|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
Chains A, B:
E.C.?
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nature
419:271-277
(2002)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat.
|
|
X.Bi,
R.A.Corpina,
J.Goldberg.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
COPII-coated vesicles form on the endoplasmic reticulum by the stepwise
recruitment of three cytosolic components: Sar1-GTP to initiate coat formation,
Sec23/24 heterodimer to select SNARE and cargo molecules, and Sec13/31 to induce
coat polymerization and membrane deformation. Crystallographic analysis of the
Saccharomyces cerevisiae Sec23/24-Sar1 complex reveals a bow-tie-shaped
structure, 15 nm long, with a membrane-proximal surface that is concave and
positively charged to conform to the size and acidic-phospholipid composition of
the COPII vesicle. Sec23 and Sar1 form a continuous surface stabilized by a
non-hydrolysable GTP analogue, and Sar1 has rearranged from the GDP conformation
to expose amino-terminal residues that will probably embed in the bilayer. The
GTPase-activating protein (GAP) activity of Sec23 involves an arginine side
chain inserted into the Sar1 active site. These observations establish the
structural basis for GTP-dependent recruitment of a vesicular coat complex, and
for uncoating through coat-controlled GTP hydrolysis.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Figure 1: Structure of the Sec23/24 -Sar1 pre-budding complex.
Ribbon representation is shown as successive 90° rotations.
Sec23 is yellow, Sec24 green and Sar1 red. a, Front view along
the dyad relating the coat subunits, with the membrane-proximal
surface facing forward. b, Side view. The grey line indicates
the curvature of a 60-nm COPII vesicle, drawn to scale. c, Top
view. The three regions of Sar1 that would face the membrane are
labelled C, N and 2
- 3.
|
 |
Figure 3.
Figure 3: Surface features of the Sec23/24 complex a, Molecular
surface coloured according to electrostatic potential50:
negative potential is red and positive potential blue. Sar1
is drawn as a backbone tube in magenta. The three views are
successive 90° rotations around a vertical axis. In the left
image, the membrane-proximal surface faces forwards. b, Surface
of Sec23/24 coloured according to sequence conservation of the
underlying residues in an alignment of Sec23 sequences from six
organisms (human Sec23A, Drosophila melanogaster, Neurospora
crassa, Schizosaccharomyces pombe, Arabidopsis thaliana and
Saccharomyces cerevisiae) and Sec24 sequences from four
organisms (human Sec24A, S. pombe, A. thaliana and S.
cerevisiae). Labels I, II and III indicate three highly
conserved patches (see text for details). The orientations are
the same as in a, with Sar1 omitted.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nature
(2002,
419,
271-277)
copyright 2002.
|
|
| |
Figures were
selected
by the author.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
G.Zanetti,
K.B.Pahuja,
S.Studer,
S.Shim,
and
R.Schekman
(2012).
COPII and the regulation of protein sorting in mammals.
|
| |
Nat Cell Biol,
14,
20-28.
|
 |
|
|
|
|
 |
C.G.Angers,
and
A.J.Merz
(2011).
New links between vesicle coats and Rab-mediated vesicle targeting.
|
| |
Semin Cell Dev Biol,
22,
18-26.
|
 |
|
|
|
|
 |
C.Kodera,
T.Yorimitsu,
A.Nakano,
and
K.Sato
(2011).
Sed4p stimulates Sar1p GTP hydrolysis and promotes limited coat disassembly.
|
| |
Traffic,
12,
591-599.
|
 |
|
|
|
|
 |
C.Lord,
D.Bhandari,
S.Menon,
M.Ghassemian,
D.Nycz,
J.Hay,
P.Ghosh,
and
S.Ferro-Novick
(2011).
Sequential interactions with Sec23 control the direction of vesicle traffic.
|
| |
Nature,
473,
181-186.
|
 |
|
|
|
|
 |
F.Brandizzi
(2011).
Is there a COPII-mediated membrane traffic in chloroplasts?
|
| |
Traffic,
12,
9.
|
 |
|
|
|
|
 |
A.F.Neuwald
(2010).
Bayesian classification of residues associated with protein functional divergence: Arf and Arf-like GTPases.
|
| |
Biol Direct,
5,
66.
|
 |
|
|
|
|
 |
A.Iolascon,
R.Russo,
M.R.Esposito,
R.Asci,
C.Piscopo,
S.Perrotta,
M.Fénéant-Thibault,
L.Garçon,
and
J.Delaunay
(2010).
Molecular analysis of 42 patients with congenital dyserythropoietic anemia type II: new mutations in the SEC23B gene and a search for a genotype-phenotype relationship.
|
| |
Haematologica,
95,
708-715.
|
 |
|
|
|
|
 |
J.H.Hurley,
E.Boura,
L.A.Carlson,
and
B.Różycki
(2010).
Membrane budding.
|
| |
Cell,
143,
875-887.
|
 |
|
|
|
|
 |
J.Merte,
D.Jensen,
K.Wright,
S.Sarsfield,
Y.Wang,
R.Schekman,
and
D.D.Ginty
(2010).
Sec24b selectively sorts Vangl2 to regulate planar cell polarity during neural tube closure.
|
| |
Nat Cell Biol,
12,
41.
|
 |
|
|
|
|
 |
K.E.Routledge,
V.Gupta,
and
W.E.Balch
(2010).
Emergent properties of proteostasis-COPII coupled systems in human health and disease.
|
| |
Mol Membr Biol,
27,
385-397.
|
 |
|
|
|
|
 |
K.R.Long,
Y.Yamamoto,
A.L.Baker,
S.C.Watkins,
C.B.Coyne,
J.F.Conway,
and
M.Aridor
(2010).
Sar1 assembly regulates membrane constriction and ER export.
|
| |
J Cell Biol,
190,
115-128.
|
 |
|
|
|
|
 |
K.Schmidt,
and
D.J.Stephens
(2010).
Cargo loading at the ER.
|
| |
Mol Membr Biol,
27,
398-411.
|
 |
|
|
|
|
 |
M.Anitei,
T.Wassmer,
C.Stange,
and
B.Hoflack
(2010).
Bidirectional transport between the trans-Golgi network and the endosomal system.
|
| |
Mol Membr Biol,
27,
443-456.
|
 |
|
|
|
|
 |
M.Norum,
E.Tång,
T.Chavoshi,
H.Schwarz,
D.Linke,
A.Uv,
and
B.Moussian
(2010).
Trafficking through COPII stabilises cell polarity and drives secretion during Drosophila epidermal differentiation.
|
| |
PLoS One,
5,
e10802.
|
 |
|
|
|
|
 |
R.Buchanan,
A.Kaufman,
L.Kung-Tran,
and
E.A.Miller
(2010).
Genetic analysis of yeast Sec24p mutants suggests cargo binding is not co-operative during ER export.
|
| |
Traffic,
11,
1034-1043.
|
 |
|
|
|
|
 |
S.Sarmah,
A.Barrallo-Gimeno,
D.B.Melville,
J.Topczewski,
L.Solnica-Krezel,
and
E.W.Knapik
(2010).
Sec24D-dependent transport of extracellular matrix proteins is required for zebrafish skeletal morphogenesis.
|
| |
PLoS One,
5,
e10367.
|
 |
|
|
|
|
 |
X.Jian,
M.Cavenagh,
J.M.Gruschus,
P.A.Randazzo,
and
R.A.Kahn
(2010).
Modifications to the C-terminus of Arf1 alter cell functions and protein interactions.
|
| |
Traffic,
11,
732-742.
|
 |
|
|
|
|
 |
A.V.Shnyrova,
V.A.Frolov,
and
J.Zimmerberg
(2009).
Domain-driven morphogenesis of cellular membranes.
|
| |
Curr Biol,
19,
R772-R780.
|
 |
|
|
|
|
 |
B.Zhang
(2009).
Recent developments in the understanding of the combined deficiency of FV and FVIII.
|
| |
Br J Haematol,
145,
15-23.
|
 |
|
|
|
|
 |
C.D.Lee,
and
T.F.Wang
(2009).
The N-terminal domain of Escherichia coli RecA have multiple functions in promoting homologous recombination.
|
| |
J Biomed Sci,
16,
37.
|
 |
|
|
|
|
 |
E.Petsalaki,
A.Stark,
E.García-Urdiales,
and
R.B.Russell
(2009).
Accurate prediction of peptide binding sites on protein surfaces.
|
| |
PLoS Comput Biol,
5,
e1000335.
|
 |
|
|
|
|
 |
E.S.Sevova,
and
J.D.Bangs
(2009).
Streamlined architecture and glycosylphosphatidylinositol-dependent trafficking in the early secretory pathway of African trypanosomes.
|
| |
Mol Biol Cell,
20,
4739-4750.
|
 |
|
|
|
|
 |
K.Schwarz,
A.Iolascon,
F.Verissimo,
N.S.Trede,
W.Horsley,
W.Chen,
B.H.Paw,
K.P.Hopfner,
K.Holzmann,
R.Russo,
M.R.Esposito,
D.Spano,
L.De Falco,
K.Heinrich,
B.Joggerst,
M.T.Rojewski,
S.Perrotta,
J.Denecke,
U.Pannicke,
J.Delaunay,
R.Pepperkok,
and
H.Heimpel
(2009).
Mutations affecting the secretory COPII coat component SEC23B cause congenital dyserythropoietic anemia type II.
|
| |
Nat Genet,
41,
936-940.
|
 |
|
|
|
|
 |
K.V.Tabata,
K.Sato,
T.Ide,
T.Nishizaka,
A.Nakano,
and
H.Noji
(2009).
Visualization of cargo concentration by COPII minimal machinery in a planar lipid membrane.
|
| |
EMBO J,
28,
3279-3289.
|
 |
|
|
|
|
 |
P.Bianchi,
E.Fermo,
C.Vercellati,
C.Boschetti,
W.Barcellini,
A.Iurlo,
A.P.Marcello,
P.G.Righetti,
and
A.Zanella
(2009).
Congenital dyserythropoietic anemia type II (CDAII) is caused by mutations in the SEC23B gene.
|
| |
Hum Mutat,
30,
1292-1298.
|
 |
|
|
|
|
 |
T.Itoh,
and
T.Takenawa
(2009).
Mechanisms of membrane deformation by lipid-binding domains.
|
| |
Prog Lipid Res,
48,
298-305.
|
 |
|
|
|
|
 |
T.J.Pucadyil,
and
S.L.Schmid
(2009).
Conserved functions of membrane active GTPases in coated vesicle formation.
|
| |
Science,
325,
1217-1220.
|
 |
|
|
|
|
 |
T.K.Taneja,
J.Mankouri,
R.Karnik,
S.Kannan,
A.J.Smith,
T.Munsey,
H.B.Christesen,
D.J.Beech,
and
A.Sivaprasadarao
(2009).
Sar1-GTPase-dependent ER exit of KATP channels revealed by a mutation causing congenital hyperinsulinism.
|
| |
Hum Mol Genet,
18,
2400-2413.
|
 |
|
|
|
|
 |
T.Zhang,
S.Li,
Y.Zhang,
C.Zhong,
Z.Lai,
and
J.Ding
(2009).
Crystal structure of the ARL2-GTP-BART complex reveals a novel recognition and binding mode of small GTPase with effector.
|
| |
Structure,
17,
602-610.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Shibata,
J.Hu,
M.M.Kozlov,
and
T.A.Rapoport
(2009).
Mechanisms shaping the membranes of cellular organelles.
|
| |
Annu Rev Cell Dev Biol,
25,
329-354.
|
 |
|
|
|
|
 |
A.Scrima,
C.Thomas,
D.Deaconescu,
and
A.Wittinghofer
(2008).
The Rap-RapGAP complex: GTP hydrolysis without catalytic glutamine and arginine residues.
|
| |
EMBO J,
27,
1145-1153.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.V.Bryksin,
and
P.P.Laktionov
(2008).
Role of glyceraldehyde-3-phosphate dehydrogenase in vesicular transport from golgi apparatus to endoplasmic reticulum.
|
| |
Biochemistry (Mosc),
73,
619-625.
|
 |
|
|
|
|
 |
C.Weimer,
R.Beck,
P.Eckert,
I.Reckmann,
J.Moelleken,
B.Brügger,
and
F.Wieland
(2008).
Differential roles of ArfGAP1, ArfGAP2, and ArfGAP3 in COPI trafficking.
|
| |
J Cell Biol,
183,
725-735.
|
 |
|
|
|
|
 |
F.M.Hughson
(2008).
Both layers of the COPII coat come into view.
|
| |
Cell,
134,
384-385.
|
 |
|
|
|
|
 |
H.Farhan,
M.Weiss,
K.Tani,
R.J.Kaufman,
and
H.P.Hauri
(2008).
Adaptation of endoplasmic reticulum exit sites to acute and chronic increases in cargo load.
|
| |
EMBO J,
27,
2043-2054.
|
 |
|
|
|
|
 |
H.Higashio,
K.Sato,
and
A.Nakano
(2008).
Smy2p Participates in COPII Vesicle Formation Through the Interaction with Sec23p/Sec24p Subcomplex.
|
| |
Traffic,
9,
79-93.
|
 |
|
|
|
|
 |
H.Hughes,
and
D.J.Stephens
(2008).
Assembly, organization, and function of the COPII coat.
|
| |
Histochem Cell Biol,
129,
129-151.
|
 |
|
|
|
|
 |
J.D.Mancias,
and
J.Goldberg
(2008).
Structural basis of cargo membrane protein discrimination by the human COPII coat machinery.
|
| |
EMBO J,
27,
2918-2928.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.C.Lee,
P.A.Moura,
E.A.Miller,
and
D.A.Fidock
(2008).
Plasmodium falciparum Sec24 marks transitional ER that exports a model cargo via a diacidic motif.
|
| |
Mol Microbiol,
68,
1535-1546.
|
 |
|
|
|
|
 |
P.D.Blood,
R.D.Swenson,
and
G.A.Voth
(2008).
Factors influencing local membrane curvature induction by N-BAR domains as revealed by molecular dynamics simulations.
|
| |
Biophys J,
95,
1866-1876.
|
 |
|
|
|
|
 |
S.L.Hanton,
L.Chatre,
L.A.Matheson,
M.Rossi,
M.A.Held,
and
F.Brandizzi
(2008).
Plant Sar1 isoforms with near-identical protein sequences exhibit different localisations and effects on secretion.
|
| |
Plant Mol Biol,
67,
283-294.
|
 |
|
|
|
|
 |
S.M.Stagg,
P.LaPointe,
A.Razvi,
C.Gürkan,
C.S.Potter,
B.Carragher,
and
W.E.Balch
(2008).
Structural basis for cargo regulation of COPII coat assembly.
|
| |
Cell,
134,
474-484.
|
 |
|
|
|
|
 |
S.Veltel,
R.Gasper,
E.Eisenacher,
and
A.Wittinghofer
(2008).
The retinitis pigmentosa 2 gene product is a GTPase-activating protein for Arf-like 3.
|
| |
Nat Struct Mol Biol,
15,
373-380.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
W.J.Brown,
H.Plutner,
D.Drecktrah,
B.L.Judson,
and
W.E.Balch
(2008).
The lysophospholipid acyltransferase antagonist CI-976 inhibits a late step in COPII vesicle budding.
|
| |
Traffic,
9,
786-797.
|
 |
|
|
|
|
 |
A.K.Gillingham,
and
S.Munro
(2007).
The small G proteins of the Arf family and their regulators.
|
| |
Annu Rev Cell Dev Biol,
23,
579-611.
|
 |
|
|
|
|
 |
J.C.Fromme,
M.Ravazzola,
S.Hamamoto,
M.Al-Balwi,
W.Eyaid,
S.A.Boyadjiev,
P.Cosson,
R.Schekman,
and
L.Orci
(2007).
The genetic basis of a craniofacial disease provides insight into COPII coat assembly.
|
| |
Dev Cell,
13,
623-634.
|
 |
|
|
|
|
 |
J.D.Mancias,
and
J.Goldberg
(2007).
The transport signal on Sec22 for packaging into COPII-coated vesicles is a conformational epitope.
|
| |
Mol Cell,
26,
403-414.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.L.Bos,
H.Rehmann,
and
A.Wittinghofer
(2007).
GEFs and GAPs: critical elements in the control of small G proteins.
|
| |
Cell,
129,
865-877.
|
 |
|
|
|
|
 |
L.P.Sun,
J.Seemann,
J.L.Goldstein,
and
M.S.Brown
(2007).
Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders sorting signal in Scap inaccessible to COPII proteins.
|
| |
Proc Natl Acad Sci U S A,
104,
6519-6526.
|
 |
|
|
|
|
 |
M.C.Lee,
and
E.A.Miller
(2007).
Molecular mechanisms of COPII vesicle formation.
|
| |
Semin Cell Dev Biol,
18,
424-434.
|
 |
|
|
|
|
 |
M.Zuzarte,
S.Rinné,
G.Schlichthörl,
A.Schubert,
J.Daut,
and
R.Preisig-Müller
(2007).
A di-acidic sequence motif enhances the surface expression of the potassium channel TASK-3.
|
| |
Traffic,
8,
1093-1100.
|
 |
|
|
|
|
 |
S.Fath,
J.D.Mancias,
X.Bi,
and
J.Goldberg
(2007).
Structure and organization of coat proteins in the COPII cage.
|
| |
Cell,
129,
1325-1336.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Kirchhausen
(2007).
Making COPII coats.
|
| |
Cell,
129,
1251-1252.
|
 |
|
|
|
|
 |
B.Antonny
(2006).
Membrane deformation by protein coats.
|
| |
Curr Opin Cell Biol,
18,
386-394.
|
 |
|
|
|
|
 |
C.Gürkan,
S.M.Stagg,
P.Lapointe,
and
W.E.Balch
(2006).
The COPII cage: unifying principles of vesicle coat assembly.
|
| |
Nat Rev Mol Cell Biol,
7,
727-738.
|
 |
|
|
|
|
 |
C.Smith
(2006).
Structural biology. Two geometric solutions to a transporting problem.
|
| |
Science,
311,
182-183.
|
 |
|
|
|
|
 |
G.Stefano,
L.Renna,
L.Chatre,
S.L.Hanton,
P.Moreau,
C.Hawes,
and
F.Brandizzi
(2006).
In tobacco leaf epidermal cells, the integrity of protein export from the endoplasmic reticulum and of ER export sites depends on active COPI machinery.
|
| |
Plant J,
46,
95.
|
 |
|
|
|
|
 |
J.Béthune,
F.Wieland,
and
J.Moelleken
(2006).
COPI-mediated transport.
|
| |
J Membr Biol,
211,
65-79.
|
 |
|
|
|
|
 |
J.Zimmerberg,
and
M.M.Kozlov
(2006).
How proteins produce cellular membrane curvature.
|
| |
Nat Rev Mol Cell Biol,
7,
9.
|
 |
|
|
|
|
 |
M.R.Lang,
L.A.Lapierre,
M.Frotscher,
J.R.Goldenring,
and
E.W.Knapik
(2006).
Secretory COPII coat component Sec23a is essential for craniofacial chondrocyte maturation.
|
| |
Nat Genet,
38,
1198-1203.
|
 |
|
|
|
|
 |
O.Schlenker,
A.Hendricks,
I.Sinning,
and
K.Wild
(2006).
The structure of the mammalian signal recognition particle (SRP) receptor as prototype for the interaction of small GTPases with Longin domains.
|
| |
J Biol Chem,
281,
8898-8906.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.D.Blood,
and
G.A.Voth
(2006).
Direct observation of Bin/amphiphysin/Rvs (BAR) domain-induced membrane curvature by means of molecular dynamics simulations.
|
| |
Proc Natl Acad Sci U S A,
103,
15068-15072.
|
 |
|
|
|
|
 |
R.A.Kahn,
J.Cherfils,
M.Elias,
R.C.Lovering,
S.Munro,
and
A.Schurmann
(2006).
Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins.
|
| |
J Cell Biol,
172,
645-650.
|
 |
|
|
|
|
 |
S.A.Boyadjiev,
J.C.Fromme,
J.Ben,
S.S.Chong,
C.Nauta,
D.J.Hur,
G.Zhang,
S.Hamamoto,
R.Schekman,
M.Ravazzola,
L.Orci,
and
W.Eyaid
(2006).
Cranio-lenticulo-sutural dysplasia is caused by a SEC23A mutation leading to abnormal endoplasmic-reticulum-to-Golgi trafficking.
|
| |
Nat Genet,
38,
1192-1197.
|
 |
|
|
|
|
 |
T.A.Springer
(2006).
Complement and the multifaceted functions of VWA and integrin I domains.
|
| |
Structure,
14,
1611-1616.
|
 |
|
|
|
|
 |
A.Bielli,
C.J.Haney,
G.Gabreski,
S.C.Watkins,
S.I.Bannykh,
and
M.Aridor
(2005).
Regulation of Sar1 NH2 terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission.
|
| |
J Cell Biol,
171,
919-924.
|
 |
|
|
|
|
 |
G.Drin,
and
B.Antonny
(2005).
Cell biology: helices sculpt membrane.
|
| |
Nature,
437,
1247-1249.
|
 |
|
|
|
|
 |
H.T.McMahon,
and
J.L.Gallop
(2005).
Membrane curvature and mechanisms of dynamic cell membrane remodelling.
|
| |
Nature,
438,
590-596.
|
 |
|
|
|
|
 |
I.Leiros,
J.Timmins,
D.R.Hall,
and
S.McSweeney
(2005).
Crystal structure and DNA-binding analysis of RecO from Deinococcus radiodurans.
|
| |
EMBO J,
24,
906-918.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.C.Amor,
J.Swails,
X.Zhu,
C.R.Roy,
H.Nagai,
A.Ingmundson,
X.Cheng,
and
R.A.Kahn
(2005).
The structure of RalF, an ADP-ribosylation factor guanine nucleotide exchange factor from Legionella pneumophila, reveals the presence of a cap over the active site.
|
| |
J Biol Chem,
280,
1392-1400.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.D.Mancias,
and
J.Goldberg
(2005).
Exiting the endoplasmic reticulum.
|
| |
Traffic,
6,
278-285.
|
 |
|
|
|
|
 |
K.Sato,
and
A.Nakano
(2005).
Dissection of COPII subunit-cargo assembly and disassembly kinetics during Sar1p-GTP hydrolysis.
|
| |
Nat Struct Mol Biol,
12,
167-174.
|
 |
|
|
|
|
 |
M.C.Lee,
L.Orci,
S.Hamamoto,
E.Futai,
M.Ravazzola,
and
R.Schekman
(2005).
Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle.
|
| |
Cell,
122,
605-617.
|
 |
|
|
|
|
 |
M.M.Hussain,
S.Fatma,
X.Pan,
and
J.Iqbal
(2005).
Intestinal lipoprotein assembly.
|
| |
Curr Opin Lipidol,
16,
281-285.
|
 |
|
|
|
|
 |
S.Grimmer,
M.Ying,
S.Wälchli,
B.van Deurs,
and
K.Sandvig
(2005).
Golgi vesiculation induced by cholesterol occurs by a dynamin- and cPLA2-dependent mechanism.
|
| |
Traffic,
6,
144-156.
|
 |
|
|
|
|
 |
W.Antonin,
and
I.W.Mattaj
(2005).
Nuclear pore complexes: round the bend?
|
| |
Nat Cell Biol,
7,
10-12.
|
 |
|
|
|
|
 |
B.J.Peter,
H.M.Kent,
I.G.Mills,
Y.Vallis,
P.J.Butler,
P.R.Evans,
and
H.T.McMahon
(2004).
BAR domains as sensors of membrane curvature: the amphiphysin BAR structure.
|
| |
Science,
303,
495-499.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.C.Shoulders,
D.J.Stephens,
and
B.Jones
(2004).
The intracellular transport of chylomicrons requires the small GTPase, Sar1b.
|
| |
Curr Opin Lipidol,
15,
191-197.
|
 |
|
|
|
|
 |
H.T.McMahon,
and
I.G.Mills
(2004).
COP and clathrin-coated vesicle budding: different pathways, common approaches.
|
| |
Curr Opin Cell Biol,
16,
379-391.
|
 |
|
|
|
|
 |
J.C.Kagan,
M.P.Stein,
M.Pypaert,
and
C.R.Roy
(2004).
Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle.
|
| |
J Exp Med,
199,
1201-1211.
|
 |
|
|
|
|
 |
L.C.Bickford,
E.Mossessova,
and
J.Goldberg
(2004).
A structural view of the COPII vesicle coat.
|
| |
Curr Opin Struct Biol,
14,
147-153.
|
 |
|
|
|
|
 |
M.C.Lee,
E.A.Miller,
J.Goldberg,
L.Orci,
and
R.Schekman
(2004).
Bi-directional protein transport between the ER and Golgi.
|
| |
Annu Rev Cell Dev Biol,
20,
87.
|
 |
|
|
|
|
 |
M.C.Lee,
and
R.Schekman
(2004).
Cell biology. BAR domains go on a bender.
|
| |
Science,
303,
479-480.
|
 |
|
|
|
|
 |
M.Ohi,
Y.Li,
Y.Cheng,
and
T.Walz
(2004).
Negative Staining and Image Classification - Powerful Tools in Modern Electron Microscopy.
|
| |
Biol Proced Online,
6,
23-34.
|
 |
|
|
|
|
 |
X.Wang,
J.Matteson,
Y.An,
B.Moyer,
J.S.Yoo,
S.Bannykh,
I.A.Wilson,
J.R.Riordan,
and
W.E.Balch
(2004).
COPII-dependent export of cystic fibrosis transmembrane conductance regulator from the ER uses a di-acidic exit code.
|
| |
J Cell Biol,
167,
65-74.
|
 |
|
|
|
|
 |
B.Antonny,
P.Gounon,
R.Schekman,
and
L.Orci
(2003).
Self-assembly of minimal COPII cages.
|
| |
EMBO Rep,
4,
419-424.
|
 |
|
|
|
|
 |
B.Jones,
E.L.Jones,
S.A.Bonney,
H.N.Patel,
A.R.Mensenkamp,
S.Eichenbaum-Voline,
M.Rudling,
U.Myrdal,
G.Annesi,
S.Naik,
N.Meadows,
A.Quattrone,
S.A.Islam,
R.P.Naoumova,
B.Angelin,
R.Infante,
E.Levy,
C.C.Roy,
P.S.Freemont,
J.Scott,
and
C.C.Shoulders
(2003).
Mutations in a Sar1 GTPase of COPII vesicles are associated with lipid absorption disorders.
|
| |
Nat Genet,
34,
29-31.
|
 |
|
|
|
|
 |
B.Panic,
O.Perisic,
D.B.Veprintsev,
R.L.Williams,
and
S.Munro
(2003).
Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the Golgi apparatus.
|
| |
Mol Cell,
12,
863-874.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Barlowe
(2003).
Molecular recognition of cargo by the COPII complex: a most accommodating coat.
|
| |
Cell,
114,
395-397.
|
 |
|
|
|
|
 |
C.G.Giraudo,
and
H.J.Maccioni
(2003).
Endoplasmic reticulum export of glycosyltransferases depends on interaction of a cytoplasmic dibasic motif with Sar1.
|
| |
Mol Biol Cell,
14,
3753-3766.
|
 |
|
|
|
|
 |
E.A.Miller,
T.H.Beilharz,
P.N.Malkus,
M.C.Lee,
S.Hamamoto,
L.Orci,
and
R.Schekman
(2003).
Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles.
|
| |
Cell,
114,
497-509.
|
 |
|
|
|
|
 |
E.Mossessova,
L.C.Bickford,
and
J.Goldberg
(2003).
SNARE selectivity of the COPII coat.
|
| |
Cell,
114,
483-495.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.S.Bonifacino,
and
J.Lippincott-Schwartz
(2003).
Coat proteins: shaping membrane transport.
|
| |
Nat Rev Mol Cell Biol,
4,
409-414.
|
 |
|
|
|
|
 |
K.Farsad,
and
P.De Camilli
(2003).
Mechanisms of membrane deformation.
|
| |
Curr Opin Cell Biol,
15,
372-381.
|
 |
|
|
|
|
 |
P.Pathre,
K.Shome,
A.Blumental-Perry,
A.Bielli,
C.J.Haney,
S.Alber,
S.C.Watkins,
G.Romero,
and
M.Aridor
(2003).
Activation of phospholipase D by the small GTPase Sar1p is required to support COPII assembly and ER export.
|
| |
EMBO J,
22,
4059-4069.
|
 |
|
|
|
|
 |
T.Schwartz,
and
G.Blobel
(2003).
Structural basis for the function of the beta subunit of the eukaryotic signal recognition particle receptor.
|
| |
Cell,
112,
793-803.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.Haucke
(2003).
Vesicle budding: a coat for the COPs.
|
| |
Trends Cell Biol,
13,
59-60.
|
 |
|
|
|
|
 |
P.Malkus,
F.Jiang,
and
R.Schekman
(2002).
Concentrative sorting of secretory cargo proteins into COPII-coated vesicles.
|
| |
J Cell Biol,
159,
915-921.
|
 |
|
|
|
|
 |
S.Otte,
and
C.Barlowe
(2002).
The Erv41p-Erv46p complex: multiple export signals are required in trans for COPII-dependent transport from the ER.
|
| |
EMBO J,
21,
6095-6104.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |