 |
PDBsum entry 1mq9
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Immune system
|
PDB id
|
|
|
|
1mq9
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Immune system
|
 |
|
Title:
|
 |
Crystal structure of high affinity alphal i domain with ligand mimetic crystal contact
|
|
Structure:
|
 |
Integrin alpha-l. Chain: a. Fragment: integrin alphal i domain. Synonym: leukocyte adhesion glycoprotein lfa-1 alpha chain. Leukocyte function associated molecule 1, alpha chain. Cd11a. Engineered: yes. Mutation: yes
|
|
Source:
|
 |
Homo sapiens. Human. Organism_taxid: 9606. Gene: lfa-1 (alphalbeta2). Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
|
|
Resolution:
|
 |
|
2.00Å
|
R-factor:
|
0.212
|
R-free:
|
0.265
|
|
|
Authors:
|
 |
M.Shimaoka,T.Xiao,J.-H.Liu,Y.Yang,Y.Dong,C.-D.Jun,A.Mccormack, R.Zhang,A.Joachimiak,J.Takagi,J.-H.Wang,T.A.Springer
|
Key ref:
|
 |
M.Shimaoka
et al.
(2003).
Structures of the alpha L I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation.
Cell,
112,
99.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
15-Sep-02
|
Release date:
|
14-Jan-03
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P20701
(ITAL_HUMAN) -
Integrin alpha-L from Homo sapiens
|
|
|
|
Seq: Struc:
|
 |
 |
 |
1170 a.a.
173 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
PfamA domain |
 |
 |
 |
Secondary structure |
 |
 |
CATH domain |
 |
|
*
PDB and UniProt seqs differ
at 2 residue positions (black
crosses)
|
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Cell
112:99
(2003)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structures of the alpha L I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation.
|
|
M.Shimaoka,
T.Xiao,
J.H.Liu,
Y.Yang,
Y.Dong,
C.D.Jun,
A.McCormack,
R.Zhang,
A.Joachimiak,
J.Takagi,
J.H.Wang,
T.A.Springer.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The structure of the I domain of integrin alpha L beta 2 bound to the Ig
superfamily ligand ICAM-1 reveals the open ligand binding conformation and the
first example of an integrin-IgSF interface. The I domain Mg2+ directly
coordinates Glu-34 of ICAM-1, and a dramatic swing of I domain residue Glu-241
enables a critical salt bridge. Liganded and unliganded structures for both
high- and intermediate-affinity mutant I domains reveal that ligand binding can
induce conformational change in the alpha L I domain and that allosteric signals
can convert the closed conformation to intermediate or open conformations
without ligand binding. Pulling down on the C-terminal alpha 7 helix with
introduced disulfide bonds ratchets the beta 6-alpha 7 loop into three different
positions in the closed, intermediate, and open conformations, with a
progressive increase in affinity.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Figure 1. Two αL I Domains Bound to an ICAM-1 Dimer(A)
Ribbon diagram of one monomeric unit of the
intermediate-affinity αL I domain (gold) complex with ICAM-1
domains 1-2 (cyan). The Mg^2+ ion is shown as a magenta sphere.
I domain MIDAS and ICAM-1 Glu-34 side chains are shown as
ball-and-stick with red oxygen atoms. The interacting β strands
C, D, and F of ICAM-1 are labeled. N-acetyl glucosamine residues
of ICAM-1 are shown with silver bonds.(B) The two ICAM-1-I
domain complexes in the crystallographic asymmetric unit are
shown with the I domains colored gold and the two ICAM-1
molecules colored cyan and green. The 2-fold axis between the
ICAM-1 molecules is in the vertical direction, normal to the
predicted membrane plane. Positions of the magnesium ions
(magenta spheres) and Glu-34 of ICAM-1 (CPK) are shown for
reference. The ICAM-1 Val-51 residues at the center of the
ICAM-1 dimer interface are shown as gray CPK models.(C) A view
of domains 1 of the ICAM-1 dimer (cyan and green), rotated about
90° from the view in (B), with domain 1 of the uncomplexed
ICAM-1 molecule A dimer (Casasnovas et al., 1998) superimposed
using domain 1 of one of the ICAM-1 molecules (black), whereas
the other one is colored gray. Figures 1–5 are prepared with
programs GLR (provided by L. Esser), Molscript (Kraulis, 1991),
Bobscript (Esnouf, 1997), Raster3D (Merritt and Murphy, 1994),
GRASP (Nicholls et al., 1991), and Povray (The Povray Team,
http://www.povray.org).
|
 |
Figure 3.
Figure 3. MIDAS StructuresStructures are from the I
domain:ICAM-1 complex (A), the pseudo-liganded high-affinity I
domain (B), the unliganded high-affinity I domain (C), the
unliganded intermediate-affinity I domain (D), and the wild-type
I domain (E) (1LFA) (Qu and Leahy, 1996). The keys to the color
scheme are shown below, with the ICAM-1 or ligand mimetic
molecule colored cyan in (A) and (B). The metal ions are colored
blue, water molecule and ligating side chain oxygen atoms are
colored red, and the chloride ion from the wild-type I domain
structure is colored orange. The MIDAS residues and Glu-34 from
ICAM-1 in (A) and Glu-272 from a lattice mate I domain in (B)
are shown as ball-and-stick models. Metal coordination and
hydrogen bonds are represented by solid black lines and gray
dotted lines, respectively.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Cell
(2003,
112,
99-0)
copyright 2003.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
T.Kempf,
A.Zarbock,
C.Widera,
S.Butz,
A.Stadtmann,
J.Rossaint,
M.Bolomini-Vittori,
M.Korf-Klingebiel,
L.C.Napp,
B.Hansen,
A.Kanwischer,
U.Bavendiek,
G.Beutel,
M.Hapke,
M.G.Sauer,
C.Laudanna,
N.Hogg,
D.Vestweber,
and
K.C.Wollert
(2011).
GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice.
|
| |
Nat Med,
17,
581-588.
|
 |
|
|
|
|
 |
C.Xie,
J.Zhu,
X.Chen,
L.Mi,
N.Nishida,
and
T.A.Springer
(2010).
Structure of an integrin with an alphaI domain, complement receptor type 4.
|
| |
EMBO J,
29,
666-679.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Cox,
M.Brennan,
and
N.Moran
(2010).
Integrins as therapeutic targets: lessons and opportunities.
|
| |
Nat Rev Drug Discov,
9,
804-820.
|
 |
|
|
|
|
 |
E.Evans,
K.Kinoshita,
S.Simon,
and
A.Leung
(2010).
Long-lived, high-strength states of ICAM-1 bonds to beta2 integrin, I: lifetimes of bonds to recombinant alphaLbeta2 under force.
|
| |
Biophys J,
98,
1458-1466.
|
 |
|
|
|
|
 |
E.J.Park,
A.Peixoto,
Y.Imai,
A.Goodarzi,
G.Cheng,
C.V.Carman,
U.H.von Andrian,
and
M.Shimaoka
(2010).
Distinct roles for LFA-1 affinity regulation during T-cell adhesion, diapedesis, and interstitial migration in lymph nodes.
|
| |
Blood,
115,
1572-1581.
|
 |
|
|
|
|
 |
F.Forneris,
D.Ricklin,
J.Wu,
A.Tzekou,
R.S.Wallace,
J.D.Lambris,
and
P.Gros
(2010).
Structures of C3b in complex with factors B and D give insight into complement convertase formation.
|
| |
Science,
330,
1816-1820.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Jokinen,
D.J.White,
M.Salmela,
M.Huhtala,
J.Käpylä,
K.Sipilä,
J.S.Puranen,
L.Nissinen,
P.Kankaanpää,
V.Marjomäki,
T.Hyypiä,
M.S.Johnson,
and
J.Heino
(2010).
Molecular mechanism of alpha2beta1 integrin interaction with human echovirus 1.
|
| |
EMBO J,
29,
196-208.
|
 |
|
|
|
|
 |
K.Kinoshita,
A.Leung,
S.Simon,
and
E.Evans
(2010).
Long-lived, high-strength states of ICAM-1 bonds to beta2 integrin, II: lifetimes of LFA-1 bonds under force in leukocyte signaling.
|
| |
Biophys J,
98,
1467-1475.
|
 |
|
|
|
|
 |
R.G.Eckenhoff,
J.Xi,
M.Shimaoka,
A.Bhattacharji,
M.Covarrubias,
and
W.P.Dailey
(2010).
Azi-isoflurane, a Photolabel Analog of the Commonly Used Inhaled General Anesthetic Isoflurane.
|
| |
ACS Chem Neurosci,
1,
139-145.
|
 |
|
|
|
|
 |
R.P.McEver,
and
C.Zhu
(2010).
Rolling cell adhesion.
|
| |
Annu Rev Cell Dev Biol,
26,
363-396.
|
 |
|
|
|
|
 |
S.Ogino,
N.Nishida,
R.Umemoto,
M.Suzuki,
M.Takeda,
H.Terasawa,
J.Kitayama,
M.Matsumoto,
H.Hayasaka,
M.Miyasaka,
and
I.Shimada
(2010).
Two-state conformations in the hyaluronan-binding domain regulate CD44 adhesiveness under flow condition.
|
| |
Structure,
18,
649-656.
|
 |
|
|
|
|
 |
S.Park,
S.Kang,
A.J.Veach,
Y.Vedvyas,
R.Zarnegar,
J.Y.Kim,
and
M.M.Jin
(2010).
Self-assembled nanoplatform for targeted delivery of chemotherapy agents via affinity-regulated molecular interactions.
|
| |
Biomaterials,
31,
7766-7775.
|
 |
|
|
|
|
 |
X.Hu,
S.Kang,
C.Lefort,
M.Kim,
and
M.M.Jin
(2010).
Combinatorial libraries against libraries for selecting neoepitope activation-specific antibodies.
|
| |
Proc Natl Acad Sci U S A,
107,
6252-6257.
|
 |
|
|
|
|
 |
A.Zarbock,
and
K.Ley
(2009).
Neutrophil adhesion and activation under flow.
|
| |
Microcirculation,
16,
31-42.
|
 |
|
|
|
|
 |
B.A.Kidd,
D.Baker,
and
W.E.Thomas
(2009).
Computation of conformational coupling in allosteric proteins.
|
| |
PLoS Comput Biol,
5,
e1000484.
|
 |
|
|
|
|
 |
B.A.Tejo,
and
T.J.Siahaan
(2009).
Solution structure of a novel T-cell adhesion inhibitor derived from the fragment of ICAM-1 receptor: Cyclo(1,8)-Cys-Pro-Arg-Gly-Gly-Ser-Val-Cys.
|
| |
Biopolymers,
91,
633-641.
|
 |
|
|
|
|
 |
C.T.Lefort,
Y.M.Hyun,
J.B.Schultz,
F.Y.Law,
R.E.Waugh,
P.A.Knauf,
and
M.Kim
(2009).
Outside-in signal transmission by conformational changes in integrin Mac-1.
|
| |
J Immunol,
183,
6460-6468.
|
 |
|
|
|
|
 |
D.Provasi,
M.Murcia,
B.S.Coller,
and
M.Filizola
(2009).
Targeted molecular dynamics reveals overall common conformational changes upon hybrid domain swing-out in beta3 integrins.
|
| |
Proteins,
77,
477-489.
|
 |
|
|
|
|
 |
E.Chavakis,
E.Y.Choi,
and
T.Chavakis
(2009).
Novel aspects in the regulation of the leukocyte adhesion cascade.
|
| |
Thromb Haemost,
102,
191-197.
|
 |
|
|
|
|
 |
E.Lomakina,
P.A.Knauf,
J.B.Schultz,
F.Y.Law,
M.D.McGraw,
and
R.E.Waugh
(2009).
Activation of human neutrophil Mac-1 by anion substitution.
|
| |
Blood Cells Mol Dis,
42,
177-184.
|
 |
|
|
|
|
 |
E.Puklin-Faucher,
and
V.Vogel
(2009).
Integrin activation dynamics between the RGD-binding site and the headpiece hinge.
|
| |
J Biol Chem,
284,
36557-36568.
|
 |
|
|
|
|
 |
H.A.Baskind,
L.Na,
Q.Ma,
M.P.Patel,
D.L.Geenen,
and
Q.T.Wang
(2009).
Functional conservation of asxl2, a murine homolog for the Drosophila enhancer of trithorax and polycomb group gene asx.
|
| |
PLoS ONE,
4,
e4750.
|
 |
|
|
|
|
 |
H.Zhang,
J.H.Liu,
W.Yang,
T.Springer,
M.Shimaoka,
and
J.H.Wang
(2009).
Structural basis of activation-dependent binding of ligand-mimetic antibody AL-57 to integrin LFA-1.
|
| |
Proc Natl Acad Sci U S A,
106,
18345-18350.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Zhang,
N.S.Astrof,
J.H.Liu,
J.H.Wang,
and
M.Shimaoka
(2009).
Crystal structure of isoflurane bound to integrin LFA-1 supports a unified mechanism of volatile anesthetic action in the immune and central nervous systems.
|
| |
FASEB J,
23,
2735-2740.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.A.Askari,
P.A.Buckley,
A.P.Mould,
and
M.J.Humphries
(2009).
Linking integrin conformation to function.
|
| |
J Cell Sci,
122,
165-170.
|
 |
|
|
|
|
 |
K.E.Caputo,
and
D.A.Hammer
(2009).
Adhesive dynamics simulation of G-protein-mediated chemokine-activated neutrophil adhesion.
|
| |
Biophys J,
96,
2989-3004.
|
 |
|
|
|
|
 |
K.Tan,
M.Duquette,
A.Joachimiak,
and
J.Lawler
(2009).
The crystal structure of the signature domain of cartilage oligomeric matrix protein: implications for collagen, glycosaminoglycan and integrin binding.
|
| |
FASEB J,
23,
2490-2501.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.L.Dustin
(2009).
Modular design of immunological synapses and kinapses.
|
| |
Cold Spring Harbor Perspect Biol,
1,
a002873.
|
 |
|
|
|
|
 |
M.L.Dustin
(2009).
Supported bilayers at the vanguard of immune cell activation studies.
|
| |
J Struct Biol,
168,
152-160.
|
 |
|
|
|
|
 |
M.R.Tardif,
C.Gilbert,
S.Thibault,
J.F.Fortin,
and
M.J.Tremblay
(2009).
LFA-1 antagonists as agents limiting human immunodeficiency virus type 1 infection and transmission and potentiating the effect of the fusion inhibitor T-20.
|
| |
Antimicrob Agents Chemother,
53,
4656-4666.
|
 |
|
|
|
|
 |
M.W.Miller,
S.Basra,
D.W.Kulp,
P.C.Billings,
S.Choi,
M.P.Beavers,
O.J.McCarty,
Z.Zou,
M.L.Kahn,
J.S.Bennett,
and
W.F.Degrado
(2009).
Small-molecule inhibitors of integrin {alpha}2{beta}1 that prevent pathological thrombus formation via an allosteric mechanism.
|
| |
Proc Natl Acad Sci U S A,
106,
719-724.
|
 |
|
|
|
|
 |
M.Y.Go,
E.M.Chow,
and
J.Mogridge
(2009).
The cytoplasmic domain of anthrax toxin receptor 1 affects binding of the protective antigen.
|
| |
Infect Immun,
77,
52-59.
|
 |
|
|
|
|
 |
S.Li,
H.Wang,
B.Peng,
M.Zhang,
D.Zhang,
S.Hou,
Y.Guo,
and
J.Ding
(2009).
Efalizumab binding to the LFA-1 alphaL I domain blocks ICAM-1 binding via steric hindrance.
|
| |
Proc Natl Acad Sci U S A,
106,
4349-4354.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
W.E.Thomas
(2009).
Mechanochemistry of receptor-ligand bonds.
|
| |
Curr Opin Struct Biol,
19,
50-55.
|
 |
|
|
|
|
 |
X.Hu,
S.Kang,
X.Chen,
C.B.Shoemaker,
and
M.M.Jin
(2009).
Yeast Surface Two-hybrid for Quantitative in Vivo Detection of Protein-Protein Interactions via the Secretory Pathway.
|
| |
J Biol Chem,
284,
16369-16376.
|
 |
|
|
|
|
 |
Y.Li,
C.Cao,
W.Jia,
L.Yu,
M.Mo,
Q.Wang,
Y.Huang,
J.M.Lim,
M.Ishihara,
L.Wells,
P.Azadi,
H.Robinson,
Y.W.He,
L.Zhang,
and
R.A.Mariuzza
(2009).
Structure of the F-spondin domain of mindin, an integrin ligand and pattern recognition molecule.
|
| |
EMBO J,
28,
286-297.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.M.Hyun,
C.T.Lefort,
and
M.Kim
(2009).
Leukocyte integrins and their ligand interactions.
|
| |
Immunol Res,
45,
195-208.
|
 |
|
|
|
|
 |
A.Zarbock,
and
K.Ley
(2008).
Mechanisms and consequences of neutrophil interaction with the endothelium.
|
| |
Am J Pathol,
172,
1-7.
|
 |
|
|
|
|
 |
D.G.Woodside,
and
P.Vanderslice
(2008).
Cell adhesion antagonists: therapeutic potential in asthma and chronic obstructive pulmonary disease.
|
| |
BioDrugs,
22,
85.
|
 |
|
|
|
|
 |
H.Zhang,
J.M.Casasnovas,
M.Jin,
J.H.Liu,
C.G.Gahmberg,
T.A.Springer,
and
J.H.Wang
(2008).
An unusual allosteric mobility of the C-terminal helix of a high-affinity alphaL integrin I domain variant bound to ICAM-5.
|
| |
Mol Cell,
31,
432-437.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.P.Cao,
J.K.Yu,
C.Li,
Y.Sun,
H.H.Yuan,
H.J.Wang,
and
D.S.Gao
(2008).
Integrin beta1 is involved in the signaling of glial cell line-derived neurotrophic factor.
|
| |
J Comp Neurol,
509,
203-210.
|
 |
|
|
|
|
 |
L.J.Lambert,
A.A.Bobkov,
J.W.Smith,
and
F.M.Marassi
(2008).
Competitive interactions of collagen and a jararhagin-derived disintegrin peptide with the integrin alpha2-I domain.
|
| |
J Biol Chem,
283,
16665-16672.
|
 |
|
|
|
|
 |
N.S.Seo,
C.Q.Zeng,
J.M.Hyser,
B.Utama,
S.E.Crawford,
K.J.Kim,
M.Höök,
and
M.K.Estes
(2008).
Inaugural article: integrins alpha1beta1 and alpha2beta1 are receptors for the rotavirus enterotoxin.
|
| |
Proc Natl Acad Sci U S A,
105,
8811-8818.
|
 |
|
|
|
|
 |
P.Gros,
F.J.Milder,
and
B.J.Janssen
(2008).
Complement driven by conformational changes.
|
| |
Nat Rev Immunol,
8,
48-58.
|
 |
|
|
|
|
 |
P.M.Fischer
(2008).
Computational chemistry approaches to drug discovery in signal transduction.
|
| |
Biotechnol J,
3,
452-470.
|
 |
|
|
|
|
 |
R.Carreño,
D.Li,
M.Sen,
I.Nira,
T.Yamakawa,
Q.Ma,
and
G.B.Legge
(2008).
A mechanism for antibody-mediated outside-in activation of LFA-1.
|
| |
J Biol Chem,
283,
10642-10648.
|
 |
|
|
|
|
 |
R.G.Baker,
and
G.A.Koretzky
(2008).
Regulation of T cell integrin function by adapter proteins.
|
| |
Immunol Res,
42,
132-144.
|
 |
|
|
|
|
 |
X.An,
E.Gauthier,
X.Zhang,
X.Guo,
D.J.Anstee,
N.Mohandas,
and
J.A.Chasis
(2008).
Adhesive activity of Lu glycoproteins is regulated by interaction with spectrin.
|
| |
Blood,
112,
5212-5218.
|
 |
|
|
|
|
 |
A.R.Aricescu,
and
E.Y.Jones
(2007).
Immunoglobulin superfamily cell adhesion molecules: zippers and signals.
|
| |
Curr Opin Cell Biol,
19,
543-550.
|
 |
|
|
|
|
 |
A.Zarbock,
C.A.Lowell,
and
K.Ley
(2007).
Spleen tyrosine kinase Syk is necessary for E-selectin-induced alpha(L)beta(2) integrin-mediated rolling on intercellular adhesion molecule-1.
|
| |
Immunity,
26,
773-783.
|
 |
|
|
|
|
 |
B.H.Luo,
C.V.Carman,
and
T.A.Springer
(2007).
Structural basis of integrin regulation and signaling.
|
| |
Annu Rev Immunol,
25,
619-647.
|
 |
|
|
|
|
 |
C.Bertonati,
and
A.Tramontano
(2007).
A model of the complex between the PfEMP1 malaria protein and the human ICAM-1 receptor.
|
| |
Proteins,
69,
215-222.
|
 |
|
|
|
|
 |
D.Peer,
P.Zhu,
C.V.Carman,
J.Lieberman,
and
M.Shimaoka
(2007).
Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1.
|
| |
Proc Natl Acad Sci U S A,
104,
4095-4100.
|
 |
|
|
|
|
 |
F.J.Milder,
L.Gomes,
A.Schouten,
B.J.Janssen,
E.G.Huizinga,
R.A.Romijn,
W.Hemrika,
A.Roos,
M.R.Daha,
and
P.Gros
(2007).
Factor B structure provides insights into activation of the central protease of the complement system.
|
| |
Nat Struct Mol Biol,
14,
224-228.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.M.Oh,
S.Lee,
B.R.Na,
H.Wee,
S.H.Kim,
S.C.Choi,
K.M.Lee,
and
C.D.Jun
(2007).
RKIKK motif in the intracellular domain is critical for spatial and dynamic organization of ICAM-1: functional implication for the leukocyte adhesion and transmigration.
|
| |
Mol Biol Cell,
18,
2322-2335.
|
 |
|
|
|
|
 |
H.Yusuf-Makagiansar,
T.V.Yakovleva,
B.A.Tejo,
K.Jones,
Y.Hu,
G.M.Verkhivker,
K.L.Audus,
and
T.J.Siahaan
(2007).
Sequence recognition of alpha-LFA-1-derived peptides by ICAM-1 cell receptors: inhibitors of T-cell adhesion.
|
| |
Chem Biol Drug Des,
70,
237-246.
|
 |
|
|
|
|
 |
J.Mitoma,
X.Bao,
B.Petryanik,
P.Schaerli,
J.M.Gauguet,
S.Y.Yu,
H.Kawashima,
H.Saito,
K.Ohtsubo,
J.D.Marth,
K.H.Khoo,
U.H.von Andrian,
J.B.Lowe,
and
M.Fukuda
(2007).
Critical functions of N-glycans in L-selectin-mediated lymphocyte homing and recruitment.
|
| |
Nat Immunol,
8,
409-418.
|
 |
|
|
|
|
 |
J.Takagi
(2007).
Structural basis for ligand recognition by integrins.
|
| |
Curr Opin Cell Biol,
19,
557-564.
|
 |
|
|
|
|
 |
K.Hänel,
and
D.Willbold
(2007).
SARS-CoV accessory protein 7a directly interacts with human LFA-1.
|
| |
Biol Chem,
388,
1325-1332.
|
 |
|
|
|
|
 |
M.A.Arnaout,
S.L.Goodman,
and
J.P.Xiong
(2007).
Structure and mechanics of integrin-based cell adhesion.
|
| |
Curr Opin Cell Biol,
19,
495-507.
|
 |
|
|
|
|
 |
M.Cheng,
S.Y.Foo,
M.L.Shi,
R.H.Tang,
L.S.Kong,
S.K.Law,
and
S.M.Tan
(2007).
Mutation of a conserved asparagine in the I-like domain promotes constitutively active integrins alphaLbeta2 and alphaIIbbeta3.
|
| |
J Biol Chem,
282,
18225-18232.
|
 |
|
|
|
|
 |
M.Shoda,
T.Harada,
K.Yano,
F.L.Stahura,
T.Himeno,
S.Shiojiri,
Y.Kogami,
H.Kouji,
and
J.Bajorath
(2007).
Virtual screening leads to the discovery of an effective antagonist of lymphocyte function-associated antigen-1.
|
| |
ChemMedChem,
2,
515-521.
|
 |
|
|
|
|
 |
O.Barreiro,
H.de la Fuente,
M.Mittelbrunn,
and
F.Sánchez-Madrid
(2007).
Functional insights on the polarized redistribution of leukocyte integrins and their ligands during leukocyte migration and immune interactions.
|
| |
Immunol Rev,
218,
147-164.
|
 |
|
|
|
|
 |
R.Alon,
and
M.L.Dustin
(2007).
Force as a facilitator of integrin conformational changes during leukocyte arrest on blood vessels and antigen-presenting cells.
|
| |
Immunity,
26,
17-27.
|
 |
|
|
|
|
 |
R.Bonasio,
C.V.Carman,
E.Kim,
P.T.Sage,
K.R.Love,
T.R.Mempel,
T.A.Springer,
and
U.H.von Andrian
(2007).
Specific and covalent labeling of a membrane protein with organic fluorochromes and quantum dots.
|
| |
Proc Natl Acad Sci U S A,
104,
14753-14758.
|
 |
|
|
|
|
 |
T.Vorup-Jensen,
T.T.Waldron,
N.Astrof,
M.Shimaoka,
and
T.A.Springer
(2007).
The connection between metal ion affinity and ligand affinity in integrin I domains.
|
| |
Biochim Biophys Acta,
1774,
1148-1155.
|
 |
|
|
|
|
 |
T.Zimmerman,
J.Oyarzabal,
E.S.Sebastián,
S.Majumdar,
B.A.Tejo,
T.J.Siahaan,
and
F.J.Blanco
(2007).
ICAM-1 peptide inhibitors of T-cell adhesion bind to the allosteric site of LFA-1. An NMR characterization.
|
| |
Chem Biol Drug Des,
70,
347-353.
|
 |
|
|
|
|
 |
V.Krishnan,
Y.Xu,
K.Macon,
J.E.Volanakis,
and
S.V.Narayana
(2007).
The crystal structure of C2a, the catalytic fragment of classical pathway C3 and C5 convertase of human complement.
|
| |
J Mol Biol,
367,
224-233.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
W.L.Connors,
J.Jokinen,
D.J.White,
J.S.Puranen,
P.Kankaanpää,
P.Upla,
M.Tulla,
M.S.Johnson,
and
J.Heino
(2007).
Two synergistic activation mechanisms of alpha2beta1 integrin-mediated collagen binding.
|
| |
J Biol Chem,
282,
14675-14683.
|
 |
|
|
|
|
 |
X.Chen,
T.D.Kim,
C.V.Carman,
L.Z.Mi,
G.Song,
and
T.A.Springer
(2007).
Structural plasticity in Ig superfamily domain 4 of ICAM-1 mediates cell surface dimerization.
|
| |
Proc Natl Acad Sci U S A,
104,
15358-15363.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.F.Li,
R.H.Tang,
K.J.Puan,
S.K.Law,
and
S.M.Tan
(2007).
The cytosolic protein talin induces an intermediate affinity integrin alphaLbeta2.
|
| |
J Biol Chem,
282,
24310-24319.
|
 |
|
|
|
|
 |
A.Cambi,
B.Joosten,
M.Koopman,
F.de Lange,
I.Beeren,
R.Torensma,
J.A.Fransen,
M.Garcia-Parajó,
F.N.van Leeuwen,
and
C.G.Figdor
(2006).
Organization of the integrin LFA-1 in nanoclusters regulates its activity.
|
| |
Mol Biol Cell,
17,
4270-4281.
|
 |
|
|
|
|
 |
A.Salas,
M.Shimaoka,
U.Phan,
M.Kim,
and
T.A.Springer
(2006).
Transition from rolling to firm adhesion can be mimicked by extension of integrin alphaLbeta2 in an intermediate affinity state.
|
| |
J Biol Chem,
281,
10876-10882.
|
 |
|
|
|
|
 |
B.C.Chesnutt,
D.F.Smith,
N.A.Raffler,
M.L.Smith,
E.J.White,
and
K.Ley
(2006).
Induction of LFA-1-dependent neutrophil rolling on ICAM-1 by engagement of E-selectin.
|
| |
Microcirculation,
13,
99.
|
 |
|
|
|
|
 |
B.H.Luo,
and
T.A.Springer
(2006).
Integrin structures and conformational signaling.
|
| |
Curr Opin Cell Biol,
18,
579-586.
|
 |
|
|
|
|
 |
C.E.Green,
U.Y.Schaff,
M.R.Sarantos,
A.F.Lum,
D.E.Staunton,
and
S.I.Simon
(2006).
Dynamic shifts in LFA-1 affinity regulate neutrophil rolling, arrest, and transmigration on inflamed endothelium.
|
| |
Blood,
107,
2101-2111.
|
 |
|
|
|
|
 |
C.W.Cairo,
R.Mirchev,
and
D.E.Golan
(2006).
Cytoskeletal regulation couples LFA-1 conformational changes to receptor lateral mobility and clustering.
|
| |
Immunity,
25,
297-308.
|
 |
|
|
|
|
 |
D.C.Fry
(2006).
Protein-protein interactions as targets for small molecule drug discovery.
|
| |
Biopolymers,
84,
535-552.
|
 |
|
|
|
|
 |
E.P.Wojcikiewicz,
M.H.Abdulreda,
X.Zhang,
and
V.T.Moy
(2006).
Force spectroscopy of LFA-1 and its ligands, ICAM-1 and ICAM-2.
|
| |
Biomacromolecules,
7,
3188-3195.
|
 |
|
|
|
|
 |
F.J.Milder,
H.C.Raaijmakers,
M.D.Vandeputte,
A.Schouten,
E.G.Huizinga,
R.A.Romijn,
W.Hemrika,
A.Roos,
M.R.Daha,
and
P.Gros
(2006).
Structure of complement component C2A: implications for convertase formation and substrate binding.
|
| |
Structure,
14,
1587-1597.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.Song,
G.A.Lazar,
T.Kortemme,
M.Shimaoka,
J.R.Desjarlais,
D.Baker,
and
T.A.Springer
(2006).
Rational design of intercellular adhesion molecule-1 (ICAM-1) variants for antagonizing integrin lymphocyte function-associated antigen-1-dependent adhesion.
|
| |
J Biol Chem,
281,
5042-5049.
|
 |
|
|
|
|
 |
J.Chen,
W.Yang,
M.Kim,
C.V.Carman,
and
T.A.Springer
(2006).
Regulation of outside-in signaling and affinity by the beta2 I domain of integrin alphaLbeta2.
|
| |
Proc Natl Acad Sci U S A,
103,
13062-13067.
|
 |
|
|
|
|
 |
K.Hänel,
T.Stangler,
M.Stoldt,
and
D.Willbold
(2006).
Solution structure of the X4 protein coded by the SARS related coronavirus reveals an immunoglobulin like fold and suggests a binding activity to integrin I domains.
|
| |
J Biomed Sci,
13,
281-293.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Nam,
V.Maiorov,
B.Feuston,
and
S.Kearsley
(2006).
Dynamic control of allosteric antagonism of leukocyte function antigen-1 and intercellular adhesion molecule-1 interaction.
|
| |
Proteins,
64,
376-384.
|
 |
|
|
|
|
 |
L.Huang,
M.Shimaoka,
I.J.Rondon,
I.Roy,
Q.Chang,
M.Po,
D.T.Dransfield,
R.C.Ladner,
A.S.Edge,
A.Salas,
C.R.Wood,
T.A.Springer,
and
E.H.Cohen
(2006).
Identification and characterization of a human monoclonal antagonistic antibody AL-57 that preferentially binds the high-affinity form of lymphocyte function-associated antigen-1.
|
| |
J Leukoc Biol,
80,
905-914.
|
 |
|
|
|
|
 |
M.Gao,
and
K.Schulten
(2006).
Onset of anthrax toxin pore formation.
|
| |
Biophys J,
90,
3267-3279.
|
 |
|
|
|
|
 |
M.Jin,
G.Song,
C.V.Carman,
Y.S.Kim,
N.S.Astrof,
M.Shimaoka,
D.K.Wittrup,
and
T.A.Springer
(2006).
Directed evolution to probe protein allostery and integrin I domains of 200,000-fold higher affinity.
|
| |
Proc Natl Acad Sci U S A,
103,
5758-5763.
|
 |
|
|
|
|
 |
M.Shimaoka,
M.Kim,
E.H.Cohen,
W.Yang,
N.Astrof,
D.Peer,
A.Salas,
A.Ferrand,
and
T.A.Springer
(2006).
AL-57, a ligand-mimetic antibody to integrin LFA-1, reveals chemokine-induced affinity up-regulation in lymphocytes.
|
| |
Proc Natl Acad Sci U S A,
103,
13991-13996.
|
 |
|
|
|
|
 |
N.Nishida,
C.Xie,
M.Shimaoka,
Y.Cheng,
T.Walz,
and
T.A.Springer
(2006).
Activation of leukocyte beta2 integrins by conversion from bent to extended conformations.
|
| |
Immunity,
25,
583-594.
|
 |
|
|
|
|
 |
N.S.Astrof,
A.Salas,
M.Shimaoka,
J.Chen,
and
T.A.Springer
(2006).
Importance of force linkage in mechanochemistry of adhesion receptors.
|
| |
Biochemistry,
45,
15020-15028.
|
 |
|
|
|
|
 |
P.Vanderslice,
and
D.G.Woodside
(2006).
Integrin antagonists as therapeutics for inflammatory diseases.
|
| |
Expert Opin Investig Drugs,
15,
1235-1255.
|
 |
|
|
|
|
 |
S.Cose,
C.Brammer,
K.M.Khanna,
D.Masopust,
and
L.Lefrançois
(2006).
Evidence that a significant number of naive T cells enter non-lymphoid organs as part of a normal migratory pathway.
|
| |
Eur J Immunol,
36,
1423-1433.
|
 |
|
|
|
|
 |
S.M.Keating,
K.R.Clark,
L.D.Stefanich,
F.Arellano,
C.P.Edwards,
S.C.Bodary,
S.A.Spencer,
T.R.Gadek,
J.C.Marsters,
and
M.H.Beresini
(2006).
Competition between intercellular adhesion molecule-1 and a small-molecule antagonist for a common binding site on the alphal subunit of lymphocyte function-associated antigen-1.
|
| |
Protein Sci,
15,
290-303.
|
 |
|
|
|
|
 |
T.Hato,
J.Yamanouchi,
Y.Yakushijin,
I.Sakai,
and
M.Yasukawa
(2006).
Identification of critical residues for regulation of integrin activation in the beta6-alpha7 loop of the integrin beta3 I-like domain.
|
| |
J Thromb Haemost,
4,
2278-2280.
|
 |
|
|
|
|
 |
A.Smith,
Y.R.Carrasco,
P.Stanley,
N.Kieffer,
F.D.Batista,
and
N.Hogg
(2005).
A talin-dependent LFA-1 focal zone is formed by rapidly migrating T lymphocytes.
|
| |
J Cell Biol,
170,
141-151.
|
 |
|
|
|
|
 |
C.Laudanna
(2005).
Integrin activation under flow: a local affair.
|
| |
Nat Immunol,
6,
429-430.
|
 |
|
|
|
|
 |
D.Ehirchiou,
Y.M.Xiong,
Y.Li,
S.Brew,
and
L.Zhang
(2005).
Dual function for a unique site within the beta2I domain of integrin alphaMbeta2.
|
| |
J Biol Chem,
280,
8324-8331.
|
 |
|
|
|
|
 |
D.García-Bernal,
N.Wright,
E.Sotillo-Mallo,
C.Nombela-Arrieta,
J.V.Stein,
X.R.Bustelo,
and
J.Teixidó
(2005).
Vav1 and Rac control chemokine-promoted T lymphocyte adhesion mediated by the integrin alpha4beta1.
|
| |
Mol Biol Cell,
16,
3223-3235.
|
 |
|
|
|
|
 |
D.Jiménez,
P.Roda-Navarro,
T.A.Springer,
and
J.M.Casasnovas
(2005).
Contribution of N-linked glycans to the conformation and function of intercellular adhesion molecules (ICAMs).
|
| |
J Biol Chem,
280,
5854-5861.
|
 |
|
|
|
|
 |
F.Zhang,
W.D.Marcus,
N.H.Goyal,
P.Selvaraj,
T.A.Springer,
and
C.Zhu
(2005).
Two-dimensional kinetics regulation of alphaLbeta2-ICAM-1 interaction by conformational changes of the alphaL-inserted domain.
|
| |
J Biol Chem,
280,
42207-42218.
|
 |
|
|
|
|
 |
G.R.Van de Walle,
K.Vanhoorelbeke,
Z.Majer,
E.Illyés,
J.Baert,
I.Pareyn,
and
H.Deckmyn
(2005).
Two functional active conformations of the integrin {alpha}2{beta}1, depending on activation condition and cell type.
|
| |
J Biol Chem,
280,
36873-36882.
|
 |
|
|
|
|
 |
G.Song,
Y.Yang,
J.H.Liu,
J.M.Casasnovas,
M.Shimaoka,
T.A.Springer,
and
J.H.Wang
(2005).
An atomic resolution view of ICAM recognition in a complex between the binding domains of ICAM-3 and integrin alphaLbeta2.
|
| |
Proc Natl Acad Sci U S A,
102,
3366-3371.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.M.Scobie,
and
J.A.Young
(2005).
Interactions between anthrax toxin receptors and protective antigen.
|
| |
Curr Opin Microbiol,
8,
106-112.
|
 |
|
|
|
|
 |
H.Schneider,
E.Valk,
S.da Rocha Dias,
B.Wei,
and
C.E.Rudd
(2005).
CTLA-4 up-regulation of lymphocyte function-associated antigen 1 adhesion and clustering as an alternate basis for coreceptor function.
|
| |
Proc Natl Acad Sci U S A,
102,
12861-12866.
|
 |
|
|
|
|
 |
M.A.Arnaout,
B.Mahalingam,
and
J.P.Xiong
(2005).
Integrin structure, allostery, and bidirectional signaling.
|
| |
Annu Rev Cell Dev Biol,
21,
381-410.
|
 |
|
|
|
|
 |
M.R.Sarantos,
S.Raychaudhuri,
A.F.Lum,
D.E.Staunton,
and
S.I.Simon
(2005).
Leukocyte function-associated antigen 1-mediated adhesion stability is dynamically regulated through affinity and valency during bond formation with intercellular adhesion molecule-1.
|
| |
J Biol Chem,
280,
28290-28298.
|
 |
|
|
|
|
 |
R.H.Tang,
E.Tng,
S.K.Law,
and
S.M.Tan
(2005).
Epitope mapping of monoclonal antibody to integrin alphaL beta2 hybrid domain suggests different requirements of affinity states for intercellular adhesion molecules (ICAM)-1 and ICAM-3 binding.
|
| |
J Biol Chem,
280,
29208-29216.
|
 |
|
|
|
|
 |
R.L.Rich,
and
D.G.Myszka
(2005).
Survey of the year 2003 commercial optical biosensor literature.
|
| |
J Mol Recognit,
18,
1.
|
 |
|
|
|
|
 |
R.Shamri,
V.Grabovsky,
J.M.Gauguet,
S.Feigelson,
E.Manevich,
W.Kolanus,
M.K.Robinson,
D.E.Staunton,
U.H.von Andrian,
and
R.Alon
(2005).
Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines.
|
| |
Nat Immunol,
6,
497-506.
|
 |
|
|
|
|
 |
S.I.Simon,
and
C.E.Green
(2005).
Molecular mechanics and dynamics of leukocyte recruitment during inflammation.
|
| |
Annu Rev Biomed Eng,
7,
151-185.
|
 |
|
|
|
|
 |
T.Kinashi
(2005).
Intracellular signalling controlling integrin activation in lymphocytes.
|
| |
Nat Rev Immunol,
5,
546-559.
|
 |
|
|
|
|
 |
T.Vorup-Jensen,
C.V.Carman,
M.Shimaoka,
P.Schuck,
J.Svitel,
and
T.A.Springer
(2005).
Exposure of acidic residues as a danger signal for recognition of fibrinogen and other macromolecules by integrin alphaXbeta2.
|
| |
Proc Natl Acad Sci U S A,
102,
1614-1619.
|
 |
|
|
|
|
 |
A.A.Bhattacharya,
M.L.Lupher,
D.E.Staunton,
and
R.C.Liddington
(2004).
Crystal structure of the A domain from complement factor B reveals an integrin-like open conformation.
|
| |
Structure,
12,
371-378.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.P.Mould,
and
M.J.Humphries
(2004).
Regulation of integrin function through conformational complexity: not simply a knee-jerk reaction?
|
| |
Curr Opin Cell Biol,
16,
544-551.
|
 |
|
|
|
|
 |
A.R.Atkins,
W.J.Gallin,
G.C.Owens,
G.M.Edelman,
and
B.A.Cunningham
(2004).
Neural cell adhesion molecule (N-CAM) homophilic binding mediated by the two N-terminal Ig domains is influenced by intramolecular domain-domain interactions.
|
| |
J Biol Chem,
279,
49633-49643.
|
 |
|
|
|
|
 |
A.Salas,
M.Shimaoka,
A.N.Kogan,
C.Harwood,
U.H.von Andrian,
and
T.A.Springer
(2004).
Rolling adhesion through an extended conformation of integrin alphaLbeta2 and relation to alpha I and beta I-like domain interaction.
|
| |
Immunity,
20,
393-406.
|
 |
|
|
|
|
 |
B.H.Luo,
J.Takagi,
and
T.A.Springer
(2004).
Locking the beta3 integrin I-like domain into high and low affinity conformations with disulfides.
|
| |
J Biol Chem,
279,
10215-10221.
|
 |
|
|
|
|
 |
D.B.Lacy,
D.J.Wigelsworth,
H.M.Scobie,
J.A.Young,
and
R.J.Collier
(2004).
Crystal structure of the von Willebrand factor A domain of human capillary morphogenesis protein 2: an anthrax toxin receptor.
|
| |
Proc Natl Acad Sci U S A,
101,
6367-6372.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.B.Lacy,
D.J.Wigelsworth,
R.A.Melnyk,
S.C.Harrison,
and
R.J.Collier
(2004).
Structure of heptameric protective antigen bound to an anthrax toxin receptor: a role for receptor in pH-dependent pore formation.
|
| |
Proc Natl Acad Sci U S A,
101,
13147-13151.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.J.Wigelsworth,
B.A.Krantz,
K.A.Christensen,
D.B.Lacy,
S.J.Juris,
and
R.J.Collier
(2004).
Binding stoichiometry and kinetics of the interaction of a human anthrax toxin receptor, CMG2, with protective antigen.
|
| |
J Biol Chem,
279,
23349-23356.
|
 |
|
|
|
|
 |
E.Santelli,
L.A.Bankston,
S.H.Leppla,
and
R.C.Liddington
(2004).
Crystal structure of a complex between anthrax toxin and its host cell receptor.
|
| |
Nature,
430,
905-908.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.Weitz-Schmidt,
K.Welzenbach,
J.Dawson,
and
J.Kallen
(2004).
Improved lymphocyte function-associated antigen-1 (LFA-1) inhibition by statin derivatives: molecular basis determined by x-ray analysis and monitoring of LFA-1 conformational changes in vitro and ex vivo.
|
| |
J Biol Chem,
279,
46764-46771.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Wang,
F.E.McCann,
J.D.Gordan,
X.Wu,
M.Raab,
T.H.Malik,
D.M.Davis,
and
C.E.Rudd
(2004).
ADAP-SLP-76 binding differentially regulates supramolecular activation cluster (SMAC) formation relative to T cell-APC conjugation.
|
| |
J Exp Med,
200,
1063-1074.
|
 |
|
|
|
|
 |
J.T.Pribila,
A.C.Quale,
K.L.Mueller,
and
Y.Shimizu
(2004).
Integrins and T cell-mediated immunity.
|
| |
Annu Rev Immunol,
22,
157-180.
|
 |
|
|
|
|
 |
K.Ajroud,
T.Sugimori,
W.H.Goldmann,
D.M.Fathallah,
J.P.Xiong,
and
M.A.Arnaout
(2004).
Binding Affinity of Metal Ions to the CD11b A-domain Is Regulated by Integrin Activation and Ligands.
|
| |
J Biol Chem,
279,
25483-25488.
|
 |
|
|
|
|
 |
K.Ponnuraj,
Y.Xu,
K.Macon,
D.Moore,
J.E.Volanakis,
and
S.V.Narayana
(2004).
Structural analysis of engineered Bb fragment of complement factor B: insights into the activation mechanism of the alternative pathway C3-convertase.
|
| |
Mol Cell,
14,
17-28.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Gao,
and
K.Schulten
(2004).
Integrin activation in vivo and in silico.
|
| |
Structure,
12,
2096-2098.
|
 |
|
|
|
|
 |
M.Jin,
I.Andricioaei,
and
T.A.Springer
(2004).
Conversion between three conformational states of integrin I domains with a C-terminal pull spring studied with molecular dynamics.
|
| |
Structure,
12,
2137-2147.
|
 |
|
|
|
|
 |
M.Kim,
C.V.Carman,
W.Yang,
A.Salas,
and
T.A.Springer
(2004).
The primacy of affinity over clustering in regulation of adhesiveness of the integrin {alpha}L{beta}2.
|
| |
J Cell Biol,
167,
1241-1253.
|
 |
|
|
|
|
 |
M.R.Arkin,
and
J.A.Wells
(2004).
Small-molecule inhibitors of protein-protein interactions: progressing towards the dream.
|
| |
Nat Rev Drug Discov,
3,
301-317.
|
 |
|
|
|
|
 |
P.Hermand,
P.Gane,
I.Callebaut,
N.Kieffer,
J.P.Cartron,
and
P.Bailly
(2004).
Integrin receptor specificity for human red cell ICAM-4 ligand. Critical residues for alphaIIbeta3 binding.
|
| |
Eur J Biochem,
271,
3729-3740.
|
 |
|
|
|
|
 |
R.W.Farndale,
J.J.Sixma,
M.J.Barnes,
and
P.G.de Groot
(2004).
The role of collagen in thrombosis and hemostasis.
|
| |
J Thromb Haemost,
2,
561-573.
|
 |
|
|
|
|
 |
S.Ye,
I.Vakonakis,
T.R.Ioerger,
A.C.LiWang,
and
J.C.Sacchettini
(2004).
Crystal structure of circadian clock protein KaiA from Synechococcus elongatus.
|
| |
J Biol Chem,
279,
20511-20518.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Xiao,
J.Takagi,
B.S.Coller,
J.H.Wang,
and
T.A.Springer
(2004).
Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics.
|
| |
Nature,
432,
59-67.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
W.Yang,
M.Shimaoka,
A.Salas,
J.Takagi,
and
T.A.Springer
(2004).
Intersubunit signal transmission in integrins by a receptor-like interaction with a pull spring.
|
| |
Proc Natl Acad Sci U S A,
101,
2906-2911.
|
 |
|
|
|
|
 |
W.Yang,
M.Shimaoka,
J.Chen,
and
T.A.Springer
(2004).
Activation of integrin beta-subunit I-like domains by one-turn C-terminal alpha-helix deletions.
|
| |
Proc Natl Acad Sci U S A,
101,
2333-2338.
|
 |
|
|
|
|
 |
Y.Nymalm,
J.S.Puranen,
T.K.Nyholm,
J.Käpylä,
H.Kidron,
O.T.Pentikäinen,
T.T.Airenne,
J.Heino,
J.P.Slotte,
M.S.Johnson,
and
T.A.Salminen
(2004).
Jararhagin-derived RKKH peptides induce structural changes in alpha1I domain of human integrin alpha1beta1.
|
| |
J Biol Chem,
279,
7962-7970.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.V.Carman,
and
T.A.Springer
(2003).
Integrin avidity regulation: are changes in affinity and conformation underemphasized?
|
| |
Curr Opin Cell Biol,
15,
547-556.
|
 |
|
|
|
|
 |
J.Chen,
A.Salas,
and
T.A.Springer
(2003).
Bistable regulation of integrin adhesiveness by a bipolar metal ion cluster.
|
| |
Nat Struct Biol,
10,
995.
|
 |
|
|
|
|
 |
J.H.Wang,
and
M.J.Eck
(2003).
Assembling atomic resolution views of the immunological synapse.
|
| |
Curr Opin Immunol,
15,
286-293.
|
 |
|
|
|
|
 |
J.Takagi,
K.Strokovich,
T.A.Springer,
and
T.Walz
(2003).
Structure of integrin alpha5beta1 in complex with fibronectin.
|
| |
EMBO J,
22,
4607-4615.
|
 |
|
|
|
|
 |
K.A.Bradley,
J.Mogridge,
G.Jonah,
A.Rainey,
S.Batty,
and
J.A.Young
(2003).
Binding of anthrax toxin to its receptor is similar to alpha integrin-ligand interactions.
|
| |
J Biol Chem,
278,
49342-49347.
|
 |
|
|
|
|
 |
M.J.Humphries,
P.A.McEwan,
S.J.Barton,
P.A.Buckley,
J.Bella,
and
A.P.Mould
(2003).
Integrin structure: heady advances in ligand binding, but activation still makes the knees wobble.
|
| |
Trends Biochem Sci,
28,
313-320.
|
 |
|
|
|
|
 |
M.Stefanidakis,
M.Bjorklund,
E.Ihanus,
C.G.Gahmberg,
and
E.Koivunen
(2003).
Identification of a negatively charged peptide motif within the catalytic domain of progelatinases that mediates binding to leukocyte beta 2 integrins.
|
| |
J Biol Chem,
278,
34674-34684.
|
 |
|
|
|
|
 |
N.Ni,
C.G.Kevil,
D.C.Bullard,
and
D.F.Kucik
(2003).
Avidity modulation activates adhesion under flow and requires cooperativity among adhesion receptors.
|
| |
Biophys J,
85,
4122-4133.
|
 |
|
|
|
|
 |
O.Acuto,
and
F.Michel
(2003).
CD28-mediated co-stimulation: a quantitative support for TCR signalling.
|
| |
Nat Rev Immunol,
3,
939-951.
|
 |
|
|
|
|
 |
R.Alon,
and
A.Etzioni
(2003).
LAD-III, a novel group of leukocyte integrin activation deficiencies.
|
| |
Trends Immunol,
24,
561-566.
|
 |
|
|
|
|
 |
S.W.Feigelson,
V.Grabovsky,
R.Shamri,
S.Levy,
and
R.Alon
(2003).
The CD81 tetraspanin facilitates instantaneous leukocyte VLA-4 adhesion strengthening to vascular cell adhesion molecule 1 (VCAM-1) under shear flow.
|
| |
J Biol Chem,
278,
51203-51212.
|
 |
|
|
|
|
 |
T.R.Gadek,
and
R.S.McDowell
(2003).
Discovery of small molecule leads in a biotechnology datastream.
|
| |
Drug Discov Today,
8,
545-550.
|
 |
|
|
|
|
 |
W.S.Hlavacek,
J.R.Faeder,
M.L.Blinov,
A.S.Perelson,
and
B.Goldstein
(2003).
The complexity of complexes in signal transduction.
|
| |
Biotechnol Bioeng,
84,
783-794.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |