons, F.de Lamotte, M.F.Gautier, and M.A.Delsuc (2003).
Refined solution structure of a liganded type 2 wheat nonspecific lipid transfer protein.
  J Biol Chem, 278, 14249-14256.
PDB code: 1n89
12068017 A.Lartigue, V.Campanacci, A.Roussel, A.M.Larsson, T.A.Jones, M.Tegoni, and C.Cambillau (2002).
X-ray structure and ligand binding study of a moth chemosensory protein.
  J Biol Chem, 277, 32094-32098.
PDB codes: 1kx8 1kx9
12171654 D.K.Hincha (2002).
Cryoprotectin: a plant lipid-transfer protein homologue that stabilizes membranes during freezing.
  Philos Trans R Soc Lond B Biol Sci, 357, 909-916.  
12472696 E.van der Graaff, P.J.Hooykaas, and B.Keller (2002).
Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number.
  Plant J, 32, 819-830.  
12269935 R.Asero, G.Mistrello, D.Roncarolo, S.Amato, G.Caldironi, F.Barocci, and R.van Ree (2002).
Immunological cross-reactivity between lipid transfer proteins from botanically unrelated plant-derived foods: a clinical study.
  Allergy, 57, 900-906.  
12171657 R.Lundheim (2002).
Physiological and ecological significance of biological ice nucleators.
  Philos Trans R Soc Lond B Biol Sci, 357, 937-943.  
11274467 C.Landon, P.Berthault, F.Vovelle, and H.Desvaux (2001).
Magnetization transfer from laser-polarized xenon to protons located in the hydrophobic cavity of the wheat nonspecific lipid transfer protein.
  Protein Sci, 10, 762-770.  
11168373 J.P.Douliez, S.Jégou, C.Pato, D.Mollé, V.Tran, and D.Marion (2001).
Binding of two mono-acylated lipid monomers by the barley lipid transfer protein, LTP1, as viewed by fluorescence, isothermal titration calorimetry and molecular modelling.
  Eur J Biochem, 268, 384-388.  
11532009 V.Campanacci, A.Mosbah, O.Bornet, R.Wechselberger, E.Jacquin-Joly, C.Cambillau, H.Darbon, and M.Tegoni (2001).
Chemosensory protein from the moth Mamestra brassicae. Expression and secondary structure from 1H and 15N NMR.
  Eur J Biochem, 268, 4731-4739.  
10930509 J.P.Douliez, T.Michon, and D.Marion (2000).
Steady-state tyrosine fluorescence to study the lipid-binding properties of a wheat non-specific lipid-transfer protein (nsLTP1).
  Biochim Biophys Acta, 1467, 65-72.  
10713993 M.J.Pandya, R.B.Sessions, P.B.Williams, C.E.Dempsey, A.S.Tatham, P.R.Shewry, and A.R.Clarke (2000).
Structural characterization of a methionine-rich, emulsifying protein from sunflower seed.
  Proteins, 38, 341-349.  
10713515 S.Gourinath, N.Alam, A.Srinivasan, C.Betzel, and T.P.Singh (2000).
Structure of the bifunctional inhibitor of trypsin and alpha-amylase from ragi seeds at 2.2 A resolution.
  Acta Crystallogr D Biol Crystallogr, 56, 287-293.
PDB code: 1b1u
10672021 S.Tassin-Moindrot, A.Caille, J.P.Douliez, D.Marion, and F.Vovelle (2000).
The wide binding properties of a wheat nonspecific lipid transfer protein. Solution structure of a complex with prostaglandin B2.
  Eur J Biochem, 267, 1117-1124.
PDB code: 1cz2
10491104 D.Charvolin, J.P.Douliez, D.Marion, C.Cohen-Addad, and E.Pebay-Peyroula (1999).
The crystal structure of a wheat nonspecific lipid transfer protein (ns-LTP1) complexed with two molecules of phospholipid at 2.1 A resolution.
  Eur J Biochem, 264, 562-568.
PDB code: 1bwo
10614824 E.A.Pastorello, C.Ortolani, C.Baroglio, V.Pravettoni, M.Ispano, M.G.Giuffrida, D.Fortunato, L.Farioli, M.Monza, L.Napolitano, M.Sacco, E.Scibola, and A.Conti (1999).
Complete amino acid sequence determination of the major allergen of peach (Prunus persica) Pru p 1.
  Biol Chem, 380, 1315-1320.  
10571986 F.Guerbette, M.Grosbois, A.Jolliot-Croquin, J.C.Kader, and A.Zachowski (1999).
Comparison of lipid binding and transfer properties of two lipid transfer proteins from plants.
  Biochemistry, 38, 14131-14137.  
10092854 J.Poznanski, P.Sodano, S.W.Suh, J.Y.Lee, M.Ptak, and F.Vovelle (1999).
Solution structure of a lipid transfer protein extracted from rice seeds. Comparison with homologous proteins.
  Eur J Biochem, 259, 692-708.
PDB code: 1bv2
10358761 S.A.Porcelli, and R.L.Modlin (1999).
The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids.
  Annu Rev Immunol, 17, 297-329.  
10103017 V.Lullien-Pellerin, C.Devaux, T.Ihorai, D.Marion, V.Pahin, P.Joudrier, and M.F.Gautier (1999).
Production in Escherichia coli and site-directed mutagenesis of a 9-kDa nonspecific lipid transfer protein from wheat.
  Eur J Biochem, 260, 861-868.  
9799488 C.A.Behnke, V.C.Yee, I.L.Trong, L.C.Pedersen, R.E.Stenkamp, S.S.Kim, G.R.Reeck, and D.C.Teller (1998).
Structural determinants of the bifunctional corn Hageman factor inhibitor: x-ray crystal structure at 1.95 A resolution.
  Biochemistry, 37, 15277-15288.
PDB codes: 1bea 1bfa
9829124 C.E.Barry, R.E.Lee, K.Mdluli, A.E.Sampson, B.G.Schroeder, R.A.Slayden, and Y.Yuan (1998).
Mycolic acids: structure, biosynthesis and physiological functions.
  Prog Lipid Res, 37, 143-179.  
10333739 F.García-Olmedo, A.Molina, J.M.Alamillo, and P.Rodríguez-Palenzuéla (1998).
Plant defense peptides.
  Biopolymers, 47, 479-491.  
9782057 L.Serre, B.Vallée, N.Bureaud, F.Schoentgen, and C.Zelwer (1998).
Crystal structure of the phosphatidylethanolamine-binding protein from bovine brain: a novel structural class of phospholipid-binding proteins.
  Structure, 6, 1255-1265.
PDB codes: 1a44 1b7a
  9865943 M.H.Lerche, and F.M.Poulsen (1998).
Solution structure of barley lipid transfer protein complexed with palmitate. Two different binding modes of palmitate in the homologous maize and barley nonspecific lipid transfer proteins.
  Protein Sci, 7, 2490-2498.
PDB code: 1be2
9821470 P.Colombo, G.Duro, M.A.Costa, V.Izzo, M.Mirisola, G.Locorotondo, R.Cocchiara, and D.Geraci (1998).
An update on allergens. Parietaria pollen allergens.
  Allergy, 53, 917-921.  
9521681 S.Tassin, W.F.Broekaert, D.Marion, D.P.Acland, M.Ptak, F.Vovelle, and P.Sodano (1998).
Solution structure of Ace-AMP1, a potent antimicrobial protein extracted from onion seeds. Structural analogies with plant nonspecific lipid transfer proteins.
  Biochemistry, 37, 3623-3637.  
9675898 Z.Keresztessy, and M.A.Hughes (1998).
Homology modelling and molecular dynamics aided analysis of ligand complexes demonstrates functional properties of lipid-transfer proteins encoded by the barley low-temperature-inducible gene family, blt4.
  Plant J, 14, 523-533.  
9188741 A.V.Efimov (1997).
Structural trees for protein superfamilies.
  Proteins, 28, 241-260.  
9032083 M.H.Lerche, B.B.Kragelund, L.M.Bech, and F.M.Poulsen (1997).
Barley lipid-transfer protein complexed with palmitoyl CoA: the structure reveals a hydrophobic binding site that can expand to fit both large and small lipid-like ligands.
  Structure, 5, 291-306.
PDB code: 1jtb
9219685 Z.Zeng, A.R.Castaño, B.W.Segelke, E.A.Stura, P.A.Peterson, and I.A.Wilson (1997).
Crystal structure of mouse CD1: An MHC-like fold with a large hydrophobic binding groove.
  Science, 277, 339-345.
PDB code: 1cd1
8639743 D.W.Choi, J.Y.Song, M.H.Oh, J.S.Lee, J.Moon, S.W.Suh, and S.G.Kim (1996).
Isolation of a root-specific cDNA encoding a ns-LTP-like protein from the roots of bean (Phaseolus vulgaris L.) seedlings.
  Plant Mol Biol, 30, 1059-1066.  
8639755 D.W.Choi, J.Y.Song, Y.M.Kwon, and S.G.Kim (1996).
Characterization of a cDNA encoding a proline-rich 14 kDa protein in developing cortical cells of the roots of bean (Phaseolus vulgaris) seedlings.
  Plant Mol Biol, 30, 973-982.  
15012303 J.C.Kader (1996).
LIPID-TRANSFER PROTEINS IN PLANTS.
  Annu Rev Plant Physiol Plant Mol Biol, 47, 627-654.  
  8845747 J.Gomar, M.C.Petit, P.Sodano, D.Sy, D.Marion, J.C.Kader, F.Vovelle, and M.Ptak (1996).
Solution structure and lipid binding of a nonspecific lipid transfer protein extracted from maize seeds.
  Protein Sci, 5, 565-577.
PDB code: 1afh
8961930 M.Rico, M.Bruix, C.González, R.I.Monsalve, and R.Rodríguez (1996).
1H NMR assignment and global fold of napin BnIb, a representative 2S albumin seed protein.
  Biochemistry, 35, 15672-15682.
PDB code: 1pnb
8519997 M.Subirade, C.Salesse, D.Marion, and M.Pézolet (1995).
Interaction of a nonspecific wheat lipid transfer protein with phospholipid monolayers imaged by fluorescence microscopy and studied by infrared spectroscopy.
  Biophys J, 69, 974-988.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.