|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Science
297:1176-1179
(2002)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structures of glycoprotein Ibalpha and its complex with von Willebrand factor A1 domain.
|
|
E.G.Huizinga,
S.Tsuji,
R.A.Romijn,
M.E.Schiphorst,
P.G.de Groot,
J.J.Sixma,
P.Gros.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Transient interactions of platelet-receptor glycoprotein Ibalpha (GpIbalpha) and
the plasma protein von Willebrand factor (VWF) reduce platelet velocity at sites
of vascular damage and play a role in haemostasis and thrombosis. Here we
present structures of the GpIbalpha amino-terminal domain and its complex with
the VWF domain A1. In the complex, GpIbalpha wraps around one side of A1,
providing two contact areas bridged by an area of solvated charge interaction.
The structures explain the effects of gain-of-function mutations related to
bleeding disorders and provide a model for shear-induced activation. These
detailed insights into the initial interactions in platelet adhesion are
relevant to the development of antithrombotic drugs.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Fig. 2. Stereo representation of structural changes at the
NH[2]- and COOH-terminal side of VWF-A1. The bottom face of the
A1 domain, as observed in the complex with GpIb , is shown
in space-filling representation with the NH[2]- and
COOH-terminal peptides shown as C -traces in
yellow. The position of the finger of
GpIb is given
by a C -trace in
green. The C -traces of
the NH[2]- and COOH-terminal peptides of the uncomplexed,
wild-type (wt) A1 domain (7) are shown in red. Residues with
known gain-of-function mutations yielding a type 2B von
Willebrand disease phenotype are shown either in ball-and-stick
representation in the wt NH[2]- or COOH-terminal peptides or
colored blue in the space-filling model of the bottom face. In
full-length VWF, flanking peptides of A1 possibly shield the
binding site of the finger of
GpIb .
|
 |
Figure 3.
Fig. 3. Electrostatic surface potentials of the A1 domain of
VWF and GpIb .
Potentials were calculated for the individual molecules. The
surface is colored blue for potentials > 6 kT/e and red for
potentials <-6 kT/e. The C -traces of
the partner molecules in the complex are shown in white for
clarity. The areas of large electrostatic potentials at the
interface of A1 and GpIb coincide
with the region of loose, solvent-mediated contacts between the
two molecules. Calculations were performed with GRASP (30).
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from the AAAs:
Science
(2002,
297,
1176-1179)
copyright 2002.
|
|
| |
Figures were
selected
by the author.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
I.Botos,
D.M.Segal,
and
D.R.Davies
(2011).
The Structural Biology of Toll-like Receptors.
|
| |
Structure,
19,
447-459.
|
 |
|
|
|
|
 |
J.M.Cosemans,
S.E.Schols,
L.Stefanini,
S.de Witt,
M.A.Feijge,
K.Hamulyák,
H.Deckmyn,
W.Bergmeier,
and
J.W.Heemskerk
(2011).
Key role of glycoprotein Ib/V/IX and von Willebrand factor in platelet activation-dependent fibrin formation at low shear flow.
|
| |
Blood,
117,
651-660.
|
 |
|
|
|
|
 |
M.C.Berndt,
and
R.K.Andrews
(2011).
Thrombotic thrombocytopenic purpura: reducing the risk?
|
| |
J Clin Invest,
121,
522-524.
|
 |
|
|
|
|
 |
M.Semavina,
N.Saha,
M.V.Kolev,
Y.Goldgur,
R.J.Giger,
J.P.Himanen,
and
D.B.Nikolov
(2011).
Crystal structure of the Nogo-receptor-2.
|
| |
Protein Sci,
20,
684-689.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
V.H.Flood,
J.C.Gill,
P.A.Morateck,
P.A.Christopherson,
K.D.Friedman,
S.L.Haberichter,
R.G.Hoffmann,
and
R.R.Montgomery
(2011).
Gain-of-function GPIb ELISA assay for VWF activity in the Zimmerman Program for the Molecular and Clinical Biology of VWD.
|
| |
Blood,
117,
e67-e74.
|
 |
|
|
|
|
 |
C.Firbas,
J.M.Siller-Matula,
and
B.Jilma
(2010).
Targeting von Willebrand factor and platelet glycoprotein Ib receptor.
|
| |
Expert Rev Cardiovasc Ther,
8,
1689-1701.
|
 |
|
|
|
|
 |
C.Ravanat,
C.Strassel,
B.Hechler,
S.Schuhler,
G.Chicanne,
B.Payrastre,
C.Gachet,
and
F.Lanza
(2010).
A central role of GPIb-IX in the procoagulant function of platelets that is independent of the 45-kDa GPIbalpha N-terminal extracellular domain.
|
| |
Blood,
116,
1157-1164.
|
 |
|
|
|
|
 |
E.E.Gardiner,
J.F.Arthur,
Y.Shen,
D.Karunakaran,
L.A.Moore,
J.S.Am Esch,
R.K.Andrews,
and
M.C.Berndt
(2010).
GPIbalpha-selective activation of platelets induces platelet signaling events comparable to GPVI activation events.
|
| |
Platelets,
21,
244-252.
|
 |
|
|
|
|
 |
J.Kim,
C.Z.Zhang,
X.Zhang,
and
T.A.Springer
(2010).
A mechanically stabilized receptor-ligand flex-bond important in the vasculature.
|
| |
Nature,
466,
992-995.
|
 |
|
|
|
|
 |
L.Deng,
C.A.Velikovsky,
G.Xu,
L.M.Iyer,
S.Tasumi,
M.C.Kerzic,
M.F.Flajnik,
L.Aravind,
Z.Pancer,
and
R.A.Mariuzza
(2010).
A structural basis for antigen recognition by the T cell-like lymphocytes of sea lamprey.
|
| |
Proc Natl Acad Sci U S A,
107,
13408-13413.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.P.McEver,
and
C.Zhu
(2010).
Rolling cell adhesion.
|
| |
Annu Rev Cell Dev Biol,
26,
363-396.
|
 |
|
|
|
|
 |
T.Thijs,
B.P.Nuyttens,
H.Deckmyn,
and
K.Broos
(2010).
Platelet physiology and antiplatelet agents.
|
| |
Clin Chem Lab Med,
48,
S3-13.
|
 |
|
|
|
|
 |
V.H.Flood,
J.C.Gill,
P.A.Morateck,
P.A.Christopherson,
K.D.Friedman,
S.L.Haberichter,
B.R.Branchford,
R.G.Hoffmann,
T.C.Abshire,
J.A.Di Paola,
W.K.Hoots,
C.Leissinger,
J.M.Lusher,
M.V.Ragni,
A.D.Shapiro,
and
R.R.Montgomery
(2010).
Common VWF exon 28 polymorphisms in African Americans affecting the VWF activity assay by ristocetin cofactor.
|
| |
Blood,
116,
280-286.
|
 |
|
|
|
|
 |
W.Chen,
and
C.Zhu
(2010).
A model for single-substrate trimolecular enzymatic kinetics.
|
| |
Biophys J,
98,
1957-1965.
|
 |
|
|
|
|
 |
A.B.Federici,
P.M.Mannucci,
G.Castaman,
L.Baronciani,
P.Bucciarelli,
M.T.Canciani,
A.Pecci,
P.J.Lenting,
and
P.G.De Groot
(2009).
Clinical and molecular predictors of thrombocytopenia and risk of bleeding in patients with von Willebrand disease type 2B: a cohort study of 67 patients.
|
| |
Blood,
113,
526-534.
|
 |
|
|
|
|
 |
A.B.Herr,
and
R.W.Farndale
(2009).
Structural insights into the interactions between platelet receptors and fibrillar collagen.
|
| |
J Biol Chem,
284,
19781-19785.
|
 |
|
|
|
|
 |
A.L.Sørensen,
V.Rumjantseva,
S.Nayeb-Hashemi,
H.Clausen,
J.H.Hartwig,
H.H.Wandall,
and
K.M.Hoffmeister
(2009).
Role of sialic acid for platelet life span: exposure of beta-galactose results in the rapid clearance of platelets from the circulation by asialoglycoprotein receptor-expressing liver macrophages and hepatocytes.
|
| |
Blood,
114,
1645-1654.
|
 |
|
|
|
|
 |
A.T.Nurden,
A.B.Federici,
and
P.Nurden
(2009).
Altered megakaryocytopoiesis in von Willebrand type 2B disease.
|
| |
J Thromb Haemost,
7,
277-281.
|
 |
|
|
|
|
 |
C.A.Velikovsky,
L.Deng,
S.Tasumi,
L.M.Iyer,
M.C.Kerzic,
L.Aravind,
Z.Pancer,
and
R.A.Mariuzza
(2009).
Structure of a lamprey variable lymphocyte receptor in complex with a protein antigen.
|
| |
Nat Struct Mol Biol,
16,
725-730.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Dunois-Lardé,
C.Capron,
S.Fichelson,
T.Bauer,
E.Cramer-Bordé,
and
D.Baruch
(2009).
Exposure of human megakaryocytes to high shear rates accelerates platelet production.
|
| |
Blood,
114,
1875-1883.
|
 |
|
|
|
|
 |
C.W.Ward,
and
M.C.Lawrence
(2009).
Ligand-induced activation of the insulin receptor: a multi-step process involving structural changes in both the ligand and the receptor.
|
| |
Bioessays,
31,
422-434.
|
 |
|
|
|
|
 |
D.Lillicrap
(2009).
Genotype/phenotype association in von Willebrand disease: is the glass half full or empty?
|
| |
J Thromb Haemost,
7,
65-70.
|
 |
|
|
|
|
 |
E.Seiradake,
A.C.von Philipsborn,
M.Henry,
M.Fritz,
H.Lortat-Jacob,
M.Jamin,
W.Hemrika,
M.Bastmeyer,
S.Cusack,
and
A.A.McCarthy
(2009).
Structure and functional relevance of the Slit2 homodimerization domain.
|
| |
EMBO Rep,
10,
736-741.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.Santizo,
E.Zenteno,
S.Pina-Canseco,
P.Hernandez-Cruz,
M.M.Cruz,
L.P.Mayoral,
E.Pérez-Campos,
and
R.Martínez-Cruz
(2009).
Lectin activity of the coagulation factor VIII/von Willebrand complex.
|
| |
Tohoku J Exp Med,
217,
209-215.
|
 |
|
|
|
|
 |
I.Botos,
L.Liu,
Y.Wang,
D.M.Segal,
and
D.R.Davies
(2009).
The toll-like receptor 3:dsRNA signaling complex.
|
| |
Biochim Biophys Acta,
1789,
667-674.
|
 |
|
|
|
|
 |
J.A.López,
and
A.Munday
(2009).
The proof is in the crystal.
|
| |
Blood,
114,
4757-4758.
|
 |
|
|
|
|
 |
J.L.Diener,
H.A.Daniel Lagassé,
D.Duerschmied,
Y.Merhi,
J.F.Tanguay,
R.Hutabarat,
J.Gilbert,
D.D.Wagner,
and
R.Schaub
(2009).
Inhibition of von Willebrand factor-mediated platelet activation and thrombosis by the anti-von Willebrand factor A1-domain aptamer ARC1779.
|
| |
J Thromb Haemost,
7,
1155-1162.
|
 |
|
|
|
|
 |
K.L.Hindle,
J.Bella,
and
S.C.Lovell
(2009).
Quantitative analysis and prediction of curvature in leucine-rich repeat proteins.
|
| |
Proteins,
77,
342-358.
|
 |
|
|
|
|
 |
L.A.Robak,
K.Venkatesh,
H.Lee,
S.J.Raiker,
Y.Duan,
J.Lee-Osbourne,
T.Hofer,
R.G.Mage,
C.Rader,
and
R.J.Giger
(2009).
Molecular basis of the interactions of the Nogo-66 receptor and its homolog NgR2 with myelin-associated glycoprotein: development of NgROMNI-Fc, a novel antagonist of CNS myelin inhibition.
|
| |
J Neurosci,
29,
5768-5783.
|
 |
|
|
|
|
 |
M.Auton,
E.Sedlák,
J.Marek,
T.Wu,
C.Zhu,
and
M.A.Cruz
(2009).
Changes in thermodynamic stability of von Willebrand factor differentially affect the force-dependent binding to platelet GPIbalpha.
|
| |
Biophys J,
97,
618-627.
|
 |
|
|
|
|
 |
P.A.McEwan,
R.K.Andrews,
and
J.Emsley
(2009).
Glycoprotein Ib{alpha} inhibitor complex structure reveals a combined steric and allosteric mechanism of von Willebrand factor antagonism.
|
| |
Blood,
114,
4883-4885.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.H.Huang,
D.H.Fremont,
J.L.Diener,
R.G.Schaub,
and
J.E.Sadler
(2009).
A structural explanation for the antithrombotic activity of ARC1172, a DNA aptamer that binds von Willebrand factor domain A1.
|
| |
Structure,
17,
1476-1484.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.C.White-Adams,
M.A.Berny,
E.I.Tucker,
J.M.Gertz,
D.Gailani,
R.T.Urbanus,
P.G.de Groot,
A.Gruber,
and
O.J.McCarty
(2009).
Identification of coagulation factor XI as a ligand for platelet apolipoprotein E receptor 2 (ApoER2).
|
| |
Arterioscler Thromb Vasc Biol,
29,
1602-1607.
|
 |
|
|
|
|
 |
T.Szanto,
K.Vanhoorelbeke,
G.Toth,
A.Vandenbulcke,
J.Toth,
W.Noppe,
H.Deckmyn,
and
J.Harsfalvi
(2009).
Identification of a VWF peptide antagonist that blocks platelet adhesion under high shear conditions by selectively inhibiting the VWF-collagen interaction.
|
| |
J Thromb Haemost,
7,
1680-1687.
|
 |
|
|
|
|
 |
W.D.Haffey,
O.Mikhaylova,
J.Meller,
Y.Yi,
K.D.Greis,
and
M.F.Czyzyk-Krzeska
(2009).
iTRAQ proteomic identification of pVHL-dependent and -independent targets of Egln1 prolyl hydroxylase knockdown in renal carcinoma cells.
|
| |
Adv Enzyme Regul,
49,
121-132.
|
 |
|
|
|
|
 |
X.Mo,
N.X.Nguyen,
P.A.McEwan,
X.Zheng,
J.A.López,
J.Emsley,
and
R.Li
(2009).
Binding of platelet glycoprotein Ibbeta through the convex surface of leucine-rich repeats domain of glycoprotein IX.
|
| |
J Thromb Haemost,
7,
1533-1540.
|
 |
|
|
|
|
 |
Z.M.Ruggeri
(2009).
Platelet adhesion under flow.
|
| |
Microcirculation,
16,
58-83.
|
 |
|
|
|
|
 |
B.W.Han,
B.R.Herrin,
M.D.Cooper,
and
I.A.Wilson
(2008).
Antigen recognition by variable lymphocyte receptors.
|
| |
Science,
321,
1834-1837.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Ghevaert,
A.Salsmann,
N.A.Watkins,
E.Schaffner-Reckinger,
A.Rankin,
S.F.Garner,
J.Stephens,
G.A.Smith,
N.Debili,
W.Vainchenker,
P.G.de Groot,
J.A.Huntington,
M.Laffan,
N.Kieffer,
and
W.H.Ouwehand
(2008).
A nonsynonymous SNP in the ITGB3 gene disrupts the conserved membrane-proximal cytoplasmic salt bridge in the alphaIIbbeta3 integrin and cosegregates dominantly with abnormal proplatelet formation and macrothrombocytopenia.
|
| |
Blood,
111,
3407-3414.
|
 |
|
|
|
|
 |
C.Weeterings,
P.G.de Groot,
J.Adelmeijer,
and
T.Lisman
(2008).
The glycoprotein Ib-IX-V complex contributes to tissue factor-independent thrombin generation by recombinant factor VIIa on the activated platelet surface.
|
| |
Blood,
112,
3227-3233.
|
 |
|
|
|
|
 |
E.V.Sokurenko,
V.Vogel,
and
W.E.Thomas
(2008).
Catch-bond mechanism of force-enhanced adhesion: counterintuitive, elusive, but ... widespread?
|
| |
Cell Host Microbe,
4,
314-323.
|
 |
|
|
|
|
 |
H.Park,
J.Huxley-Jones,
R.P.Boot-Handford,
P.N.Bishop,
T.K.Attwood,
and
J.Bella
(2008).
LRRCE: a leucine-rich repeat cysteine capping motif unique to the chordate lineage.
|
| |
BMC Genomics,
9,
599.
|
 |
|
|
|
|
 |
J.A.Guerrero,
G.Shafirstein,
S.Russell,
K.I.Varughese,
T.Kanaji,
J.Liu,
T.K.Gartner,
W.Bäumler,
G.E.Jarvis,
and
J.Ware
(2008).
In vivo relevance for platelet glycoprotein Ibalpha residue Tyr276 in thrombus formation.
|
| |
J Thromb Haemost,
6,
684-691.
|
 |
|
|
|
|
 |
J.A.Peterson,
T.N.Nelson,
A.J.Kanack,
and
R.H.Aster
(2008).
Fine specificity of drug-dependent antibodies reactive with a restricted domain of platelet GPIIIA.
|
| |
Blood,
111,
1234-1239.
|
 |
|
|
|
|
 |
J.Chen,
K.Tan,
H.Zhou,
H.F.Lo,
D.T.Roux,
R.C.Liddington,
and
T.G.Diacovo
(2008).
Modifying murine von Willebrand factor A1 domain for in vivo assessment of human platelet therapies.
|
| |
Nat Biotechnol,
26,
114-119.
|
 |
|
|
|
|
 |
J.Lou,
and
C.Zhu
(2008).
Flow induces loop-to-beta-hairpin transition on the beta-switch of platelet glycoprotein Ib alpha.
|
| |
Proc Natl Acad Sci U S A,
105,
13847-13852.
|
 |
|
|
|
|
 |
L.J.Suva,
E.Hartman,
J.D.Dilley,
S.Russell,
N.S.Akel,
R.A.Skinner,
W.R.Hogue,
U.Budde,
K.I.Varughese,
T.Kanaji,
and
J.Ware
(2008).
Platelet dysfunction and a high bone mass phenotype in a murine model of platelet-type von Willebrand disease.
|
| |
Am J Pathol,
172,
430-439.
|
 |
|
|
|
|
 |
M.Bruysters,
M.Verhoef-Post,
and
A.P.Themmen
(2008).
Asp330 and Tyr331 in the C-terminal cysteine-rich region of the luteinizing hormone receptor are key residues in hormone-induced receptor activation.
|
| |
J Biol Chem,
283,
25821-25828.
|
 |
|
|
|
|
 |
N.A.Mody,
and
M.R.King
(2008).
Platelet adhesive dynamics. Part II: high shear-induced transient aggregation via GPIbalpha-vWF-GPIbalpha bridging.
|
| |
Biophys J,
95,
2556-2574.
|
 |
|
|
|
|
 |
Q.R.Fan,
and
W.A.Hendrickson
(2008).
Comparative structural analysis of the binding domain of follicle stimulating hormone receptor.
|
| |
Proteins,
72,
393-401.
|
 |
|
|
|
|
 |
R.K.Andrews,
and
M.C.Berndt
(2008).
Platelet adhesion: a game of catch and release.
|
| |
J Clin Invest,
118,
3009-3011.
|
 |
|
|
|
|
 |
R.T.Urbanus,
M.T.Pennings,
R.H.Derksen,
and
P.G.de Groot
(2008).
Platelet activation by dimeric beta2-glycoprotein I requires signaling via both glycoprotein Ibalpha and apolipoprotein E receptor 2'.
|
| |
J Thromb Haemost,
6,
1405-1412.
|
 |
|
|
|
|
 |
S.Z.Luo,
and
R.Li
(2008).
Specific heteromeric association of four transmembrane peptides derived from platelet glycoprotein Ib-IX complex.
|
| |
J Mol Biol,
382,
448-457.
|
 |
|
|
|
|
 |
T.Yago,
J.Lou,
T.Wu,
J.Yang,
J.J.Miner,
L.Coburn,
J.A.López,
M.A.Cruz,
J.F.Dong,
L.V.McIntire,
R.P.McEver,
and
C.Zhu
(2008).
Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF.
|
| |
J Clin Invest,
118,
3195-3207.
|
 |
|
|
|
|
 |
W.L.Nichols,
M.B.Hultin,
A.H.James,
M.J.Manco-Johnson,
R.R.Montgomery,
T.L.Ortel,
M.E.Rick,
J.E.Sadler,
M.Weinstein,
and
B.P.Yawn
(2008).
von Willebrand disease (VWD): evidence-based diagnosis and management guidelines, the National Heart, Lung, and Blood Institute (NHLBI) Expert Panel report (USA).
|
| |
Haemophilia,
14,
171-232.
|
 |
|
|
|
|
 |
X.Mo,
S.Z.Luo,
A.D.Munday,
W.Sun,
M.C.Berndt,
J.A.López,
J.F.Dong,
and
R.Li
(2008).
The membrane-proximal intermolecular disulfide bonds in glycoprotein Ib influence receptor binding to von Willebrand factor.
|
| |
J Thromb Haemost,
6,
1789-1795.
|
 |
|
|
|
|
 |
Z.Chen,
J.Lou,
C.Zhu,
and
K.Schulten
(2008).
Flow-induced structural transition in the beta-switch region of glycoprotein Ib.
|
| |
Biophys J,
95,
1303-1313.
|
 |
|
|
|
|
 |
A.Krisko,
and
C.Etchebest
(2007).
Theoretical model of human apolipoprotein B100 tertiary structure.
|
| |
Proteins,
66,
342-358.
|
 |
|
|
|
|
 |
C.Morlot,
N.M.Thielens,
R.B.Ravelli,
W.Hemrika,
R.A.Romijn,
P.Gros,
S.Cusack,
and
A.A.McCarthy
(2007).
Structural insights into the Slit-Robo complex.
|
| |
Proc Natl Acad Sci U S A,
104,
14923-14928.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Morlot,
W.Hemrika,
R.A.Romijn,
P.Gros,
S.Cusack,
and
A.A.McCarthy
(2007).
Production of Slit2 LRR domains in mammalian cells for structural studies and the structure of human Slit2 domain 3.
|
| |
Acta Crystallogr D Biol Crystallogr,
63,
961-968.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Puett,
Y.Li,
G.DeMars,
K.Angelova,
and
F.Fanelli
(2007).
A functional transmembrane complex: the luteinizing hormone receptor with bound ligand and G protein.
|
| |
Mol Cell Endocrinol,
260,
126-136.
|
 |
|
|
|
|
 |
E.Andersen-Nissen,
K.D.Smith,
R.Bonneau,
R.K.Strong,
and
A.Aderem
(2007).
A conserved surface on Toll-like receptor 5 recognizes bacterial flagellin.
|
| |
J Exp Med,
204,
393-403.
|
 |
|
|
|
|
 |
E.Groot,
P.G.de Groot,
R.Fijnheer,
and
P.J.Lenting
(2007).
The presence of active von Willebrand factor under various pathological conditions.
|
| |
Curr Opin Hematol,
14,
284-289.
|
 |
|
|
|
|
 |
F.P.Davis,
D.T.Barkan,
N.Eswar,
J.H.McKerrow,
and
A.Sali
(2007).
Host pathogen protein interactions predicted by comparative modeling.
|
| |
Protein Sci,
16,
2585-2596.
|
 |
|
|
|
|
 |
I.B.Rogozin,
L.M.Iyer,
L.Liang,
G.V.Glazko,
V.G.Liston,
Y.I.Pavlov,
L.Aravind,
and
Z.Pancer
(2007).
Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID-APOBEC family cytosine deaminase.
|
| |
Nat Immunol,
8,
647-656.
|
 |
|
|
|
|
 |
J.Dolan,
K.Walshe,
S.Alsbury,
K.Hokamp,
S.O'keeffe,
T.Okafuji,
S.F.Miller,
G.Tear,
and
K.J.Mitchell
(2007).
The extracellular Leucine-Rich Repeat superfamily; a comparative survey and analysis of evolutionary relationships and expression patterns.
|
| |
BMC Genomics,
8,
320.
|
 |
|
|
|
|
 |
J.J.Hulstein,
P.J.Lenting,
B.de Laat,
R.H.Derksen,
R.Fijnheer,
and
P.G.de Groot
(2007).
beta2-Glycoprotein I inhibits von Willebrand factor dependent platelet adhesion and aggregation.
|
| |
Blood,
110,
1483-1491.
|
 |
|
|
|
|
 |
J.Laurén,
F.Hu,
J.Chin,
J.Liao,
M.S.Airaksinen,
and
S.M.Strittmatter
(2007).
Characterization of myelin ligand complexes with neuronal Nogo-66 receptor family members.
|
| |
J Biol Chem,
282,
5715-5725.
|
 |
|
|
|
|
 |
M.T.Pennings,
R.H.Derksen,
M.van Lummel,
J.Adelmeijer,
K.VanHoorelbeke,
R.T.Urbanus,
T.Lisman,
and
P.G.de Groot
(2007).
Platelet adhesion to dimeric beta-glycoprotein I under conditions of flow is mediated by at least two receptors: glycoprotein Ibalpha and apolipoprotein E receptor 2'.
|
| |
J Thromb Haemost,
5,
369-377.
|
 |
|
|
|
|
 |
N.Matsushima,
T.Tanaka,
P.Enkhbayar,
T.Mikami,
M.Taga,
K.Yamada,
and
Y.Kuroki
(2007).
Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors.
|
| |
BMC Genomics,
8,
124.
|
 |
|
|
|
|
 |
N.Rosenberg,
S.Lalezari,
M.Landau,
B.Shenkman,
U.Seligsohn,
and
S.Izraeli
(2007).
Trp207Gly in platelet glycoprotein Ibalpha is a novel mutation that disrupts the connection between the leucine-rich repeat domain and the disulfide loop structure and causes Bernard-Soulier syndrome.
|
| |
J Thromb Haemost,
5,
378-386.
|
 |
|
|
|
|
 |
Q.R.Fan,
and
W.A.Hendrickson
(2007).
Assembly and structural characterization of an authentic complex between human follicle stimulating hormone and a hormone-binding ectodomain of its receptor.
|
| |
Mol Cell Endocrinol,
260,
73-82.
|
 |
|
|
|
|
 |
S.M.Serrano,
D.Wang,
J.D.Shannon,
A.F.Pinto,
R.K.Polanowska-Grabowska,
and
J.W.Fox
(2007).
Interaction of the cysteine-rich domain of snake venom metalloproteinases with the A1 domain of von Willebrand factor promotes site-specific proteolysis of von Willebrand factor and inhibition of von Willebrand factor-mediated platelet aggregation.
|
| |
FEBS J,
274,
3611-3621.
|
 |
|
|
|
|
 |
S.Z.Luo,
X.Mo,
V.Afshar-Kharghan,
S.Srinivasan,
J.A.López,
and
R.Li
(2007).
Glycoprotein Ibalpha forms disulfide bonds with 2 glycoprotein Ibbeta subunits in the resting platelet.
|
| |
Blood,
109,
603-609.
|
 |
|
|
|
|
 |
T.Huyton,
J.Rossjohn,
and
M.Wilce
(2007).
Toll-like receptors: structural pieces of a curve-shaped puzzle.
|
| |
Immunol Cell Biol,
85,
406-410.
|
 |
|
|
|
|
 |
X.Du
(2007).
Signaling and regulation of the platelet glycoprotein Ib-IX-V complex.
|
| |
Curr Opin Hematol,
14,
262-269.
|
 |
|
|
|
|
 |
Y.Zhao,
N.Dong,
F.Shen,
L.Xie,
Y.He,
F.Liu,
and
C.Ruan
(2007).
Two novel monoclonal antibodies to VWFA3 inhibit VWF-collagen and VWF-platelet interactions.
|
| |
J Thromb Haemost,
5,
1963-1970.
|
 |
|
|
|
|
 |
A.Bonnefoy,
R.A.Romijn,
P.A.Vandervoort,
I.VAN Rompaey,
J.Vermylen,
and
M.F.Hoylaerts
(2006).
von Willebrand factor A1 domain can adequately substitute for A3 domain in recruitment of flowing platelets to collagen.
|
| |
J Thromb Haemost,
4,
2151-2161.
|
 |
|
|
|
|
 |
B.A.Badlou,
G.Spierenburg,
H.Ulrichts,
H.Deckmyn,
W.M.Smid,
and
J.W.Akkerman
(2006).
Role of glycoprotein Ibalpha in phagocytosis of platelets by macrophages.
|
| |
Transfusion,
46,
2090-2099.
|
 |
|
|
|
|
 |
B.A.Badlou,
Y.P.Wu,
W.M.Smid,
and
J.W.Akkerman
(2006).
Platelet binding and phagocytosis by macrophages.
|
| |
Transfusion,
46,
1432-1443.
|
 |
|
|
|
|
 |
B.P.Liu,
W.B.Cafferty,
S.O.Budel,
and
S.M.Strittmatter
(2006).
Extracellular regulators of axonal growth in the adult central nervous system.
|
| |
Philos Trans R Soc Lond B Biol Sci,
361,
1593-1610.
|
 |
|
|
|
|
 |
J.E.Sadler,
U.Budde,
J.C.Eikenboom,
E.J.Favaloro,
F.G.Hill,
L.Holmberg,
J.Ingerslev,
C.A.Lee,
D.Lillicrap,
P.M.Mannucci,
C.Mazurier,
D.Meyer,
W.L.Nichols,
M.Nishino,
I.R.Peake,
F.Rodeghiero,
R.Schneppenheim,
Z.M.Ruggeri,
A.Srivastava,
R.R.Montgomery,
and
A.B.Federici
(2006).
Update on the pathophysiology and classification of von Willebrand disease: a report of the Subcommittee on von Willebrand Factor.
|
| |
J Thromb Haemost,
4,
2103-2114.
|
 |
|
|
|
|
 |
J.J.Hulstein,
P.J.van Runnard Heimel,
A.Franx,
P.J.Lenting,
H.W.Bruinse,
K.Silence,
P.G.de Groot,
and
R.Fijnheer
(2006).
Acute activation of the endothelium results in increased levels of active von Willebrand factor in hemolysis, elevated liver enzymes and low platelets (HELLP) syndrome.
|
| |
J Thromb Haemost,
4,
2569-2575.
|
 |
|
|
|
|
 |
M.O'Seaghdha,
C.J.van Schooten,
S.W.Kerrigan,
J.Emsley,
G.J.Silverman,
D.Cox,
P.J.Lenting,
and
T.J.Foster
(2006).
Staphylococcus aureus protein A binding to von Willebrand factor A1 domain is mediated by conserved IgG binding regions.
|
| |
FEBS J,
273,
4831-4841.
|
 |
|
|
|
|
 |
S.Kunishima,
T.Imai,
M.Hamaguchi,
and
H.Saito
(2006).
Novel heterozygous missense mutation in the second leucine rich repeat of GPIbalpha affects GPIb/IX/V expression and results in macrothrombocytopenia in a patient initially misdiagnosed with idiopathic thrombocytopenic purpura.
|
| |
Eur J Haematol,
76,
348-355.
|
 |
|
|
|
|
 |
T.A.Springer
(2006).
Complement and the multifaceted functions of VWA and integrin I domains.
|
| |
Structure,
14,
1611-1616.
|
 |
|
|
|
|
 |
V.M.Chen,
and
P.J.Hogg
(2006).
Allosteric disulfide bonds in thrombosis and thrombolysis.
|
| |
J Thromb Haemost,
4,
2533-2541.
|
 |
|
|
|
|
 |
Y.Singh,
G.T.Dolphin,
J.Razkin,
and
P.Dumy
(2006).
Synthetic Peptide templates for molecular recognition: recent advances and applications.
|
| |
Chembiochem,
7,
1298-1314.
|
 |
|
|
|
|
 |
B.A.Badlou,
M.J.Ijseldijk,
W.M.Smid,
and
J.W.Akkerman
(2005).
Prolonged platelet preservation by transient metabolic suppression.
|
| |
Transfusion,
45,
214-222.
|
 |
|
|
|
|
 |
B.Hao,
N.Zheng,
B.A.Schulman,
G.Wu,
J.J.Miller,
M.Pagano,
and
N.P.Pavletich
(2005).
Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase.
|
| |
Mol Cell,
20,
9.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.J.Schooten,
P.Tjernberg,
E.Westein,
V.Terraube,
G.Castaman,
J.A.Mourik,
M.J.Hollestelle,
H.L.Vos,
R.M.Bertina,
H.M.Berg,
J.C.Eikenboom,
P.J.Lenting,
and
C.V.Denis
(2005).
Cysteine-mutations in von Willebrand factor associated with increased clearance.
|
| |
J Thromb Haemost,
3,
2228-2237.
|
 |
|
|
|
|
 |
C.S.Abrams
(2005).
Intracellular signaling in platelets.
|
| |
Curr Opin Hematol,
12,
401-405.
|
 |
|
|
|
|
 |
D.Puett,
Y.Li,
K.Angelova,
G.Demars,
T.P.Meehan,
F.Fanelli,
and
P.Narayan
(2005).
Structure-function relationships of the luteinizing hormone receptor.
|
| |
Ann N Y Acad Sci,
1061,
41-54.
|
 |
|
|
|
|
 |
G.Van Schoore,
F.Mendive,
R.Pochet,
and
G.Vassart
(2005).
Expression pattern of the orphan receptor LGR4/GPR48 gene in the mouse.
|
| |
Histochem Cell Biol,
124,
35-50.
|
 |
|
|
|
|
 |
J.A.López,
and
J.F.Dong
(2005).
Shear stress and the role of high molecular weight von Willebrand factor multimers in thrombus formation.
|
| |
Blood Coagul Fibrinolysis,
16,
S11-S16.
|
 |
|
|
|
|
 |
J.Drouin,
N.L.Carson,
and
O.Laneuville
(2005).
Compound heterozygosity for a novel nine-nucleotide deletion and the Asn45Ser missense mutation in the glycoprotein IX gene in a patient with Bernard-Soulier syndrome.
|
| |
Am J Hematol,
78,
41-48.
|
 |
|
|
|
|
 |
J.E.Sadler
(2005).
New concepts in von Willebrand disease.
|
| |
Annu Rev Med,
56,
173-191.
|
 |
|
|
|
|
 |
J.K.Bell,
I.Botos,
P.R.Hall,
J.Askins,
J.Shiloach,
D.M.Segal,
and
D.R.Davies
(2005).
The molecular structure of the Toll-like receptor 3 ligand-binding domain.
|
| |
Proc Natl Acad Sci U S A,
102,
10976-10980.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Schulte Am Esch,
S.C.Robson,
W.T.Knoefel,
S.B.Hosch,
and
X.Rogiers
(2005).
O-linked glycosylation and functional incompatibility of porcine von Willebrand factor for human platelet GPIb receptors.
|
| |
Xenotransplantation,
12,
30-37.
|
 |
|
|
|
|
 |
J.Schulte am Esch,
S.C.Robson,
W.T.Knoefel,
C.F.Eisenberger,
M.Peiper,
and
X.Rogiers
(2005).
Impact of O-linked glycosylation of the VWF-A1-domain flanking regions on platelet interaction.
|
| |
Br J Haematol,
128,
82-90.
|
 |
|
|
|
|
 |
K.Fukuda,
T.Doggett,
I.J.Laurenzi,
R.C.Liddington,
and
T.G.Diacovo
(2005).
The snake venom protein botrocetin acts as a biological brace to promote dysfunctional platelet aggregation.
|
| |
Nat Struct Mol Biol,
12,
152-159.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Arya,
A.B.Kolomeisky,
G.M.Romo,
M.A.Cruz,
J.A.López,
and
B.Anvari
(2005).
Dynamic force spectroscopy of glycoprotein Ib-IX and von Willebrand factor.
|
| |
Biophys J,
88,
4391-4401.
|
 |
|
|
|
|
 |
R.N.Miguel,
J.Sanders,
T.L.Blundell,
B.R.Smith,
and
J.Furmaniak
(2005).
Comparative modeling of the thyrotropin receptor.
|
| |
Thyroid,
15,
746-747.
|
 |
|
|
|
|
 |
Y.Matsubara,
M.Murata,
T.Hayashi,
K.Suzuki,
Y.Okamura,
M.Handa,
H.Ishihara,
T.Shibano,
and
Y.Ikeda
(2005).
Platelet glycoprotein Ib alpha polymorphisms affect the interaction with von Willebrand factor under flow conditions.
|
| |
Br J Haematol,
128,
533-539.
|
 |
|
|
|
|
 |
A.A.Bhattacharya,
M.L.Lupher,
D.E.Staunton,
and
R.C.Liddington
(2004).
Crystal structure of the A domain from complement factor B reveals an integrin-like open conformation.
|
| |
Structure,
12,
371-378.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Ulrichts,
J.Harsfalvi,
L.Bene,
J.Matko,
J.Vermylen,
N.Ajzenberg,
D.Baruch,
H.Deckmyn,
and
I.Tornai
(2004).
A monoclonal antibody directed against human von Willebrand factor induces type 2B-like alterations.
|
| |
J Thromb Haemost,
2,
1622-1628.
|
 |
|
|
|
|
 |
J.A.Howitt,
N.J.Clout,
and
E.Hohenester
(2004).
Binding site for Robo receptors revealed by dissection of the leucine-rich repeat region of Slit.
|
| |
EMBO J,
23,
4406-4412.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Hauert,
J.Fernandez-Carneado,
O.Michielin,
S.Mathieu,
D.Grell,
M.Schapira,
O.Spertini,
M.Mutter,
G.Tuchscherer,
and
T.Kovacsovics
(2004).
A template-assembled synthetic protein surface mimetic of the von Willebrand factor A1 domain inhibits botrocetin-induced platelet aggregation.
|
| |
Chembiochem,
5,
856-864.
|
 |
|
|
|
|
 |
K.I.Varughese,
Z.M.Ruggeri,
and
R.Celikel
(2004).
Platinum-induced space-group transformation in crystals of the platelet glycoprotein Ib alpha N-terminal domain.
|
| |
Acta Crystallogr D Biol Crystallogr,
60,
405-411.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Inamori,
S.Ariki,
and
S.Kawabata
(2004).
A Toll-like receptor in horseshoe crabs.
|
| |
Immunol Rev,
198,
106-115.
|
 |
|
|
|
|
 |
K.Nishio,
P.J.Anderson,
X.L.Zheng,
and
J.E.Sadler
(2004).
Binding of platelet glycoprotein Ibalpha to von Willebrand factor domain A1 stimulates the cleavage of the adjacent domain A2 by ADAMTS13.
|
| |
Proc Natl Acad Sci U S A,
101,
10578-10583.
|
 |
|
|
|
|
 |
K.Vanhoorelbeke,
H.Ulrichts,
R.A.Romijn,
E.G.Huizinga,
and
H.Deckmyn
(2004).
The GPIbalpha-thrombin interaction: far from crystal clear.
|
| |
Trends Mol Med,
10,
33-39.
|
 |
|
|
|
|
 |
M.J.Kuijpers,
V.Schulte,
C.Oury,
T.Lindhout,
J.Broers,
M.F.Hoylaerts,
B.Nieswandt,
and
J.W.Heemskerk
(2004).
Facilitating roles of murine platelet glycoprotein Ib and alphaIIbbeta3 in phosphatidylserine exposure during vWF-collagen-induced thrombus formation.
|
| |
J Physiol,
558,
403-415.
|
 |
|
|
|
|
 |
P.Enkhbayar,
M.Kamiya,
M.Osaki,
T.Matsumoto,
and
N.Matsushima
(2004).
Structural principles of leucine-rich repeat (LRR) proteins.
|
| |
Proteins,
54,
394-403.
|
 |
|
|
|
|
 |
P.G.Scott,
P.A.McEwan,
C.M.Dodd,
E.M.Bergmann,
P.N.Bishop,
and
J.Bella
(2004).
Crystal structure of the dimeric protein core of decorin, the archetypal small leucine-rich repeat proteoglycan.
|
| |
Proc Natl Acad Sci U S A,
101,
15633-15638.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Z.M.Ruggeri,
and
Z.M.Ruggeri
(2004).
Type IIB von Willebrand disease: a paradox explains how von Willebrand factor works.
|
| |
J Thromb Haemost,
2,
2-6.
|
 |
|
|
|
|
 |
A.Bonnefoy,
J.Vermylen,
and
M.F.Hoylaerts
(2003).
Inhibition of von Willebrand factor-GPIb/IX/V interactions as a strategy to prevent arterial thrombosis.
|
| |
Expert Rev Cardiovasc Ther,
1,
257-269.
|
 |
|
|
|
|
 |
C.S.Atwood,
R.L.Bowen,
M.A.Smith,
and
G.Perry
(2003).
Cerebrovascular requirement for sealant, anti-coagulant and remodeling molecules that allow for the maintenance of vascular integrity and blood supply.
|
| |
Brain Res Brain Res Rev,
43,
164-178.
|
 |
|
|
|
|
 |
D.L.Bhatt,
and
E.J.Topol
(2003).
Scientific and therapeutic advances in antiplatelet therapy.
|
| |
Nat Rev Drug Discov,
2,
15-28.
|
 |
|
|
|
|
 |
F.Adam,
M.C.Bouton,
M.G.Huisse,
and
M.Jandrot-Perrus
(2003).
Thrombin interaction with platelet membrane glycoprotein Ib alpha.
|
| |
Trends Mol Med,
9,
461-464.
|
 |
|
|
|
|
 |
G.Borthakur,
M.A.Cruz,
J.F.Dong,
L.McIntire,
F.Li,
J.A.López,
and
P.Thiagarajan
(2003).
Sulfatides inhibit platelet adhesion to von Willebrand factor in flowing blood.
|
| |
J Thromb Haemost,
1,
1288-1295.
|
 |
|
|
|
|
 |
J.K.Bell,
G.E.Mullen,
C.A.Leifer,
A.Mazzoni,
D.R.Davies,
and
D.M.Segal
(2003).
Leucine-rich repeats and pathogen recognition in Toll-like receptors.
|
| |
Trends Immunol,
24,
528-533.
|
 |
|
|
|
|
 |
M.Arya,
J.A.López,
G.M.Romo,
M.A.Cruz,
A.Kasirer-Friede,
S.J.Shattil,
and
B.Anvari
(2003).
Glycoprotein Ib-IX-mediated activation of integrin alpha(IIb)beta(3): effects of receptor clustering and von Willebrand factor adhesion.
|
| |
J Thromb Haemost,
1,
1150-1157.
|
 |
|
|
|
|
 |
M.P.Machner,
S.Frese,
W.D.Schubert,
V.Orian-Rousseau,
E.Gherardi,
J.Wehland,
H.H.Niemann,
and
D.W.Heinz
(2003).
Aromatic amino acids at the surface of InlB are essential for host cell invasion by Listeria monocytogenes.
|
| |
Mol Microbiol,
48,
1525-1536.
|
 |
|
|
|
|
 |
R.A.Kumar,
J.F.Dong,
J.A.Thaggard,
M.A.Cruz,
J.A.López,
and
L.V.McIntire
(2003).
Kinetics of GPIbalpha-vWF-A1 tether bond under flow: effect of GPIbalpha mutations on the association and dissociation rates.
|
| |
Biophys J,
85,
4099-4109.
|
 |
|
|
|
|
 |
R.Ehlers,
V.Ustinov,
Z.Chen,
X.Zhang,
R.Rao,
F.W.Luscinskas,
J.Lopez,
E.Plow,
and
D.I.Simon
(2003).
Targeting platelet-leukocyte interactions: identification of the integrin Mac-1 binding site for the platelet counter receptor glycoprotein Ibalpha.
|
| |
J Exp Med,
198,
1077-1088.
|
 |
|
|
|
|
 |
R.K.Andrews,
E.E.Gardiner,
Y.Shen,
J.C.Whisstock,
and
M.C.Berndt
(2003).
Glycoprotein Ib-IX-V.
|
| |
Int J Biochem Cell Biol,
35,
1170-1174.
|
 |
|
|
|
|
 |
R.K.Andrews,
and
M.C.Berndt
(2003).
Platelet physiology: in cold blood.
|
| |
Curr Biol,
13,
R282-R284.
|
 |
|
|
|
|
 |
R.L.Rich,
and
D.G.Myszka
(2003).
A survey of the year 2002 commercial optical biosensor literature.
|
| |
J Mol Recognit,
16,
351-382.
|
 |
|
|
|
|
 |
S.S.Smyth
(2003).
Tweezing apart von Willebrand factor-glycoprotein Ib-IX adhesive signaling.
|
| |
J Thromb Haemost,
1,
1136-1137.
|
 |
|
|
|
|
 |
T.P.Garrett,
N.M.McKern,
M.Lou,
T.C.Elleman,
T.E.Adams,
G.O.Lovrecz,
M.Kofler,
R.N.Jorissen,
E.C.Nice,
A.W.Burgess,
and
C.W.Ward
(2003).
The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors.
|
| |
Mol Cell,
11,
495-505.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Vorup-Jensen,
C.Ostermeier,
M.Shimaoka,
U.Hommel,
and
T.A.Springer
(2003).
Structure and allosteric regulation of the alpha X beta 2 integrin I domain.
|
| |
Proc Natl Acad Sci U S A,
100,
1873-1878.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
W.A.Barton,
B.P.Liu,
D.Tzvetkova,
P.D.Jeffrey,
A.E.Fournier,
D.Sah,
R.Cate,
S.M.Strittmatter,
and
D.B.Nikolov
(2003).
Structure and axon outgrowth inhibitor binding of the Nogo-66 receptor and related proteins.
|
| |
EMBO J,
22,
3291-3302.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Han,
A.Nurden,
R.Combrié,
and
J.M.Pasquet
(2003).
Redistribution of glycoprotein Ib within platelets in response to protease-activated receptors 1 and 4: roles of cytoskeleton and calcium.
|
| |
J Thromb Haemost,
1,
2206-2215.
|
 |
|
|
|
|
 |
Y.Matsubara,
M.Murata,
K.Sugita,
and
Y.Ikeda
(2003).
Identification of a novel point mutation in platelet glycoprotein Ibalpha, Gly to Ser at residue 233, in a Japanese family with platelet-type von Willebrand disease.
|
| |
J Thromb Haemost,
1,
2198-2205.
|
 |
|
|
|
|
 |
Z.M.Ruggeri
(2003).
Von Willebrand factor, platelets and endothelial cell interactions.
|
| |
J Thromb Haemost,
1,
1335-1342.
|
 |
|
|
|
|
 |
Z.M.Ruggeri
(2003).
Von Willebrand factor.
|
| |
Curr Opin Hematol,
10,
142-149.
|
 |
|
|
|
|
 |
O.Iqbal
(2002).
Pharmacogenomics in anticoagulant drug development.
|
| |
Pharmacogenomics,
3,
823-828.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |