 |
PDBsum entry 1miz
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Structural protein
|
PDB id
|
|
|
|
1miz
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Mol Cell
11:49-58
(2003)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structural determinants of integrin recognition by talin.
|
|
B.García-Alvarez,
J.M.de Pereda,
D.A.Calderwood,
T.S.Ulmer,
D.Critchley,
I.D.Campbell,
M.H.Ginsberg,
R.C.Liddington.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The binding of cytoplasmic proteins, such as talin, to the cytoplasmic domains
of integrin adhesion receptors mediates bidirectional signal transduction. Here
we report the crystal structure of the principal integrin binding and activating
fragment of talin, alone and in complex with fragments of the beta 3 integrin
tail. The FERM (four point one, ezrin, radixin, and moesin) domain of talin
engages integrins via a novel variant of the canonical phosphotyrosine binding
(PTB) domain-NPxY ligand interaction that may be a prototype for FERM domain
recognition of transmembrane receptors. In combination with NMR and mutational
analysis, our studies reveal the critical interacting elements of both talin and
the integrin beta 3 tail, providing structural paradigms for integrin linkage to
the cell interior.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 3.
Figure 3. Comparison of FERM F3 and PTB Domain
InteractionsStereo Cα plot comparing the F3 subdomain of talin
and the integrin sequence (red), the F3 subdomain of moesin and
the β strand of the C-terminal tail (green), and the PTB domain
of X11 with the β-APP bound (blue). The structures were
superposed by aligning the Cα atoms of 39 residues in the β
sandwich. The ligands are shown as thick lines. The tyrosine
sidechains of the NPxY motifs of integrin and β-APP are also
shown. For clarity, insertions in the X11 structure absent in
FERM domains are not shown. Residue numbering is for talin.
|
 |
Figure 4.
Figure 4. Structure-Based Mutagenesis of the TalinAt left,
binding of talin mutants to full-length β3 tail. Recombinant
F2+F3 containing the indicated mutation was incubated with the
integrin β3 cytoplasmic domain model protein; following
washing, the bound protein was detected by SDS-PAGE. Note the
absence of binding to β3(Y747A) and αIIb cytoplasmic domain
model proteins and the equal loading (rightmost column) of each
mutant. The bottom row depicts the equal loading of each model
tail protein as judged by SDS-PAGE. At right, residues mutated
in this study are mapped onto the surface of the talin F3
domain, with hydrophobic residues colored yellow. The K357A
mutation (green) does not affect binding, while alanine
substitution of R358, W359, and I396 (red) reduce binding.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Mol Cell
(2003,
11,
49-58)
copyright 2003.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
J.R.Haling,
S.J.Monkley,
D.R.Critchley,
and
B.G.Petrich
(2011).
Talin-dependent integrin activation is required for fibrin clot retraction by platelets.
|
| |
Blood,
117,
1719-1722.
|
 |
|
|
|
|
 |
L.D.Nagaprashantha,
R.Vatsyayan,
P.C.Lelsani,
S.Awasthi,
and
S.S.Singhal
(2011).
The sensors and regulators of cell-matrix surveillance in anoikis resistance of tumors.
|
| |
Int J Cancer,
128,
743-752.
|
 |
|
|
|
|
 |
N.J.Anthis,
and
I.D.Campbell
(2011).
The tail of integrin activation.
|
| |
Trends Biochem Sci,
36,
191-198.
|
 |
|
|
|
|
 |
P.Pinon,
and
B.Wehrle-Haller
(2011).
Integrins: versatile receptors controlling melanocyte adhesion, migration and proliferation.
|
| |
Pigment Cell Melanoma Res,
24,
282-294.
|
 |
|
|
|
|
 |
R.Ghai,
M.Mobli,
S.J.Norwood,
A.Bugarcic,
R.D.Teasdale,
G.F.King,
and
B.M.Collins
(2011).
Phox homology band 4.1/ezrin/radixin/moesin-like proteins function as molecular scaffolds that interact with cargo receptors and Ras GTPases.
|
| |
Proc Natl Acad Sci U S A,
108,
7763-7768.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Z.Wei,
J.Yan,
Q.Lu,
L.Pan,
and
M.Zhang
(2011).
Cargo recognition mechanism of myosin X revealed by the structure of its tail MyTH4-FERM tandem in complex with the DCC P3 domain.
|
| |
Proc Natl Acad Sci U S A,
108,
3572-3577.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.C.Kalli,
K.L.Wegener,
B.T.Goult,
N.J.Anthis,
I.D.Campbell,
and
M.S.Sansom
(2010).
The structure of the talin/integrin complex at a lipid bilayer: an NMR and MD simulation study.
|
| |
Structure,
18,
1280-1288.
|
 |
|
|
|
|
 |
A.R.Gingras,
N.Bate,
B.T.Goult,
B.Patel,
P.M.Kopp,
J.Emsley,
I.L.Barsukov,
G.C.Roberts,
and
D.R.Critchley
(2010).
Central region of talin has a unique fold that binds vinculin and actin.
|
| |
J Biol Chem,
285,
29577-29587.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.T.Goult,
M.Bouaouina,
P.R.Elliott,
N.Bate,
B.Patel,
A.R.Gingras,
J.G.Grossmann,
G.C.Roberts,
D.A.Calderwood,
D.R.Critchley,
and
I.L.Barsukov
(2010).
Structure of a double ubiquitin-like domain in the talin head: a role in integrin activation.
|
| |
EMBO J,
29,
1069-1080.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.A.Lipinski,
and
J.C.Loftus
(2010).
Targeting Pyk2 for therapeutic intervention.
|
| |
Expert Opin Ther Targets,
14,
95.
|
 |
|
|
|
|
 |
C.Zhang,
D.Wei,
Z.Luo,
Y.Liu,
T.Liao,
and
C.Zhang
(2010).
Synthetic peptide coupled to KLH elicits antibodies against beta8 integrin.
|
| |
Hybridoma (Larchmt),
29,
361-366.
|
 |
|
|
|
|
 |
D.G.Metcalf,
D.T.Moore,
Y.Wu,
J.M.Kielec,
K.Molnar,
K.G.Valentine,
A.J.Wand,
J.S.Bennett,
and
W.F.DeGrado
(2010).
NMR analysis of the alphaIIb beta3 cytoplasmic interaction suggests a mechanism for integrin regulation.
|
| |
Proc Natl Acad Sci U S A,
107,
22481-22486.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.Ye,
G.Hu,
D.Taylor,
B.Ratnikov,
A.A.Bobkov,
M.A.McLean,
S.G.Sligar,
K.A.Taylor,
and
M.H.Ginsberg
(2010).
Recreation of the terminal events in physiological integrin activation.
|
| |
J Cell Biol,
188,
157-173.
|
 |
|
|
|
|
 |
J.Lim,
A.G.Dupuy,
D.R.Critchley,
and
E.Caron
(2010).
Rap1 controls activation of the α(M)β(2) integrin in a talin-dependent manner.
|
| |
J Cell Biochem,
111,
999.
|
 |
|
|
|
|
 |
K.Bialkowska,
Y.Q.Ma,
K.Bledzka,
K.Sossey-Alaoui,
L.Izem,
X.Zhang,
N.Malinin,
J.Qin,
T.Byzova,
and
E.F.Plow
(2010).
The integrin co-activator Kindlin-3 is expressed and functional in a non-hematopoietic cell, the endothelial cell.
|
| |
J Biol Chem,
285,
18640-18649.
|
 |
|
|
|
|
 |
M.E.Call,
and
J.J.Chou
(2010).
A view into the blind spot: solution NMR provides new insights into signal transduction across the lipid bilayer.
|
| |
Structure,
18,
1559-1569.
|
 |
|
|
|
|
 |
N.J.Anthis,
K.L.Wegener,
D.R.Critchley,
and
I.D.Campbell
(2010).
Structural diversity in integrin/talin interactions.
|
| |
Structure,
18,
1654-1666.
|
 |
|
|
|
|
 |
P.M.Kopp,
N.Bate,
T.M.Hansen,
N.P.Brindle,
U.Praekelt,
E.Debrand,
S.Coleman,
D.Mazzeo,
B.T.Goult,
A.R.Gingras,
C.A.Pritchard,
D.R.Critchley,
and
S.J.Monkley
(2010).
Studies on the morphology and spreading of human endothelial cells define key inter- and intramolecular interactions for talin1.
|
| |
Eur J Cell Biol,
89,
661-673.
|
 |
|
|
|
|
 |
P.R.Elliott,
B.T.Goult,
P.M.Kopp,
N.Bate,
J.G.Grossmann,
G.C.Roberts,
D.R.Critchley,
and
I.L.Barsukov
(2010).
The Structure of the talin head reveals a novel extended conformation of the FERM domain.
|
| |
Structure,
18,
1289-1299.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.A.Wickström,
A.Lange,
E.Montanez,
and
R.Fässler
(2010).
The ILK/PINCH/parvin complex: the kinase is dead, long live the pseudokinase!
|
| |
EMBO J,
29,
281-291.
|
 |
|
|
|
|
 |
S.J.Shattil,
C.Kim,
and
M.H.Ginsberg
(2010).
The final steps of integrin activation: the end game.
|
| |
Nat Rev Mol Cell Biol,
11,
288-300.
|
 |
|
|
|
|
 |
W.H.Goldmann
(2010).
Correlation between the interaction of the vinculin tail domain with lipid membranes, its phosphorylation and cell mechanical behaviour.
|
| |
Cell Biol Int,
34,
339-342.
|
 |
|
|
|
|
 |
X.Tong,
D.Zitserman,
I.Serebriiskii,
M.Andrake,
R.Dunbrack,
and
F.Roegiers
(2010).
Numb independently antagonizes Sanpodo membrane targeting and Notch signaling in Drosophila sensory organ precursor cells.
|
| |
Mol Biol Cell,
21,
802-810.
|
 |
|
|
|
|
 |
A.R.Gingras,
W.H.Ziegler,
A.A.Bobkov,
M.G.Joyce,
D.Fasci,
M.Himmel,
S.Rothemund,
A.Ritter,
J.G.Grossmann,
B.Patel,
N.Bate,
B.T.Goult,
J.Emsley,
I.L.Barsukov,
G.C.Roberts,
R.C.Liddington,
M.H.Ginsberg,
and
D.R.Critchley
(2009).
Structural determinants of integrin binding to the talin rod.
|
| |
J Biol Chem,
284,
8866-8876.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.Geiger,
J.P.Spatz,
and
A.D.Bershadsky
(2009).
Environmental sensing through focal adhesions.
|
| |
Nat Rev Mol Cell Biol,
10,
21-33.
|
 |
|
|
|
|
 |
B.T.Goult,
M.Bouaouina,
D.S.Harburger,
N.Bate,
B.Patel,
N.J.Anthis,
I.D.Campbell,
D.A.Calderwood,
I.L.Barsukov,
G.C.Roberts,
and
D.R.Critchley
(2009).
The structure of the N-terminus of kindlin-1: a domain important for alphaiibbeta3 integrin activation.
|
| |
J Mol Biol,
394,
944-956.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.T.Goult,
N.Bate,
N.J.Anthis,
K.L.Wegener,
A.R.Gingras,
B.Patel,
I.L.Barsukov,
I.D.Campbell,
G.C.Roberts,
and
D.R.Critchley
(2009).
The structure of an interdomain complex that regulates talin activity.
|
| |
J Biol Chem,
284,
15097-15106.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.G.Gahmberg,
S.C.Fagerholm,
S.M.Nurmi,
T.Chavakis,
S.Marchesan,
and
M.Grönholm
(2009).
Regulation of integrin activity and signalling.
|
| |
Biochim Biophys Acta,
1790,
431-444.
|
 |
|
|
|
|
 |
C.Kim,
T.L.Lau,
T.S.Ulmer,
and
M.H.Ginsberg
(2009).
Interactions of platelet integrin alphaIIb and beta3 transmembrane domains in mammalian cell membranes and their role in integrin activation.
|
| |
Blood,
113,
4747-4753.
|
 |
|
|
|
|
 |
C.L.Abram,
and
C.A.Lowell
(2009).
The ins and outs of leukocyte integrin signaling.
|
| |
Annu Rev Immunol,
27,
339-362.
|
 |
|
|
|
|
 |
D.R.Critchley
(2009).
Biochemical and structural properties of the integrin-associated cytoskeletal protein talin.
|
| |
Annu Rev Biophys,
38,
235-254.
|
 |
|
|
|
|
 |
D.S.Harburger,
and
D.A.Calderwood
(2009).
Integrin signalling at a glance.
|
| |
J Cell Sci,
122,
159-163.
|
 |
|
|
|
|
 |
D.S.Harburger,
M.Bouaouina,
and
D.A.Calderwood
(2009).
Kindlin-1 and -2 Directly Bind the C-terminal Region of {beta} Integrin Cytoplasmic Tails and Exert Integrin-specific Activation Effects.
|
| |
J Biol Chem,
284,
11485-11497.
|
 |
|
|
|
|
 |
F.Saltel,
E.Mortier,
V.P.Hytönen,
M.C.Jacquier,
P.Zimmermann,
V.Vogel,
W.Liu,
and
B.Wehrle-Haller
(2009).
New PI(4,5)P2- and membrane proximal integrin-binding motifs in the talin head control beta3-integrin clustering.
|
| |
J Cell Biol,
187,
715-731.
|
 |
|
|
|
|
 |
G.C.Roberts,
and
D.R.Critchley
(2009).
Structural and biophysical properties of the integrin-associated cytoskeletal protein talin.
|
| |
Biophys Rev,
1,
61-69.
|
 |
|
|
|
|
 |
H.S.Lee,
C.J.Lim,
W.Puzon-McLaughlin,
S.J.Shattil,
and
M.H.Ginsberg
(2009).
RIAM Activates Integrins by Linking Talin to Ras GTPase Membrane-targeting Sequences.
|
| |
J Biol Chem,
284,
5119-5127.
|
 |
|
|
|
|
 |
J.A.Askari,
P.A.Buckley,
A.P.Mould,
and
M.J.Humphries
(2009).
Linking integrin conformation to function.
|
| |
J Cell Sci,
122,
165-170.
|
 |
|
|
|
|
 |
J.A.Green,
A.L.Berrier,
R.Pankov,
and
K.M.Yamada
(2009).
{beta}1 Integrin Cytoplasmic Domain Residues Selectively Modulate Fibronectin Matrix Assembly and Cell Spreading through Talin and Akt-1.
|
| |
J Biol Chem,
284,
8148-8159.
|
 |
|
|
|
|
 |
L.Svensson,
K.Howarth,
A.McDowall,
I.Patzak,
R.Evans,
S.Ussar,
M.Moser,
A.Metin,
M.Fried,
I.Tomlinson,
and
N.Hogg
(2009).
Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation.
|
| |
Nat Med,
15,
306-312.
|
 |
|
|
|
|
 |
M.Himmel,
A.Ritter,
S.Rothemund,
B.V.Pauling,
K.Rottner,
A.R.Gingras,
and
W.H.Ziegler
(2009).
Control of High Affinity Interactions in the Talin C Terminus: HOW TALIN DOMAINS COORDINATE PROTEIN DYNAMICS IN CELL ADHESIONS.
|
| |
J Biol Chem,
284,
13832-13842.
|
 |
|
|
|
|
 |
M.Moser,
K.R.Legate,
R.Zent,
and
R.Fässler
(2009).
The tail of integrins, talin, and kindlins.
|
| |
Science,
324,
895-899.
|
 |
|
|
|
|
 |
N.J.Anthis,
K.L.Wegener,
F.Ye,
C.Kim,
B.T.Goult,
E.D.Lowe,
I.Vakonakis,
N.Bate,
D.R.Critchley,
M.H.Ginsberg,
and
I.D.Campbell
(2009).
The structure of an integrin/talin complex reveals the basis of inside-out signal transduction.
|
| |
EMBO J,
28,
3623-3632.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.O.Deakin,
M.D.Bass,
S.Warwood,
J.Schoelermann,
Z.Mostafavi-Pour,
D.Knight,
C.Ballestrem,
and
M.J.Humphries
(2009).
An integrin-{alpha}4-14-3-3{zeta}-paxillin ternary complex mediates localised Cdc42 activity and accelerates cell migration.
|
| |
J Cell Sci,
122,
1654-1664.
|
 |
|
|
|
|
 |
R.Bago,
J.Pavelić,
G.M.Vlahovicek,
and
M.H.Bosnar
(2009).
Nm23-H1 promotes adhesion of CAL 27 cells in vitro.
|
| |
Mol Carcinog,
48,
779-789.
|
 |
|
|
|
|
 |
R.T.Böttcher,
A.Lange,
and
R.Fässler
(2009).
How ILK and kindlins cooperate to orchestrate integrin signaling.
|
| |
Curr Opin Cell Biol,
21,
670-675.
|
 |
|
|
|
|
 |
S.J.Shattil
(2009).
The beta3 integrin cytoplasmic tail: protein scaffold and control freak.
|
| |
J Thromb Haemost,
7,
210-213.
|
 |
|
|
|
|
 |
S.Li,
Q.Shi,
Z.Wang,
R.Yan,
H.Cheng,
and
K.Dai
(2009).
Hypergravity results in human platelet hyperactivity.
|
| |
J Physiol Biochem,
65,
147-156.
|
 |
|
|
|
|
 |
T.L.Lau,
C.Kim,
M.H.Ginsberg,
and
T.S.Ulmer
(2009).
The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling.
|
| |
EMBO J,
28,
1351-1361.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
U.Tepass
(2009).
FERM proteins in animal morphogenesis.
|
| |
Curr Opin Genet Dev,
19,
357-367.
|
 |
|
|
|
|
 |
Z.Jevnikar,
N.Obermajer,
and
J.Kos
(2009).
Cysteine protease-mediated cytoskeleton interactions with LFA-1 promote T-cell morphological changes.
|
| |
Cell Motil Cytoskeleton,
66,
1030-1040.
|
 |
|
|
|
|
 |
A.Banno,
and
M.H.Ginsberg
(2008).
Integrin activation.
|
| |
Biochem Soc Trans,
36,
229-234.
|
 |
|
|
|
|
 |
A.R.Gingras,
N.Bate,
B.T.Goult,
L.Hazelwood,
I.Canestrelli,
J.G.Grossmann,
H.Liu,
N.S.Putz,
G.C.Roberts,
N.Volkmann,
D.Hanein,
I.L.Barsukov,
and
D.R.Critchley
(2008).
The structure of the C-terminal actin-binding domain of talin.
|
| |
EMBO J,
27,
458-469.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.Goksoy,
Y.Q.Ma,
X.Wang,
X.Kong,
D.Perera,
E.F.Plow,
and
J.Qin
(2008).
Structural basis for the autoinhibition of talin in regulating integrin activation.
|
| |
Mol Cell,
31,
124-133.
|
 |
|
|
|
|
 |
H.Larjava,
E.F.Plow,
and
C.Wu
(2008).
Kindlins: essential regulators of integrin signalling and cell-matrix adhesion.
|
| |
EMBO Rep,
9,
1203-1208.
|
 |
|
|
|
|
 |
H.Takala,
E.Nurminen,
S.M.Nurmi,
M.Aatonen,
T.Strandin,
M.Takatalo,
T.Kiema,
C.G.Gahmberg,
J.Ylänne,
and
S.C.Fagerholm
(2008).
Beta2 integrin phosphorylation on Thr758 acts as a molecular switch to regulate 14-3-3 and filamin binding.
|
| |
Blood,
112,
1853-1862.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Arunachalam,
and
N.Gautham
(2008).
Hydrophobic clusters in protein structures.
|
| |
Proteins,
71,
2012-2025.
|
 |
|
|
|
|
 |
K.L.Wegener,
and
I.D.Campbell
(2008).
Transmembrane and cytoplasmic domains in integrin activation and protein-protein interactions (review).
|
| |
Mol Membr Biol,
25,
376-387.
|
 |
|
|
|
|
 |
M.Bouaouina,
Y.Lad,
and
D.A.Calderwood
(2008).
The N-terminal domains of talin cooperate with the phosphotyrosine binding-like domain to activate beta1 and beta3 integrins.
|
| |
J Biol Chem,
283,
6118-6125.
|
 |
|
|
|
|
 |
T.Hato,
J.Yamanouchi,
T.Tamura,
Y.Yakushijin,
I.Sakai,
and
M.Yasukawa
(2008).
Cooperative role of the membrane-proximal and -distal residues of the integrin beta3 cytoplasmic domain in regulation of talin-mediated alpha IIb beta3 activation.
|
| |
J Biol Chem,
283,
5662-5668.
|
 |
|
|
|
|
 |
T.L.Helsten,
T.A.Bunch,
H.Kato,
J.Yamanouchi,
S.H.Choi,
A.L.Jannuzi,
C.C.Féral,
M.H.Ginsberg,
D.L.Brower,
and
S.J.Shattil
(2008).
Differences in regulation of Drosophila and vertebrate integrin affinity by talin.
|
| |
Mol Biol Cell,
19,
3589-3598.
|
 |
|
|
|
|
 |
T.Mori,
K.Kitano,
S.Terawaki,
R.Maesaki,
Y.Fukami,
and
T.Hakoshima
(2008).
Structural basis for CD44 recognition by ERM proteins.
|
| |
J Biol Chem,
283,
29602-29612.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Kasirer-Friede,
M.L.Kahn,
and
S.J.Shattil
(2007).
Platelet integrins and immunoreceptors.
|
| |
Immunol Rev,
218,
247-264.
|
 |
|
|
|
|
 |
B.G.Petrich,
P.Fogelstrand,
A.W.Partridge,
N.Yousefi,
A.J.Ablooglu,
S.J.Shattil,
and
M.H.Ginsberg
(2007).
The antithrombotic potential of selective blockade of talin-dependent integrin alpha IIb beta 3 (platelet GPIIb-IIIa) activation.
|
| |
J Clin Invest,
117,
2250-2259.
|
 |
|
|
|
|
 |
B.H.Luo,
C.V.Carman,
and
T.A.Springer
(2007).
Structural basis of integrin regulation and signaling.
|
| |
Annu Rev Immunol,
25,
619-647.
|
 |
|
|
|
|
 |
B.J.Burbach,
R.B.Medeiros,
K.L.Mueller,
and
Y.Shimizu
(2007).
T-cell receptor signaling to integrins.
|
| |
Immunol Rev,
218,
65-81.
|
 |
|
|
|
|
 |
B.P.James,
T.A.Bunch,
S.Krishnamoorthy,
L.A.Perkins,
and
D.L.Brower
(2007).
Nuclear localization of the ERK MAP kinase mediated by Drosophila alphaPS2betaPS integrin and importin-7.
|
| |
Mol Biol Cell,
18,
4190-4199.
|
 |
|
|
|
|
 |
C.J.McCleverty,
D.C.Lin,
and
R.C.Liddington
(2007).
Structure of the PTB domain of tensin1 and a model for its recruitment to fibrillar adhesions.
|
| |
Protein Sci,
16,
1223-1229.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.A.Evans,
and
D.A.Calderwood
(2007).
Forces and bond dynamics in cell adhesion.
|
| |
Science,
316,
1148-1153.
|
 |
|
|
|
|
 |
E.Manevich,
V.Grabovsky,
S.W.Feigelson,
and
R.Alon
(2007).
Talin 1 and paxillin facilitate distinct steps in rapid VLA-4-mediated adhesion strengthening to vascular cell adhesion molecule 1.
|
| |
J Biol Chem,
282,
25338-25348.
|
 |
|
|
|
|
 |
G.W.Prager,
C.C.Féral,
C.Kim,
J.Han,
and
M.H.Ginsberg
(2007).
CD98hc (SLC3A2) interaction with the integrin beta subunit cytoplasmic domain mediates adhesive signaling.
|
| |
J Biol Chem,
282,
24477-24484.
|
 |
|
|
|
|
 |
J.Lim,
A.Wiedemann,
G.Tzircotis,
S.J.Monkley,
D.R.Critchley,
and
E.Caron
(2007).
An essential role for talin during alpha(M)beta(2)-mediated phagocytosis.
|
| |
Mol Biol Cell,
18,
976-985.
|
 |
|
|
|
|
 |
J.Zhu,
C.V.Carman,
M.Kim,
M.Shimaoka,
T.A.Springer,
and
B.H.Luo
(2007).
Requirement of alpha and beta subunit transmembrane helix separation for integrin outside-in signaling.
|
| |
Blood,
110,
2475-2483.
|
 |
|
|
|
|
 |
K.L.Wegener,
A.W.Partridge,
J.Han,
A.R.Pickford,
R.C.Liddington,
M.H.Ginsberg,
and
I.D.Campbell
(2007).
Structural basis of integrin activation by talin.
|
| |
Cell,
128,
171-182.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.A.Arnaout,
S.L.Goodman,
and
J.P.Xiong
(2007).
Structure and mechanics of integrin-based cell adhesion.
|
| |
Curr Opin Cell Biol,
19,
495-507.
|
 |
|
|
|
|
 |
M.Katz,
I.Amit,
A.Citri,
T.Shay,
S.Carvalho,
S.Lavi,
F.Milanezi,
L.Lyass,
N.Amariglio,
J.Jacob-Hirsch,
N.Ben-Chetrit,
G.Tarcic,
M.Lindzen,
R.Avraham,
Y.C.Liao,
P.Trusk,
A.Lyass,
G.Rechavi,
N.L.Spector,
S.H.Lo,
F.Schmitt,
S.S.Bacus,
and
Y.Yarden
(2007).
A reciprocal tensin-3-cten switch mediates EGF-driven mammary cell migration.
|
| |
Nat Cell Biol,
9,
961-969.
|
 |
|
|
|
|
 |
M.Moes,
S.Rodius,
S.J.Coleman,
S.J.Monkley,
E.Goormaghtigh,
L.Tremuth,
C.Kox,
P.P.van der Holst,
D.R.Critchley,
and
N.Kieffer
(2007).
The integrin binding site 2 (IBS2) in the talin rod domain is essential for linking integrin beta subunits to the cytoskeleton.
|
| |
J Biol Chem,
282,
17280-17288.
|
 |
|
|
|
|
 |
M.R.Morgan,
M.J.Humphries,
and
M.D.Bass
(2007).
Synergistic control of cell adhesion by integrins and syndecans.
|
| |
Nat Rev Mol Cell Biol,
8,
957-969.
|
 |
|
|
|
|
 |
Q.Li,
M.R.Nance,
R.Kulikauskas,
K.Nyberg,
R.Fehon,
P.A.Karplus,
A.Bretscher,
and
J.J.Tesmer
(2007).
Self-masking in an intact ERM-merlin protein: an active role for the central alpha-helical domain.
|
| |
J Mol Biol,
365,
1446-1459.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Béraud-Dufour,
R.Gautier,
C.Albiges-Rizo,
P.Chardin,
and
E.Faurobert
(2007).
Krit 1 interactions with microtubules and membranes are regulated by Rap1 and integrin cytoplasmic domain associated protein-1.
|
| |
FEBS J,
274,
5518-5532.
|
 |
|
|
|
|
 |
S.Hehlgans,
M.Haase,
and
N.Cordes
(2007).
Signalling via integrins: implications for cell survival and anticancer strategies.
|
| |
Biochim Biophys Acta,
1775,
163-180.
|
 |
|
|
|
|
 |
S.Singh,
V.D'mello,
P.van Bergen en Henegouwen,
and
R.B.Birge
(2007).
A NPxY-independent beta5 integrin activation signal regulates phagocytosis of apoptotic cells.
|
| |
Biochem Biophys Res Commun,
364,
540-548.
|
 |
|
|
|
|
 |
T.M.Leisner,
W.Yuan,
J.C.DeNofrio,
J.Liu,
and
L.V.Parise
(2007).
Tickling the tails: cytoplasmic domain proteins that regulate integrin alphaIIbbeta3 activation.
|
| |
Curr Opin Hematol,
14,
255-261.
|
 |
|
|
|
|
 |
X.Shi,
Y.Q.Ma,
Y.Tu,
K.Chen,
S.Wu,
K.Fukuda,
J.Qin,
E.F.Plow,
and
C.Wu
(2007).
The MIG-2/integrin interaction strengthens cell-matrix adhesion and modulates cell motility.
|
| |
J Biol Chem,
282,
20455-20466.
|
 |
|
|
|
|
 |
Y.F.Li,
R.H.Tang,
K.J.Puan,
S.K.Law,
and
S.M.Tan
(2007).
The cytosolic protein talin induces an intermediate affinity integrin alphaLbeta2.
|
| |
J Biol Chem,
282,
24310-24319.
|
 |
|
|
|
|
 |
Y.Q.Ma,
J.Qin,
and
E.F.Plow
(2007).
Platelet integrin alpha(IIb)beta(3): activation mechanisms.
|
| |
J Thromb Haemost,
5,
1345-1352.
|
 |
|
|
|
|
 |
A.J.Baines
(2006).
A FERM-adjacent (FA) region defines a subset of the 4.1 superfamily and is a potential regulator of FERM domain function.
|
| |
BMC Genomics,
7,
85.
|
 |
|
|
|
|
 |
A.Wiedemann,
J.C.Patel,
J.Lim,
A.Tsun,
Y.van Kooyk,
and
E.Caron
(2006).
Two distinct cytoplasmic regions of the beta2 integrin chain regulate RhoA function during phagocytosis.
|
| |
J Cell Biol,
172,
1069-1079.
|
 |
|
|
|
|
 |
B.H.Luo,
and
T.A.Springer
(2006).
Integrin structures and conformational signaling.
|
| |
Curr Opin Cell Biol,
18,
579-586.
|
 |
|
|
|
|
 |
B.Patel,
A.R.Gingras,
A.A.Bobkov,
L.M.Fujimoto,
M.Zhang,
R.C.Liddington,
D.Mazzeo,
J.Emsley,
G.C.Roberts,
I.L.Barsukov,
and
D.R.Critchley
(2006).
The activity of the vinculin binding sites in talin is influenced by the stability of the helical bundles that make up the talin rod.
|
| |
J Biol Chem,
281,
7458-7467.
|
 |
|
|
|
|
 |
D.F.Ceccarelli,
H.K.Song,
F.Poy,
M.D.Schaller,
and
M.J.Eck
(2006).
Crystal structure of the FERM domain of focal adhesion kinase.
|
| |
J Biol Chem,
281,
252-259.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Iber,
and
I.D.Campbell
(2006).
Integrin activation--the importance of a positive feedback.
|
| |
Bull Math Biol,
68,
945-956.
|
 |
|
|
|
|
 |
D.L.Scott,
G.Diez,
and
W.H.Goldmann
(2006).
Protein-lipid interactions: correlation of a predictive algorithm for lipid-binding sites with three-dimensional structural data.
|
| |
Theor Biol Med Model,
3,
17.
|
 |
|
|
|
|
 |
D.M.Cohen,
B.Kutscher,
H.Chen,
D.B.Murphy,
and
S.W.Craig
(2006).
A conformational switch in vinculin drives formation and dynamics of a talin-vinculin complex at focal adhesions.
|
| |
J Biol Chem,
281,
16006-16015.
|
 |
|
|
|
|
 |
G.Tanentzapf,
and
N.H.Brown
(2006).
An interaction between integrin and the talin FERM domain mediates integrin activation but not linkage to the cytoskeleton.
|
| |
Nat Cell Biol,
8,
601-606.
|
 |
|
|
|
|
 |
G.W.Krissansen,
J.Singh,
R.K.Kanwar,
Y.C.Chan,
E.Leung,
K.B.Lehnert,
J.R.Kanwar,
and
Y.Yang
(2006).
A pseudosymmetric cell adhesion regulatory domain in the beta7 tail of the integrin alpha4beta7 that interacts with focal adhesion kinase and src.
|
| |
Eur J Immunol,
36,
2203-2214.
|
 |
|
|
|
|
 |
H.Chen,
Z.Zou,
K.L.Sarratt,
D.Zhou,
M.Zhang,
E.Sebzda,
D.A.Hammer,
and
M.L.Kahn
(2006).
In vivo beta1 integrin function requires phosphorylation-independent regulation by cytoplasmic tyrosines.
|
| |
Genes Dev,
20,
927-932.
|
 |
|
|
|
|
 |
J.C.Kuo,
W.J.Wang,
C.C.Yao,
P.R.Wu,
and
R.H.Chen
(2006).
The tumor suppressor DAPK inhibits cell motility by blocking the integrin-mediated polarity pathway.
|
| |
J Cell Biol,
172,
619-631.
|
 |
|
|
|
|
 |
K.Kitano,
F.Yusa,
and
T.Hakoshima
(2006).
Structure of dimerized radixin FERM domain suggests a novel masking motif in C-terminal residues 295-304.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
62,
340-345.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Ling,
N.J.Schill,
M.P.Wagoner,
Y.Sun,
and
R.A.Anderson
(2006).
Movin' on up: the role of PtdIns(4,5)P(2) in cell migration.
|
| |
Trends Cell Biol,
16,
276-284.
|
 |
|
|
|
|
 |
S.Lakhe-Reddy,
S.Khan,
M.Konieczkowski,
G.Jarad,
K.L.Wu,
L.F.Reichardt,
Y.Takai,
L.A.Bruggeman,
B.Wang,
J.R.Sedor,
and
J.R.Schelling
(2006).
Beta8 integrin binds Rho GDP dissociation inhibitor-1 and activates Rac1 to inhibit mesangial cell myofibroblast differentiation.
|
| |
J Biol Chem,
281,
19688-19699.
|
 |
|
|
|
|
 |
T.Kiema,
Y.Lad,
P.Jiang,
C.L.Oxley,
M.Baldassarre,
K.L.Wegener,
I.D.Campbell,
J.Ylänne,
and
D.A.Calderwood
(2006).
The molecular basis of filamin binding to integrins and competition with talin.
|
| |
Mol Cell,
21,
337-347.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
W.H.Ziegler,
R.C.Liddington,
and
D.R.Critchley
(2006).
The structure and regulation of vinculin.
|
| |
Trends Cell Biol,
16,
453-460.
|
 |
|
|
|
|
 |
A.P.Yamniuk,
and
H.J.Vogel
(2005).
Calcium- and magnesium-dependent interactions between calcium- and integrin-binding protein and the integrin alphaIIb cytoplasmic domain.
|
| |
Protein Sci,
14,
1429-1437.
|
 |
|
|
|
|
 |
A.Smith,
Y.R.Carrasco,
P.Stanley,
N.Kieffer,
F.D.Batista,
and
N.Hogg
(2005).
A talin-dependent LFA-1 focal zone is formed by rapidly migrating T lymphocytes.
|
| |
J Cell Biol,
170,
141-151.
|
 |
|
|
|
|
 |
B.I.Ratnikov,
A.W.Partridge,
and
M.H.Ginsberg
(2005).
Integrin activation by talin.
|
| |
J Thromb Haemost,
3,
1783-1790.
|
 |
|
|
|
|
 |
E.G.Arias-Salgado,
S.Lizano,
S.J.Shattil,
and
M.H.Ginsberg
(2005).
Specification of the direction of adhesive signaling by the integrin beta cytoplasmic domain.
|
| |
J Biol Chem,
280,
29699-29707.
|
 |
|
|
|
|
 |
I.E.Bécam,
G.Tanentzapf,
J.A.Lepesant,
N.H.Brown,
and
J.R.Huynh
(2005).
Integrin-independent repression of cadherin transcription by talin during axis formation in Drosophila.
|
| |
Nat Cell Biol,
7,
510-516.
|
 |
|
|
|
|
 |
I.Fillingham,
A.R.Gingras,
E.Papagrigoriou,
B.Patel,
J.Emsley,
D.R.Critchley,
G.C.Roberts,
and
I.L.Barsukov
(2005).
A vinculin binding domain from the talin rod unfolds to form a complex with the vinculin head.
|
| |
Structure,
13,
65-74.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.M.de Pereda,
K.L.Wegener,
E.Santelli,
N.Bate,
M.H.Ginsberg,
D.R.Critchley,
I.D.Campbell,
and
R.C.Liddington
(2005).
Structural basis for phosphatidylinositol phosphate kinase type Igamma binding to talin at focal adhesions.
|
| |
J Biol Chem,
280,
8381-8386.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.S.Bennett
(2005).
Structure and function of the platelet integrin alphaIIbbeta3.
|
| |
J Clin Invest,
115,
3363-3369.
|
 |
|
|
|
|
 |
L.A.Cohen,
and
J.L.Guan
(2005).
Residues within the first subdomain of the FERM-like domain in focal adhesion kinase are important in its regulation.
|
| |
J Biol Chem,
280,
8197-8207.
|
 |
|
|
|
|
 |
M.A.Arnaout,
B.Mahalingam,
and
J.P.Xiong
(2005).
Integrin structure, allostery, and bidirectional signaling.
|
| |
Annu Rev Cell Dev Biol,
21,
381-410.
|
 |
|
|
|
|
 |
N.Terada,
N.Ohno,
H.Yamakawa,
O.Ohara,
and
S.Ohno
(2005).
Topographical significance of membrane skeletal component protein 4.1 B in mammalian organs.
|
| |
Anat Sci Int,
80,
61-70.
|
 |
|
|
|
|
 |
S.Y.Lee,
S.Voronov,
K.Letinic,
A.C.Nairn,
G.Di Paolo,
and
P.De Camilli
(2005).
Regulation of the interaction between PIPKI gamma and talin by proline-directed protein kinases.
|
| |
J Cell Biol,
168,
789-799.
|
 |
|
|
|
|
 |
T.Kinashi
(2005).
Intracellular signalling controlling integrin activation in lymphocytes.
|
| |
Nat Rev Immunol,
5,
546-559.
|
 |
|
|
|
|
 |
V.Niggli
(2005).
Regulation of protein activities by phosphoinositide phosphates.
|
| |
Annu Rev Cell Dev Biol,
21,
57-79.
|
 |
|
|
|
|
 |
A.Nayal,
D.J.Webb,
and
A.F.Horwitz
(2004).
Talin: an emerging focal point of adhesion dynamics.
|
| |
Curr Opin Cell Biol,
16,
94-98.
|
 |
|
|
|
|
 |
A.Stefansson,
A.Armulik,
I.Nilsson,
G.von Heijne,
and
S.Johansson
(2004).
Determination of N- and C-terminal borders of the transmembrane domain of integrin subunits.
|
| |
J Biol Chem,
279,
21200-21205.
|
 |
|
|
|
|
 |
B.H.Luo,
T.A.Springer,
and
J.Takagi
(2004).
A specific interface between integrin transmembrane helices and affinity for ligand.
|
| |
PLoS Biol,
2,
e153.
|
 |
|
|
|
|
 |
C.L.Rush,
and
T.Izard
(2004).
Rhombohedral crystals of the human vinculin head domain in complex with a vinculin-binding site of talin.
|
| |
Acta Crystallogr D Biol Crystallogr,
60,
945-947.
|
 |
|
|
|
|
 |
D.A.Calderwood,
V.Tai,
G.Di Paolo,
P.De Camilli,
and
M.H.Ginsberg
(2004).
Competition for talin results in trans-dominant inhibition of integrin activation.
|
| |
J Biol Chem,
279,
28889-28895.
|
 |
|
|
|
|
 |
D.D.Schlaepfer,
and
S.K.Mitra
(2004).
Multiple connections link FAK to cell motility and invasion.
|
| |
Curr Opin Genet Dev,
14,
92.
|
 |
|
|
|
|
 |
E.Papagrigoriou,
A.R.Gingras,
I.L.Barsukov,
N.Bate,
I.J.Fillingham,
B.Patel,
R.Frank,
W.H.Ziegler,
G.C.Roberts,
D.R.Critchley,
and
J.Emsley
(2004).
Activation of a vinculin-binding site in the talin rod involves rearrangement of a five-helix bundle.
|
| |
EMBO J,
23,
2942-2951.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.J.Zwartz,
A.Chigaev,
D.C.Dwyer,
T.D.Foutz,
B.S.Edwards,
and
L.A.Sklar
(2004).
Real-time analysis of very late antigen-4 affinity modulation by shear.
|
| |
J Biol Chem,
279,
38277-38286.
|
 |
|
|
|
|
 |
H.Zhang,
J.S.Berg,
Z.Li,
Y.Wang,
P.Lång,
A.D.Sousa,
A.Bhaskar,
R.E.Cheney,
and
S.Strömblad
(2004).
Myosin-X provides a motor-based link between integrins and the cytoskeleton.
|
| |
Nat Cell Biol,
6,
523-531.
|
 |
|
|
|
|
 |
I.D.Campbell,
and
M.H.Ginsberg
(2004).
The talin-tail interaction places integrin activation on FERM ground.
|
| |
Trends Biochem Sci,
29,
429-435.
|
 |
|
|
|
|
 |
J.M.Dunty,
V.Gabarra-Niecko,
M.L.King,
D.F.Ceccarelli,
M.J.Eck,
and
M.D.Schaller
(2004).
FERM domain interaction promotes FAK signaling.
|
| |
Mol Cell Biol,
24,
5353-5368.
|
 |
|
|
|
|
 |
L.Tremuth,
S.Kreis,
C.Melchior,
J.Hoebeke,
P.Rondé,
S.Plançon,
K.Takeda,
and
N.Kieffer
(2004).
A fluorescence cell biology approach to map the second integrin-binding site of talin to a 130-amino acid sequence within the rod domain.
|
| |
J Biol Chem,
279,
22258-22266.
|
 |
|
|
|
|
 |
O.Vinogradova,
J.Vaynberg,
X.Kong,
T.A.Haas,
E.F.Plow,
and
J.Qin
(2004).
Membrane-mediated structural transitions at the cytoplasmic face during integrin activation.
|
| |
Proc Natl Acad Sci U S A,
101,
4094-4099.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Kloeker,
M.B.Major,
D.A.Calderwood,
M.H.Ginsberg,
D.A.Jones,
and
M.C.Beckerle
(2004).
The Kindler syndrome protein is regulated by transforming growth factor-beta and involved in integrin-mediated adhesion.
|
| |
J Biol Chem,
279,
6824-6833.
|
 |
|
|
|
|
 |
T.Izard,
and
C.Vonrhein
(2004).
Structural basis for amplifying vinculin activation by talin.
|
| |
J Biol Chem,
279,
27667-27678.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.D.Bershadsky,
N.Q.Balaban,
and
B.Geiger
(2003).
Adhesion-dependent cell mechanosensitivity.
|
| |
Annu Rev Cell Dev Biol,
19,
677-695.
|
 |
|
|
|
|
 |
B.D.Crawford,
C.A.Henry,
T.A.Clason,
A.L.Becker,
and
M.B.Hille
(2003).
Activity and distribution of paxillin, focal adhesion kinase, and cadherin indicate cooperative roles during zebrafish morphogenesis.
|
| |
Mol Biol Cell,
14,
3065-3081.
|
 |
|
|
|
|
 |
C.Brakebusch,
and
R.Fässler
(2003).
The integrin-actin connection, an eternal love affair.
|
| |
EMBO J,
22,
2324-2333.
|
 |
|
|
|
|
 |
C.V.Carman,
and
T.A.Springer
(2003).
Integrin avidity regulation: are changes in affinity and conformation underemphasized?
|
| |
Curr Opin Cell Biol,
15,
547-556.
|
 |
|
|
|
|
 |
D.A.Calderwood,
and
M.H.Ginsberg
(2003).
Talin forges the links between integrins and actin.
|
| |
Nat Cell Biol,
5,
694-697.
|
 |
|
|
|
|
 |
D.A.Calderwood,
Y.Fujioka,
J.M.de Pereda,
B.García-Alvarez,
T.Nakamoto,
B.Margolis,
C.J.McGlade,
R.C.Liddington,
and
M.H.Ginsberg
(2003).
Integrin beta cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling.
|
| |
Proc Natl Acad Sci U S A,
100,
2272-2277.
|
 |
|
|
|
|
 |
G.Tarone,
and
G.Lembo
(2003).
Molecular interplay between mechanical and humoral signalling in cardiac hypertrophy.
|
| |
Trends Mol Med,
9,
376-382.
|
 |
|
|
|
|
 |
I.L.Barsukov,
A.Prescot,
N.Bate,
B.Patel,
D.N.Floyd,
N.Bhanji,
C.R.Bagshaw,
K.Letinic,
G.Di Paolo,
P.De Camilli,
G.C.Roberts,
and
D.R.Critchley
(2003).
Phosphatidylinositol phosphate kinase type 1gamma and beta1-integrin cytoplasmic domain bind to the same region in the talin FERM domain.
|
| |
J Biol Chem,
278,
31202-31209.
|
 |
|
|
|
|
 |
J.H.Wang,
and
M.J.Eck
(2003).
Assembling atomic resolution views of the immunological synapse.
|
| |
Curr Opin Immunol,
15,
286-293.
|
 |
|
|
|
|
 |
K.Ling,
R.L.Doughman,
V.V.Iyer,
A.J.Firestone,
S.F.Bairstow,
D.F.Mosher,
M.D.Schaller,
and
R.A.Anderson
(2003).
Tyrosine phosphorylation of type Igamma phosphatidylinositol phosphate kinase by Src regulates an integrin-talin switch.
|
| |
J Cell Biol,
163,
1339-1349.
|
 |
|
|
|
|
 |
M.A.Travis,
J.D.Humphries,
and
M.J.Humphries
(2003).
An unraveling tale of how integrins are activated from within.
|
| |
Trends Pharmacol Sci,
24,
192-197.
|
 |
|
|
|
|
 |
M.J.Humphries,
P.A.McEwan,
S.J.Barton,
P.A.Buckley,
J.Bella,
and
A.P.Mould
(2003).
Integrin structure: heady advances in ligand binding, but activation still makes the knees wobble.
|
| |
Trends Biochem Sci,
28,
313-320.
|
 |
|
|
|
|
 |
R.C.Liddington,
L.A.Bankston,
and
J.M.de Pereda
(2003).
Cell adhesion: a FERM grasp of membrane dynamics.
|
| |
Curr Biol,
13,
R94-R95.
|
 |
|
|
|
|
 |
R.O.Hynes
(2003).
Structural biology. Changing partners.
|
| |
Science,
300,
755-756.
|
 |
|
|
|
|
 |
S.Tadokoro,
S.J.Shattil,
K.Eto,
V.Tai,
R.C.Liddington,
J.M.de Pereda,
M.H.Ginsberg,
and
D.A.Calderwood
(2003).
Talin binding to integrin beta tails: a final common step in integrin activation.
|
| |
Science,
302,
103-106.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |