 |
PDBsum entry 1mqj
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Membrane protein
|
PDB id
|
|
|
|
1mqj
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Membrane protein
|
 |
|
Title:
|
 |
Crystal structure of the glur2 ligand binding core (s1s2j) in complex with willardiine at 1.65 angstroms resolution
|
|
Structure:
|
 |
Glutamate receptor 2. Chain: a. Fragment: ligand binding core (s1s2j). Synonym: glur-2, glur-b, glur-k2, glutamate receptor ionotropic, ampa 2. Engineered: yes
|
|
Source:
|
 |
Rattus norvegicus. Norway rat. Organism_taxid: 10116. Gene: glur-2 or glur-b. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
|
|
Resolution:
|
 |
|
1.65Å
|
R-factor:
|
0.208
|
R-free:
|
0.229
|
|
|
Authors:
|
 |
R.Jin,T.G.Banke,M.L.Mayer,S.F.Traynelis,E.Gouaux
|
Key ref:
|
 |
R.Jin
et al.
(2003).
Structural basis for partial agonist action at ionotropic glutamate receptors.
Nat Neurosci,
6,
803-810.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
16-Sep-02
|
Release date:
|
05-Aug-03
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P19491
(GRIA2_RAT) -
Glutamate receptor 2 from Rattus norvegicus
|
|
|
|
Seq: Struc:
|
 |
 |
 |
883 a.a.
260 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
PfamA domain |
 |
 |
 |
Secondary structure |
 |
 |
CATH domain |
 |
|
*
PDB and UniProt seqs differ
at 2 residue positions (black
crosses)
|
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nat Neurosci
6:803-810
(2003)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structural basis for partial agonist action at ionotropic glutamate receptors.
|
|
R.Jin,
T.G.Banke,
M.L.Mayer,
S.F.Traynelis,
E.Gouaux.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
An unresolved problem in understanding neurotransmitter receptor function
concerns the mechanism(s) by which full and partial agonists elicit different
amplitude responses at equal receptor occupancy. The widely held view of
'partial agonism' posits that resting and active states of the receptor are in
equilibrium, and partial agonists simply do not shift the equilibrium toward the
active state as efficaciously as full agonists. Here we report findings from
crystallographic and electrophysiological studies of the mechanism of activation
of an AMPA-subtype glutamate receptor ion channel. In these experiments, we used
5-substituted willardiines, a series of partial agonists that differ by only a
single atom. Our results show that the GluR2 ligand-binding core can adopt a
range of ligand-dependent conformational states, which in turn control the open
probability of discrete subconductance states of the intact ion channel. Our
findings thus provide a structure-based model of partial agonism.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Figure 1. Ionotropic glutamate receptor domain organization and
agonist structure. (a) iGluR domain organization. Polypeptide
segments S1 and S2 comprise the water-soluble, ligand-binding
core and the S1S2J construct studied here includes residues 392
-506 (S1) and 632 -775 (S2) linked together by a Gly -Thr
dipeptide. The amino terminal domain (ATD) and the transmembrane
segments are not contained within the S1S2J construct. (b)
Chemical structures of glutamate and 5-substituted willardiines.
|
 |
Figure 3.
Figure 3. Electron density |F[o]| - |F[c]| 'omit' maps for
willardiines and selected interacting residues. (a) HW
complex. (b) FW complex. (c) BrW complex. (d) IW complex. Maps
are contoured at 4.0 for
HW, FW and BrW complexes, and 3.2 for
IW complex.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nat Neurosci
(2003,
6,
803-810)
copyright 2003.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.C.Jackson,
and
R.A.Nicoll
(2011).
The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits.
|
| |
Neuron,
70,
178-199.
|
 |
|
|
|
|
 |
A.S.Kristensen,
M.A.Jenkins,
T.G.Banke,
A.Schousboe,
Y.Makino,
R.C.Johnson,
R.Huganir,
and
S.F.Traynelis
(2011).
Mechanism of Ca(2+)/calmodulin-dependent kinase II regulation of AMPA receptor gating.
|
| |
Nat Neurosci,
14,
727-735.
|
 |
|
|
|
|
 |
G.M.Alushin,
D.Jane,
and
M.L.Mayer
(2011).
Binding site and ligand flexibility revealed by high resolution crystal structures of GluK1 competitive antagonists.
|
| |
Neuropharmacology,
60,
126-134.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Pøhlsgaard,
K.Frydenvang,
U.Madsen,
and
J.S.Kastrup
(2011).
Lessons from more than 80 structures of the GluA2 ligand-binding domain in complex with agonists, antagonists and allosteric modulators.
|
| |
Neuropharmacology,
60,
135-150.
|
 |
|
|
|
|
 |
M.L.Mayer
(2011).
Glutamate receptor ion channels: where do all the calories go?
|
| |
Nat Struct Mol Biol,
18,
253-254.
|
 |
|
|
|
|
 |
A.Birdsey-Benson,
A.Gill,
L.P.Henderson,
and
D.R.Madden
(2010).
Enhanced efficacy without further cleft closure: reevaluating twist as a source of agonist efficacy in AMPA receptors.
|
| |
J Neurosci,
30,
1463-1470.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.H.Ahmed,
C.P.Ptak,
and
R.E.Oswald
(2010).
Molecular mechanism of flop selectivity and subsite recognition for an AMPA receptor allosteric modulator: structures of GluA2 and GluA3 in complexes with PEPA.
|
| |
Biochemistry,
49,
2843-2850.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.H.Ahmed,
and
R.E.Oswald
(2010).
Piracetam defines a new binding site for allosteric modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors.
|
| |
J Med Chem,
53,
2197-2203.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.S.Kato,
M.B.Gill,
H.Yu,
E.S.Nisenbaum,
and
D.S.Bredt
(2010).
TARPs differentially decorate AMPA receptors to specify neuropharmacology.
|
| |
Trends Neurosci,
33,
241-248.
|
 |
|
|
|
|
 |
C.Shelley,
and
S.G.Cull-Candy
(2010).
Desensitization and models of receptor-channel activation.
|
| |
J Physiol,
588,
1395-1397.
|
 |
|
|
|
|
 |
J.Gonzalez,
M.Du,
K.Parameshwaran,
V.Suppiramaniam,
and
V.Jayaraman
(2010).
Role of dimer interface in activation and desensitization in AMPA receptors.
|
| |
Proc Natl Acad Sci U S A,
107,
9891-9896.
|
 |
|
|
|
|
 |
M.L.Prieto,
and
L.P.Wollmuth
(2010).
Gating modes in AMPA receptors.
|
| |
J Neurosci,
30,
4449-4459.
|
 |
|
|
|
|
 |
P.A.Postila,
G.T.Swanson,
and
O.T.Pentikäinen
(2010).
Exploring kainate receptor pharmacology using molecular dynamics simulations.
|
| |
Neuropharmacology,
58,
515-527.
|
 |
|
|
|
|
 |
T.Nakagawa
(2010).
The biochemistry, ultrastructure, and subunit assembly mechanism of AMPA receptors.
|
| |
Mol Neurobiol,
42,
161-184.
|
 |
|
|
|
|
 |
U.Das,
J.Kumar,
M.L.Mayer,
and
A.J.Plested
(2010).
Domain organization and function in GluK2 subtype kainate receptors.
|
| |
Proc Natl Acad Sci U S A,
107,
8463-8468.
|
 |
|
|
|
|
 |
A.H.Ahmed,
M.D.Thompson,
M.K.Fenwick,
B.Romero,
A.P.Loh,
D.E.Jane,
H.Sondermann,
and
R.E.Oswald
(2009).
Mechanisms of antagonism of the GluR2 AMPA receptor: structure and dynamics of the complex of two willardiine antagonists with the glutamate binding domain.
|
| |
Biochemistry,
48,
3894-3903.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.H.Ahmed,
Q.Wang,
H.Sondermann,
and
R.E.Oswald
(2009).
Structure of the S1S2 glutamate binding domain of GLuR3.
|
| |
Proteins,
75,
628-637.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Khatri,
A.Sedelnikova,
and
D.S.Weiss
(2009).
Structural Rearrangements in Loop F of the GABA Receptor Signal Ligand Binding, Not Channel Activation.
|
| |
Biophys J,
96,
45-55.
|
 |
|
|
|
|
 |
A.M.Rossi,
A.M.Riley,
S.C.Tovey,
T.Rahman,
O.Dellis,
E.J.Taylor,
V.G.Veresov,
B.V.Potter,
and
C.W.Taylor
(2009).
Synthetic partial agonists reveal key steps in IP3 receptor activation.
|
| |
Nat Chem Biol,
5,
631-639.
|
 |
|
|
|
|
 |
C.L.Kussius,
and
G.K.Popescu
(2009).
Kinetic basis of partial agonism at NMDA receptors.
|
| |
Nat Neurosci,
12,
1114-1120.
|
 |
|
|
|
|
 |
C.Sager,
J.Terhag,
S.Kott,
and
M.Hollmann
(2009).
C-terminal domains of transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor regulatory proteins not only facilitate trafficking but are major modulators of AMPA receptor function.
|
| |
J Biol Chem,
284,
32413-32424.
|
 |
|
|
|
|
 |
K.B.Hansen,
P.Naur,
N.L.Kurtkaya,
A.S.Kristensen,
M.Gajhede,
J.S.Kastrup,
and
S.F.Traynelis
(2009).
Modulation of the dimer interface at ionotropic glutamate-like receptor delta2 by D-serine and extracellular calcium.
|
| |
J Neurosci,
29,
907-917.
|
 |
|
|
|
|
 |
K.Frydenvang,
L.L.Lash,
P.Naur,
P.A.Postila,
D.S.Pickering,
C.M.Smith,
M.Gajhede,
M.Sasaki,
R.Sakai,
O.T.Pentikaïnen,
G.T.Swanson,
and
J.S.Kastrup
(2009).
Full Domain Closure of the Ligand-binding Core of the Ionotropic Glutamate Receptor iGluR5 Induced by the High Affinity Agonist Dysiherbaine and the Functional Antagonist 8,9-Dideoxyneodysiherbaine.
|
| |
J Biol Chem,
284,
14219-14229.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Bunch,
and
P.Krogsgaard-Larsen
(2009).
Subtype selective kainic acid receptor agonists: discovery and approaches to rational design.
|
| |
Med Res Rev,
29,
3.
|
 |
|
|
|
|
 |
M.Du,
A.Rambhadran,
and
V.Jayaraman
(2009).
Vibrational spectroscopic investigation of the ligand binding domain of kainate receptors.
|
| |
Protein Sci,
18,
1585-1591.
|
 |
|
|
|
|
 |
P.Purohit,
and
A.Auerbach
(2009).
Unliganded gating of acetylcholine receptor channels.
|
| |
Proc Natl Acad Sci U S A,
106,
115-120.
|
 |
|
|
|
|
 |
R.Benton,
K.S.Vannice,
C.Gomez-Diaz,
and
L.B.Vosshall
(2009).
Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila.
|
| |
Cell,
136,
149-162.
|
 |
|
|
|
|
 |
R.Numano,
S.Szobota,
A.Y.Lau,
P.Gorostiza,
M.Volgraf,
B.Roux,
D.Trauner,
and
E.Y.Isacoff
(2009).
Nanosculpting reversed wavelength sensitivity into a photoswitchable iGluR.
|
| |
Proc Natl Acad Sci U S A,
106,
6814-6819.
|
 |
|
|
|
|
 |
S.A.Pless,
and
J.W.Lynch
(2009).
Magnitude of a conformational change in the glycine receptor beta1-beta2 loop is correlated with agonist efficacy.
|
| |
J Biol Chem,
284,
27370-27376.
|
 |
|
|
|
|
 |
A.D.Milstein,
and
R.A.Nicoll
(2008).
Regulation of AMPA receptor gating and pharmacology by TARP auxiliary subunits.
|
| |
Trends Pharmacol Sci,
29,
333-339.
|
 |
|
|
|
|
 |
A.S.Maltsev,
A.H.Ahmed,
M.K.Fenwick,
D.E.Jane,
and
R.E.Oswald
(2008).
Mechanism of partial agonism at the GluR2 AMPA receptor: Measurements of lobe orientation in solution.
|
| |
Biochemistry,
47,
10600-10610.
|
 |
|
|
|
|
 |
E.J.Bjerrum,
and
P.C.Biggin
(2008).
Rigid body essential X-ray crystallography: distinguishing the bend and twist of glutamate receptor ligand binding domains.
|
| |
Proteins,
72,
434-446.
|
 |
|
|
|
|
 |
K.A.Mankiewicz,
A.Rambhadran,
L.Wathen,
and
V.Jayaraman
(2008).
Chemical interplay in the mechanism of partial agonist activation in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors.
|
| |
Biochemistry,
47,
398-404.
|
 |
|
|
|
|
 |
L.A.Cruz,
E.Estébanez-Perpiñá,
S.Pfaff,
S.Borngraeber,
N.Bao,
J.Blethrow,
R.J.Fletterick,
and
P.M.England
(2008).
6-Azido-7-nitro-1,4-dihydroquinoxaline-2,3-dione (ANQX) forms an irreversible bond to the active site of the GluR2 AMPA receptor.
|
| |
J Med Chem,
51,
5856-5860.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Gielen,
A.Le Goff,
D.Stroebel,
J.W.Johnson,
J.Neyton,
and
P.Paoletti
(2008).
Structural rearrangements of NR1/NR2A NMDA receptors during allosteric inhibition.
|
| |
Neuron,
57,
80-93.
|
 |
|
|
|
|
 |
M.Hoeren,
B.Brawek,
M.Mantovani,
M.Löffler,
M.Steffens,
V.van Velthoven,
and
T.J.Feuerstein
(2008).
Partial agonism at the human alpha(2A)-autoreceptor: role of binding duration.
|
| |
Naunyn Schmiedebergs Arch Pharmacol,
378,
17-26.
|
 |
|
|
|
|
 |
M.Jansen,
H.Rabe,
A.Strehle,
S.Dieler,
F.Debus,
G.Dannhardt,
M.H.Akabas,
and
H.Lüddens
(2008).
Synthesis of GABAA receptor agonists and evaluation of their alpha-subunit selectivity and orientation in the GABA binding site.
|
| |
J Med Chem,
51,
4430-4448.
|
 |
|
|
|
|
 |
M.K.Fenwick,
and
R.E.Oswald
(2008).
NMR spectroscopy of the ligand-binding core of ionotropic glutamate receptor 2 bound to 5-substituted willardiine partial agonists.
|
| |
J Mol Biol,
378,
673-685.
|
 |
|
|
|
|
 |
M.L.Blanke,
and
A.M.VanDongen
(2008).
Constitutive activation of the N-methyl-D-aspartate receptor via cleft-spanning disulfide bonds.
|
| |
J Biol Chem,
283,
21519-21529.
|
 |
|
|
|
|
 |
R.Lape,
D.Colquhoun,
and
L.G.Sivilotti
(2008).
On the nature of partial agonism in the nicotinic receptor superfamily.
|
| |
Nature,
454,
722-727.
|
 |
|
|
|
|
 |
T.Mamonova,
K.Speranskiy,
and
M.Kurnikova
(2008).
Interplay between structural rigidity and electrostatic interactions in the ligand binding domain of GluR2.
|
| |
Proteins,
73,
656-671.
|
 |
|
|
|
|
 |
A.H.Ahmed,
A.P.Loh,
D.E.Jane,
and
R.E.Oswald
(2007).
Dynamics of the S1S2 glutamate binding domain of GluR2 measured using 19F NMR spectroscopy.
|
| |
J Biol Chem,
282,
12773-12784.
|
 |
|
|
|
|
 |
A.J.Plested,
and
M.L.Mayer
(2007).
Structure and mechanism of kainate receptor modulation by anions.
|
| |
Neuron,
53,
829-841.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Körber,
M.Werner,
J.Hoffmann,
C.Sager,
M.Tietze,
S.M.Schmid,
S.Kott,
and
M.Hollmann
(2007).
Stargazin interaction with alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors is critically dependent on the amino acid at the narrow constriction of the ion channel.
|
| |
J Biol Chem,
282,
18758-18766.
|
 |
|
|
|
|
 |
D.Catarzi,
V.Colotta,
and
F.Varano
(2007).
Competitive AMPA receptor antagonists.
|
| |
Med Res Rev,
27,
239-278.
|
 |
|
|
|
|
 |
H.Hald,
P.Naur,
D.S.Pickering,
D.Sprogøe,
U.Madsen,
D.B.Timmermann,
P.K.Ahring,
T.Liljefors,
A.Schousboe,
J.Egebjerg,
M.Gajhede,
and
J.S.Kastrup
(2007).
Partial agonism and antagonism of the ionotropic glutamate receptor iGLuR5: structures of the ligand-binding core in complex with domoic acid and 2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl]propionic acid.
|
| |
J Biol Chem,
282,
25726-25736.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.A.Roberts,
and
R.J.Evans
(2007).
Cysteine substitution mutants give structural insight and identify ATP binding and activation sites at P2X receptors.
|
| |
J Neurosci,
27,
4072-4082.
|
 |
|
|
|
|
 |
K.A.Mankiewicz,
A.Rambhadran,
M.Du,
G.Ramanoudjame,
and
V.Jayaraman
(2007).
Role of the chemical interactions of the agonist in controlling alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor activation.
|
| |
Biochemistry,
46,
1343-1349.
|
 |
|
|
|
|
 |
K.A.Mankiewicz,
and
V.Jayaraman
(2007).
Glutamate receptors as seen by light: spectroscopic studies of structure-function relationships.
|
| |
Braz J Med Biol Res,
40,
1419-1427.
|
 |
|
|
|
|
 |
K.Menuz,
R.M.Stroud,
R.A.Nicoll,
and
F.A.Hays
(2007).
TARP auxiliary subunits switch AMPA receptor antagonists into partial agonists.
|
| |
Science,
318,
815-817.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Postlethwaite,
M.H.Hennig,
J.R.Steinert,
B.P.Graham,
and
I.D.Forsythe
(2007).
Acceleration of AMPA receptor kinetics underlies temperature-dependent changes in synaptic strength at the rat calyx of Held.
|
| |
J Physiol,
579,
69-84.
|
 |
|
|
|
|
 |
P.Gorostiza,
M.Volgraf,
R.Numano,
S.Szobota,
D.Trauner,
and
E.Y.Isacoff
(2007).
Mechanisms of photoswitch conjugation and light activation of an ionotropic glutamate receptor.
|
| |
Proc Natl Acad Sci U S A,
104,
10865-10870.
|
 |
|
|
|
|
 |
P.Naur,
K.B.Hansen,
A.S.Kristensen,
S.M.Dravid,
D.S.Pickering,
L.Olsen,
B.Vestergaard,
J.Egebjerg,
M.Gajhede,
S.F.Traynelis,
and
J.S.Kastrup
(2007).
Ionotropic glutamate-like receptor delta2 binds D-serine and glycine.
|
| |
Proc Natl Acad Sci U S A,
104,
14116-14121.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Tomita,
R.K.Byrd,
N.Rouach,
C.Bellone,
A.Venegas,
J.L.O'Brien,
K.S.Kim,
O.Olsen,
R.A.Nicoll,
and
D.S.Bredt
(2007).
AMPA receptors and stargazin-like transmembrane AMPA receptor-regulatory proteins mediate hippocampal kainate neurotoxicity.
|
| |
Proc Natl Acad Sci U S A,
104,
18784-18788.
|
 |
|
|
|
|
 |
W.Maier,
R.Schemm,
C.Grewer,
and
B.Laube
(2007).
Disruption of interdomain interactions in the glutamate binding pocket affects differentially agonist affinity and efficacy of N-methyl-D-aspartate receptor activation.
|
| |
J Biol Chem,
282,
1863-1872.
|
 |
|
|
|
|
 |
W.Pei,
M.Ritz,
M.McCarthy,
Z.Huang,
and
L.Niu
(2007).
Receptor occupancy and channel-opening kinetics: a study of GLUR1 L497Y AMPA receptor.
|
| |
J Biol Chem,
282,
22731-22736.
|
 |
|
|
|
|
 |
A.S.Kristensen,
M.T.Geballe,
J.P.Snyder,
and
S.F.Traynelis
(2006).
Glutamate receptors: variation in structure-function coupling.
|
| |
Trends Pharmacol Sci,
27,
65-69.
|
 |
|
|
|
|
 |
C.E.Lindquist,
and
B.Birnir
(2006).
Graded response to GABA by native extrasynaptic GABA receptors.
|
| |
J Neurochem,
97,
1349-1356.
|
 |
|
|
|
|
 |
C.Gebhardt,
and
S.G.Cull-Candy
(2006).
Influence of agonist concentration on AMPA and kainate channels in CA1 pyramidal cells in rat hippocampal slices.
|
| |
J Physiol,
573,
371-394.
|
 |
|
|
|
|
 |
C.Prescott,
A.M.Weeks,
K.J.Staley,
and
K.M.Partin
(2006).
Kynurenic acid has a dual action on AMPA receptor responses.
|
| |
Neurosci Lett,
402,
108-112.
|
 |
|
|
|
|
 |
C.S.Walker,
M.M.Francis,
P.J.Brockie,
D.M.Madsen,
Y.Zheng,
and
A.V.Maricq
(2006).
Conserved SOL-1 proteins regulate ionotropic glutamate receptor desensitization.
|
| |
Proc Natl Acad Sci U S A,
103,
10787-10792.
|
 |
|
|
|
|
 |
C.S.Walker,
P.J.Brockie,
D.M.Madsen,
M.M.Francis,
Y.Zheng,
S.Koduri,
J.E.Mellem,
N.Strutz-Seebohm,
and
A.V.Maricq
(2006).
Reconstitution of invertebrate glutamate receptor function depends on stargazin-like proteins.
|
| |
Proc Natl Acad Sci U S A,
103,
10781-10786.
|
 |
|
|
|
|
 |
D.Colquhoun
(2006).
Agonist-activated ion channels.
|
| |
Br J Pharmacol,
147,
S17-S26.
|
 |
|
|
|
|
 |
J.C.Watkins,
and
D.E.Jane
(2006).
The glutamate story.
|
| |
Br J Pharmacol,
147,
S100-S108.
|
 |
|
|
|
|
 |
M.C.Weston,
P.Schuck,
A.Ghosal,
C.Rosenmund,
and
M.L.Mayer
(2006).
Conformational restriction blocks glutamate receptor desensitization.
|
| |
Nat Struct Mol Biol,
13,
1120-1127.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.L.Mayer
(2006).
Glutamate receptors at atomic resolution.
|
| |
Nature,
440,
456-462.
|
 |
|
|
|
|
 |
M.Volgraf,
P.Gorostiza,
R.Numano,
R.H.Kramer,
E.Y.Isacoff,
and
D.Trauner
(2006).
Allosteric control of an ionotropic glutamate receptor with an optical switch.
|
| |
Nat Chem Biol,
2,
47-52.
|
 |
|
|
|
|
 |
P.E.Chen,
and
D.J.Wyllie
(2006).
Pharmacological insights obtained from structure-function studies of ionotropic glutamate receptors.
|
| |
Br J Pharmacol,
147,
839-853.
|
 |
|
|
|
|
 |
R.A.Nicoll,
S.Tomita,
and
D.S.Bredt
(2006).
Auxiliary subunits assist AMPA-type glutamate receptors.
|
| |
Science,
311,
1253-1256.
|
 |
|
|
|
|
 |
W.Zhang,
A.Robert,
S.B.Vogensen,
and
J.R.Howe
(2006).
The relationship between agonist potency and AMPA receptor kinetics.
|
| |
Biophys J,
91,
1336-1346.
|
 |
|
|
|
|
 |
Y.Zheng,
P.J.Brockie,
J.E.Mellem,
D.M.Madsen,
C.S.Walker,
M.M.Francis,
and
A.V.Maricq
(2006).
SOL-1 is an auxiliary subunit that modulates the gating of GLR-1 glutamate receptors in Caenorhabditis elegans.
|
| |
Proc Natl Acad Sci U S A,
103,
1100-1105.
|
 |
|
|
|
|
 |
A.Inanobe,
H.Furukawa,
and
E.Gouaux
(2005).
Mechanism of partial agonist action at the NR1 subunit of NMDA receptors.
|
| |
Neuron,
47,
71-84.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.B.Nielsen,
D.S.Pickering,
J.R.Greenwood,
L.Brehm,
M.Gajhede,
A.Schousboe,
and
J.S.Kastrup
(2005).
Exploring the GluR2 ligand-binding core in complex with the bicyclical AMPA analogue (S)-4-AHCP.
|
| |
FEBS J,
272,
1639-1648.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.R.Madden,
N.Armstrong,
D.Svergun,
J.Pérez,
and
P.Vachette
(2005).
Solution X-ray scattering evidence for agonist- and antagonist-induced modulation of cleft closure in a glutamate receptor ligand-binding domain.
|
| |
J Biol Chem,
280,
23637-23642.
|
 |
|
|
|
|
 |
D.R.Madden
(2005).
New light on an open-and-shut case.
|
| |
Nat Chem Biol,
1,
317-319.
|
 |
|
|
|
|
 |
J.L.Banères,
D.Mesnier,
A.Martin,
L.Joubert,
A.Dumuis,
and
J.Bockaert
(2005).
Molecular characterization of a purified 5-HT4 receptor: a structural basis for drug efficacy.
|
| |
J Biol Chem,
280,
20253-20260.
|
 |
|
|
|
|
 |
M.C.Blaise,
R.Sowdhamini,
and
N.Pradhan
(2005).
Comparative analysis of different competitive antagonists interaction with NR2A and NR2B subunits of N-methyl-D-aspartate (NMDA) ionotropic glutamate receptor.
|
| |
J Mol Model,
11,
489-502.
|
 |
|
|
|
|
 |
M.H.Nanao,
T.Green,
Y.Stern-Bach,
S.F.Heinemann,
and
S.Choe
(2005).
Structure of the kainate receptor subunit GluR6 agonist-binding domain complexed with domoic acid.
|
| |
Proc Natl Acad Sci U S A,
102,
1708-1713.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.L.Mayer
(2005).
Crystal structures of the GluR5 and GluR6 ligand binding cores: molecular mechanisms underlying kainate receptor selectivity.
|
| |
Neuron,
45,
539-552.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.L.Mayer
(2005).
Glutamate receptor ion channels.
|
| |
Curr Opin Neurobiol,
15,
282-288.
|
 |
|
|
|
|
 |
M.M.Holm,
M.L.Lunn,
S.F.Traynelis,
J.S.Kastrup,
and
J.Egebjerg
(2005).
Structural determinants of agonist-specific kinetics at the ionotropic glutamate receptor 2.
|
| |
Proc Natl Acad Sci U S A,
102,
12053-12058.
|
 |
|
|
|
|
 |
M.M.Holm,
P.Naur,
B.Vestergaard,
M.T.Geballe,
M.Gajhede,
J.S.Kastrup,
S.F.Traynelis,
and
J.Egebjerg
(2005).
A binding site tyrosine shapes desensitization kinetics and agonist potency at GluR2. A mutagenic, kinetic, and crystallographic study.
|
| |
J Biol Chem,
280,
35469-35476.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Q.Cheng,
M.Du,
G.Ramanoudjame,
and
V.Jayaraman
(2005).
Evolution of glutamate interactions during binding to a glutamate receptor.
|
| |
Nat Chem Biol,
1,
329-332.
|
 |
|
|
|
|
 |
S.Tomita,
H.Adesnik,
M.Sekiguchi,
W.Zhang,
K.Wada,
J.R.Howe,
R.A.Nicoll,
and
D.S.Bredt
(2005).
Stargazin modulates AMPA receptor gating and trafficking by distinct domains.
|
| |
Nature,
435,
1052-1058.
|
 |
|
|
|
|
 |
G.Maksay,
M.Simonyi,
and
Z.Bikádi
(2004).
Subunit rotation models activation of serotonin 5-HT3AB receptors by agonists.
|
| |
J Comput Aided Mol Des,
18,
651-664.
|
 |
|
|
|
|
 |
J.A.Roberts,
and
R.J.Evans
(2004).
ATP binding at human P2X1 receptors. Contribution of aromatic and basic amino acids revealed using mutagenesis and partial agonists.
|
| |
J Biol Chem,
279,
9043-9055.
|
 |
|
|
|
|
 |
K.Strømgaard,
and
I.Mellor
(2004).
AMPA receptor ligands: synthetic and pharmacological studies of polyamines and polyamine toxins.
|
| |
Med Res Rev,
24,
589-620.
|
 |
|
|
|
|
 |
L.M.Chicoine,
V.Suppiramaniam,
T.Vaithianathan,
G.Gianutsos,
and
B.A.Bahr
(2004).
Sulfate- and size-dependent polysaccharide modulation of AMPA receptor properties.
|
| |
J Neurosci Res,
75,
408-416.
|
 |
|
|
|
|
 |
M.Kubo,
and
E.Ito
(2004).
Structural dynamics of an ionotropic glutamate receptor.
|
| |
Proteins,
56,
411-419.
|
 |
|
|
|
|
 |
M.L.Mayer,
and
N.Armstrong
(2004).
Structure and function of glutamate receptor ion channels.
|
| |
Annu Rev Physiol,
66,
161-181.
|
 |
|
|
|
|
 |
M.S.Horning,
and
M.L.Mayer
(2004).
Regulation of AMPA receptor gating by ligand binding core dimers.
|
| |
Neuron,
41,
379-388.
|
 |
|
|
|
|
 |
N.L.Han,
J.D.Clements,
and
J.W.Lynch
(2004).
Comparison of taurine- and glycine-induced conformational changes in the M2-M3 domain of the glycine receptor.
|
| |
J Biol Chem,
279,
19559-19565.
|
 |
|
|
|
|
 |
P.E.Chen,
A.R.Johnston,
M.H.Mok,
R.Schoepfer,
and
D.J.Wyllie
(2004).
Influence of a threonine residue in the S2 ligand binding domain in determining agonist potency and deactivation rate of recombinant NR1a/NR2D NMDA receptors.
|
| |
J Physiol,
558,
45-58.
|
 |
|
|
|
|
 |
Q.Cheng,
and
V.Jayaraman
(2004).
Chemistry and conformation of the ligand-binding domain of GluR2 subtype of glutamate receptors.
|
| |
J Biol Chem,
279,
26346-26350.
|
 |
|
|
|
|
 |
G.Li,
W.Pei,
and
L.Niu
(2003).
Channel-opening kinetics of GluR2Q(flip) AMPA receptor: a laser-pulse photolysis study.
|
| |
Biochemistry,
42,
12358-12366.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |