 |
PDBsum entry 1lit
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Pancreatic stone inhibitor
|
PDB id
|
|
|
|
1lit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
Embo J
15:2678-2684
(1996)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structure of human lithostathine, the pancreatic inhibitor of stone formation.
|
|
J.A.Bertrand,
D.Pignol,
J.P.Bernard,
J.M.Verdier,
J.C.Dagorn,
J.C.Fontecilla-Camps.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Human lithostathine (HLIT) is a pancreatic glycoprotein which inhibits the
growth and nucleation of calcium carbonate crystals. The crystal structure of
the monomeric 17 kDa HLIT, determined to a resolution of 1.55 angstroms, was
refined to a crystallographic R-factor of 18.6%. Structural comparison with the
carbohydrate-recognition domains of rat mannose-binding protein and E-selectin
indicates that the C-terminal domain of HLIT shares a common architecture with
the C-type lectins. Nevertheless, HLIT does not bind carbohydrate nor does it
contain the characteristic calcium-binding sites of the C-type lectins. In
consequence, HLIT represents the first structurally characterized member of this
superfamily which is not a lectin. Analysis of the charge distribution and
calculation of its dipole moment reveal that HLIT is a strongly polarized
molecule. Eight acidic residues which are separated by regular 6 angstrom
spacings form a unique and continuous patch on the molecular surface. This
arrangement coincides with the distribution of calcium ions on certain planes of
the calcium carbonate crystal; the dipole moment of HLIT may play a role in
orienting the protein on the crystal surface prior to the more specific
interactions of the acidic residues.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
P.E.Milhiet,
D.Yamamoto,
O.Berthoumieu,
P.Dosset,
C.Le Grimellec,
J.M.Verdier,
S.Marchal,
and
T.Ando
(2010).
Deciphering the structure, growth and assembly of amyloid-like fibrils using high-speed atomic force microscopy.
|
| |
PLoS One,
5,
e13240.
|
 |
|
|
|
|
 |
Y.Liu,
Z.Li,
Q.Lin,
J.Kosinski,
J.Seetharaman,
J.M.Bujnicki,
J.Sivaraman,
and
C.L.Hew
(2007).
Structure and evolutionary origin of Ca2+-dependent herring type II antifreeze protein.
|
| |
PLoS ONE,
2,
e548.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.L.Cash,
C.V.Whitham,
and
L.V.Hooper
(2006).
Refolding, purification, and characterization of human and murine RegIII proteins expressed in Escherichia coli.
|
| |
Protein Expr Purif,
48,
151-159.
|
 |
|
|
|
|
 |
A.N.Zelensky,
and
J.E.Gready
(2005).
The C-type lectin-like domain superfamily.
|
| |
FEBS J,
272,
6179-6217.
|
 |
|
|
|
|
 |
H.T.Lieu,
F.Batteux,
M.T.Simon,
A.Cortes,
C.Nicco,
F.Zavala,
A.Pauloin,
J.G.Tralhao,
O.Soubrane,
B.Weill,
C.Bréchot,
and
L.Christa
(2005).
HIP/PAP accelerates liver regeneration and protects against acetaminophen injury in mice.
|
| |
Hepatology,
42,
618-626.
|
 |
|
|
|
|
 |
P.Paaventhan,
C.Kong,
J.S.Joseph,
M.C.Chung,
and
P.R.Kolatkar
(2005).
Structure of rhodocetin reveals noncovalently bound heterodimer interface.
|
| |
Protein Sci,
14,
169-175.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Lundell,
A.I.Olin,
M.Mörgelin,
S.al-Karadaghi,
A.Aspberg,
and
D.T.Logan
(2004).
Structural basis for interactions between tenascins and lectican C-type lectin domains: evidence for a crosslinking role for tenascins.
|
| |
Structure,
12,
1495-1506.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Sugawara,
M.Kusunoki,
G.Kurisu,
T.Fujimoto,
H.Aoyagi,
and
T.Hatakeyama
(2004).
Characteristic recognition of N-acetylgalactosamine by an invertebrate C-type Lectin, CEL-I, revealed by X-ray crystallographic analysis.
|
| |
J Biol Chem,
279,
45219-45225.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.P.Reyes-Grajeda,
A.Moreno,
and
A.Romero
(2004).
Crystal structure of ovocleidin-17, a major protein of the calcified Gallus gallus eggshell: implications in the calcite mineral growth pattern.
|
| |
J Biol Chem,
279,
40876-40881.
|
 |
|
|
|
|
 |
E.Laurine,
C.Grégoire,
M.Fändrich,
S.Engemann,
S.Marchal,
L.Thion,
M.Mohr,
B.Monsarrat,
B.Michel,
C.M.Dobson,
E.Wanker,
M.Erard,
and
J.M.Verdier
(2003).
Lithostathine quadruple-helical filaments form proteinase K-resistant deposits in Creutzfeldt-Jakob disease.
|
| |
J Biol Chem,
278,
51770-51778.
|
 |
|
|
|
|
 |
J.C.Papadimitriou,
C.B.Drachenberg,
D.K.Klassen,
L.Gaber,
L.C.Racusen,
L.Voska,
C.B.Cangro,
E.Ramos,
R.Wali,
M.R.Weir,
and
S.T.Bartlett
(2003).
Histological grading of chronic pancreas allograft rejection/graft sclerosis.
|
| |
Am J Transplant,
3,
599-605.
|
 |
|
|
|
|
 |
M.Michenfelder,
G.Fu,
C.Lawrence,
J.C.Weaver,
B.A.Wustman,
L.Taranto,
J.S.Evans,
and
D.E.Morse
(2003).
Characterization of two molluscan crystal-modulating biomineralization proteins and identification of putative mineral binding domains.
|
| |
Biopolymers,
70,
522-533.
|
 |
|
|
|
|
 |
R.Lakshminarayanan,
S.Valiyaveettil,
V.S.Rao,
and
R.M.Kini
(2003).
Purification, characterization, and in vitro mineralization studies of a novel goose eggshell matrix protein, ansocalcin.
|
| |
J Biol Chem,
278,
2928-2936.
|
 |
|
|
|
|
 |
K.Natarajan,
N.Dimasi,
J.Wang,
R.A.Mariuzza,
and
D.H.Margulies
(2002).
Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination.
|
| |
Annu Rev Immunol,
20,
853-885.
|
 |
|
|
|
|
 |
T.Hatakeyama,
N.Matsuo,
K.Shiba,
S.Nishinohara,
N.Yamasaki,
H.Sugawara,
and
H.Aoyagi
(2002).
Amino acid sequence and carbohydrate-binding analysis of the N-acetyl-D-galactosamine-specific C-type lectin, CEL-I, from the Holothuroidea, Cucumaria echinata.
|
| |
Biosci Biotechnol Biochem,
66,
157-163.
|
 |
|
|
|
|
 |
Y.Cheng,
Z.Yang,
H.Tan,
R.Liu,
G.Chen,
and
Z.Jia
(2002).
Analysis of ice-binding sites in fish type II antifreeze protein by quantum mechanics.
|
| |
Biophys J,
83,
2202-2210.
|
 |
|
|
|
|
 |
C.Grégoire,
S.Marco,
J.Thimonier,
L.Duplan,
E.Laurine,
J.P.Chauvin,
B.Michel,
V.Peyrot,
and
J.M.Verdier
(2001).
Three-dimensional structure of the lithostathine protofibril, a protein involved in Alzheimer's disease.
|
| |
EMBO J,
20,
3313-3321.
|
 |
|
|
|
|
 |
J.Barrett
(2001).
Thermal hysteresis proteins.
|
| |
Int J Biochem Cell Biol,
33,
105-117.
|
 |
|
|
|
|
 |
K.Håkansson,
and
K.B.Reid
(2000).
Collectin structure: a review.
|
| |
Protein Sci,
9,
1607-1617.
|
 |
|
|
|
|
 |
K.Mann,
I.M.Weiss,
S.André,
H.J.Gabius,
and
M.Fritz
(2000).
The amino-acid sequence of the abalone (Haliotis laevigata) nacre protein perlucin. Detection of a functional C-type lectin domain with galactose/mannose specificity.
|
| |
Eur J Biochem,
267,
5257-5264.
|
 |
|
|
|
|
 |
V.Gerbaud,
D.Pignol,
E.Loret,
J.A.Bertrand,
Y.Berland,
J.C.Fontecilla-Camps,
J.P.Canselier,
N.Gabas,
and
J.M.Verdier
(2000).
Mechanism of calcite crystal growth inhibition by the N-terminal undecapeptide of lithostathine.
|
| |
J Biol Chem,
275,
1057-1064.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Abergel,
S.Chenivesse,
M.G.Stinnakre,
S.Guasco,
C.Bréchot,
J.M.Claverie,
E.Devinoy,
and
L.Christa
(1999).
Crystallization and preliminary crystallographic study of HIP/PAP, a human C-lectin overexpressed in primary liver cancers.
|
| |
Acta Crystallogr D Biol Crystallogr,
55,
1487-1489.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Cerini,
V.Peyrot,
C.Garnier,
L.Duplan,
S.Veesler,
J.P.Le Caer,
J.P.Bernard,
H.Bouteille,
R.Michel,
A.Vazi,
P.Dupuy,
B.Michel,
Y.Berland,
and
J.M.Verdier
(1999).
Biophysical characterization of lithostathine. Evidences for a polymeric structure at physiological pH and a proteolysis mechanism leading to the formation of fibrils.
|
| |
J Biol Chem,
274,
22266-22274.
|
 |
|
|
|
|
 |
J.C.Boyington,
A.N.Riaz,
A.Patamawenu,
J.E.Coligan,
A.G.Brooks,
and
P.D.Sun
(1999).
Structure of CD94 reveals a novel C-type lectin fold: implications for the NK cell-associated CD94/NKG2 receptors.
|
| |
Immunity,
10,
75-82.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Drickamer
(1999).
C-type lectin-like domains.
|
| |
Curr Opin Struct Biol,
9,
585-590.
|
 |
|
|
|
|
 |
K.Håkansson,
N.K.Lim,
H.J.Hoppe,
and
K.B.Reid
(1999).
Crystal structure of the trimeric alpha-helical coiled-coil and the three lectin domains of human lung surfactant protein D.
|
| |
Structure,
7,
255-264.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Kessler,
D.Perl-Treves,
L.Addadi,
and
M.Eisenstein
(1999).
Structural and chemical complementarity between antibodies and the crystal surfaces they recognize.
|
| |
Proteins,
34,
383-394.
|
 |
|
|
|
|
 |
D.Worrall,
L.Elias,
D.Ashford,
M.Smallwood,
C.Sidebottom,
P.Lillford,
J.Telford,
C.Holt,
and
D.Bowles
(1998).
A carrot leucine-rich-repeat protein that inhibits ice recrystallization.
|
| |
Science,
282,
115-117.
|
 |
|
|
|
|
 |
E.Hohenester,
T.Sasaki,
B.R.Olsen,
and
R.Timpl
(1998).
Crystal structure of the angiogenesis inhibitor endostatin at 1.5 A resolution.
|
| |
EMBO J,
17,
1656-1664.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.L.Ferrer,
M.Roth,
and
A.Antoniadis
(1998).
Data compression for diffraction patterns.
|
| |
Acta Crystallogr D Biol Crystallogr,
54,
184-199.
|
 |
|
|
|
|
 |
M.C.Loewen,
W.Gronwald,
F.D.Sönnichsen,
B.D.Sykes,
and
P.L.Davies
(1998).
The ice-binding site of sea raven antifreeze protein is distinct from the carbohydrate-binding site of the homologous C-type lectin.
|
| |
Biochemistry,
37,
17745-17753.
|
 |
|
|
|
|
 |
M.De Reggi,
B.Gharib,
L.Patard,
and
V.Stoven
(1998).
Lithostathine, the presumed pancreatic stone inhibitor, does not interact specifically with calcium carbonate crystals.
|
| |
J Biol Chem,
273,
4967-4971.
|
 |
|
|
|
|
 |
W.Gronwald,
M.C.Loewen,
B.Lix,
A.J.Daugulis,
F.D.Sönnichsen,
P.L.Davies,
and
B.D.Sykes
(1998).
The solution structure of type II antifreeze protein reveals a new member of the lectin family.
|
| |
Biochemistry,
37,
4712-4721.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.H.Ding,
K.Javaherian,
K.M.Lo,
R.Chopra,
T.Boehm,
J.Lanciotti,
B.A.Harris,
Y.Li,
R.Shapiro,
E.Hohenester,
R.Timpl,
J.Folkman,
and
D.C.Wiley
(1998).
Zinc-dependent dimers observed in crystals of human endostatin.
|
| |
Proc Natl Acad Sci U S A,
95,
10443-10448.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Rossjohn,
J.T.Buckley,
B.Hazes,
A.G.Murzin,
R.J.Read,
and
M.W.Parker
(1997).
Aerolysin and pertussis toxin share a common receptor-binding domain.
|
| |
EMBO J,
16,
3426-3434.
|
 |
|
|
|
|
 |
P.L.Davies,
and
B.D.Sykes
(1997).
Antifreeze proteins.
|
| |
Curr Opin Struct Biol,
7,
828-834.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |