 |
PDBsum entry 1k9i
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Sugar binding protein
|
PDB id
|
|
|
|
1k9i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Sugar binding protein
|
 |
|
Title:
|
 |
Complex of dc-sign and glcnac2man3
|
|
Structure:
|
 |
Mdc-sign1b type i isoform. Chain: a, b, c, d, e, f, g, h, i, j. Fragment: carbohydrate recognition domain. Synonym: dc-sign receptor (dendritic cell-specific icam-3 grabbing nonintegrin). Engineered: yes
|
|
Source:
|
 |
Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562
|
|
Biol. unit:
|
 |
15mer (from
)
|
|
Resolution:
|
 |
|
2.50Å
|
R-factor:
|
0.213
|
R-free:
|
0.258
|
|
|
Authors:
|
 |
H.Feinberg,D.A.Mitchell,K.Drickamer,W.I.Weis
|
Key ref:
|
 |
H.Feinberg
et al.
(2001).
Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR.
Science,
294,
2163-2166.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
29-Oct-01
|
Release date:
|
21-Dec-01
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
Q9NNX6
(CD209_HUMAN) -
CD209 antigen from Homo sapiens
|
|
|
|
Seq: Struc:
|
 |
 |
 |
404 a.a.
128 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
PfamA domain |
 |
 |
 |
Secondary structure |
 |
 |
CATH domain |
 |
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Science
294:2163-2166
(2001)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR.
|
|
H.Feinberg,
D.A.Mitchell,
K.Drickamer,
W.I.Weis.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Dendritic cell specific intracellular adhesion molecule-3 (ICAM-3) grabbing
nonintegrin (DC-SIGN), a C-type lectin present on the surface of dendritic
cells, mediates the initial interaction of dendritic cells with T cells by
binding to ICAM-3. DC-SIGN and DC-SIGNR, a related receptor found on the
endothelium of liver sinusoids, placental capillaries, and lymph nodes, bind to
oligosaccharides that are present on the envelope of human immunodeficiency
virus (HIV), an interaction that strongly promotes viral infection of T cells.
Crystal structures of carbohydrate-recognition domains of DC-SIGN and of
DC-SIGNR bound to oligosaccharide, in combination with binding studies, reveal
that these receptors selectively recognize endogenous high-mannose
oligosaccharides and may represent a new avenue for developing HIV prophylactics.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Fig. 1. Oligosaccharide structures. (A) The pentasaccharide
co-crystallized with both DC-SIGN and DC-SIGNR. Residue numbers
used in the text are shown in parentheses. (B) N-linked
high-mannose structure. The full nine-mannose structure (Man[9])
is shown, but the presence of 1-2 linked
mannose at the branch termini is variable. The inner branched
trimannose structure Man 1-3 [Man
1-6]Man is
shown in the red box, and the outer trimannose structure is
shown in the yellow box. (C) Typical N-linked complex
carbohydrate. The portion equivalent to the pentasaccharide used
in this study is boxed in red. The inner trimannose structure is
common to both complex and high-mannose N-linked
oligosaccharides. Gal, galactose; GlcNAc, N-acetylglucosamine;
Man, mannose; Sia, sialic acid.
|
 |
Figure 4.
Fig. 4. A phenylalanine prevents binding of the inner
trimannosyl core of N-linked oligosaccharides. The DC-SIGNR CRD
is shown in cyan, with the Phe^325 side chain in a
ball-and-stick representation. In yellow-green, the outer
branched trimannose structure of Man[9] was superimposed on the
trimannose structure seen in the DC-SIGNR crystals. For clarity,
only the 1-6 branch
is shown. In magenta, the mannose residue of a model of the
internal Man 1-4GlcNAc
1-4GlcNAc
moiety of N-linked oligosaccharides was superimposed on the
central (reducing) mannose of the trimannose structure. The
model was made by setting the torsion angles of the glycosidic
linkages to their average values found in an oligosaccharide
structure database (13), with adjustments in the torsion angles
to overlay the branched trimannose structure precisely. The
clash of the first GlcNAc with Phe^325 is evident. In both the
positions of the 1-3 and
1-6 linked
mannose residues linked to the central mannose of the trimannose
structure are indicated in the black text.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from the AAAs:
Science
(2001,
294,
2163-2166)
copyright 2001.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.Tai,
S.Froelich,
K.I.Joo,
and
P.Wang
(2011).
Production of lentiviral vectors with enhanced efficiency to target dendritic cells by attenuating mannosidase activity of mammalian cells.
|
| |
J Biol Eng,
5,
1.
|
 |
|
|
|
|
 |
R.Ilyas,
R.Wallis,
E.J.Soilleux,
P.Townsend,
D.Zehnder,
B.K.Tan,
R.B.Sim,
H.Lehnert,
H.S.Randeva,
and
D.A.Mitchell
(2011).
High glucose disrupts oligosaccharide recognition function via competitive inhibition: a potential mechanism for immune dysregulation in diabetes mellitus.
|
| |
Immunobiology,
216,
126-131.
|
 |
|
|
|
|
 |
S.J.Dilly,
A.J.Clark,
D.A.Mitchell,
A.Marsh,
and
P.C.Taylor
(2011).
Using the Man(9)(GlcNAc)(2)-DC-SIGN pairing to probe specificity in photochemical immobilization.
|
| |
Mol Biosyst,
7,
116-118.
|
 |
|
|
|
|
 |
A.D.Regan,
D.G.Ousterout,
and
G.R.Whittaker
(2010).
Feline lectin activity is critical for the cellular entry of feline infectious peritonitis virus.
|
| |
J Virol,
84,
7917-7921.
|
 |
|
|
|
|
 |
A.E.Zeituni,
W.McCaig,
E.Scisci,
D.G.Thanassi,
and
C.W.Cutler
(2010).
The native 67-kilodalton minor fimbria of Porphyromonas gingivalis is a novel glycoprotein with DC-SIGN-targeting motifs.
|
| |
J Bacteriol,
192,
4103-4110.
|
 |
|
|
|
|
 |
A.L.Webber,
B.Elena,
J.M.Griffin,
J.R.Yates,
T.N.Pham,
F.Mauri,
C.J.Pickard,
A.M.Gil,
R.Stein,
A.Lesage,
L.Emsley,
and
S.P.Brown
(2010).
Complete (1)H resonance assignment of beta-maltose from (1)H-(1)H DQ-SQ CRAMPS and (1)H (DQ-DUMBO)-(13)C SQ refocused INEPT 2D solid-state NMR spectra and first principles GIPAW calculations.
|
| |
Phys Chem Chem Phys,
12,
6970-6983.
|
 |
|
|
|
|
 |
C.Chaipan,
I.Steffen,
T.S.Tsegaye,
S.Bertram,
I.Glowacka,
Y.Kato,
J.Schmökel,
J.Münch,
G.Simmons,
R.Gerardy-Schahn,
and
S.Pöhlmann
(2010).
Incorporation of podoplanin into HIV released from HEK-293T cells, but not PBMC, is required for efficient binding to the attachment factor CLEC-2.
|
| |
Retrovirology,
7,
47.
|
 |
|
|
|
|
 |
C.Flaujac,
S.Boukour,
and
E.Cramer-Bordé
(2010).
Platelets and viruses: an ambivalent relationship.
|
| |
Cell Mol Life Sci,
67,
545-556.
|
 |
|
|
|
|
 |
H.Feinberg,
A.S.Powlesland,
M.E.Taylor,
and
W.I.Weis
(2010).
Trimeric structure of langerin.
|
| |
J Biol Chem,
285,
13285-13293.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.L.Birch,
L.J.Alderwick,
B.J.Appelmelk,
J.Maaskant,
A.Bhatt,
A.Singh,
J.Nigou,
L.Eggeling,
J.Geurtsen,
and
G.S.Besra
(2010).
A truncated lipoglycan from mycobacteria with altered immunological properties.
|
| |
Proc Natl Acad Sci U S A,
107,
2634-2639.
|
 |
|
|
|
|
 |
K.Matsuno,
N.Kishida,
K.Usami,
M.Igarashi,
R.Yoshida,
E.Nakayama,
M.Shimojima,
H.Feldmann,
T.Irimura,
Y.Kawaoka,
and
A.Takada
(2010).
Different potential of C-type lectin-mediated entry between Marburg virus strains.
|
| |
J Virol,
84,
5140-5147.
|
 |
|
|
|
|
 |
K.Morizono,
A.Ku,
Y.Xie,
A.Harui,
S.K.Kung,
M.D.Roth,
B.Lee,
and
I.S.Chen
(2010).
Redirecting lentiviral vectors pseudotyped with sindbis virus-derived envelope proteins to DC-SIGN by modification of N-linked glycans of envelope proteins.
|
| |
J Virol,
84,
6923-6934.
|
 |
|
|
|
|
 |
M.Kielian,
C.Chanel-Vos,
and
M.Liao
(2010).
Alphavirus Entry and Membrane Fusion.
|
| |
Viruses,
2,
796-825.
|
 |
|
|
|
|
 |
M.V.Carroll,
R.B.Sim,
F.Bigi,
A.Jäkel,
R.Antrobus,
and
D.A.Mitchell
(2010).
Identification of four novel DC-SIGN ligands on Mycobacterium bovis BCG.
|
| |
Protein Cell,
1,
859-870.
|
 |
|
|
|
|
 |
N.P.Chung,
S.K.Breun,
A.Bashirova,
J.G.Baumann,
T.D.Martin,
J.M.Karamchandani,
J.W.Rausch,
S.F.Le Grice,
L.Wu,
M.Carrington,
and
V.N.Kewalramani
(2010).
HIV-1 transmission by dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) is regulated by determinants in the carbohydrate recognition domain that are absent in liver/lymph node-SIGN (L-SIGN).
|
| |
J Biol Chem,
285,
2100-2112.
|
 |
|
|
|
|
 |
N.Shibata,
and
Y.Okawa
(2010).
Enzymatic synthesis of new oligosaccharides using mannosyltransferases from Candida species and their NMR assignments.
|
| |
Biol Pharm Bull,
33,
895-899.
|
 |
|
|
|
|
 |
P.J.Coombs,
R.Harrison,
S.Pemberton,
A.Quintero-Martinez,
S.Parry,
S.M.Haslam,
A.Dell,
M.E.Taylor,
and
K.Drickamer
(2010).
Identification of novel contributions to high-affinity glycoprotein-receptor interactions using engineered ligands.
|
| |
J Mol Biol,
396,
685-696.
|
 |
|
|
|
|
 |
R.Yabe,
H.Tateno,
and
J.Hirabayashi
(2010).
Frontal affinity chromatography analysis of constructs of DC-SIGN, DC-SIGNR and LSECtin extend evidence for affinity to agalactosylated N-glycans.
|
| |
FEBS J,
277,
4010-4026.
|
 |
|
|
|
|
 |
V.Coelho,
S.Krysov,
A.M.Ghaemmaghami,
M.Emara,
K.N.Potter,
P.Johnson,
G.Packham,
L.Martinez-Pomares,
and
F.K.Stevenson
(2010).
Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins.
|
| |
Proc Natl Acad Sci U S A,
107,
18587-18592.
|
 |
|
|
|
|
 |
Y.Zhou,
K.Lu,
S.Pfefferle,
S.Bertram,
I.Glowacka,
C.Drosten,
S.Pöhlmann,
and
G.Simmons
(2010).
A single asparagine-linked glycosylation site of the severe acute respiratory syndrome coronavirus spike glycoprotein facilitates inhibition by mannose-binding lectin through multiple mechanisms.
|
| |
J Virol,
84,
8753-8764.
|
 |
|
|
|
|
 |
A.E.Zeituni,
R.Jotwani,
J.Carrion,
and
C.W.Cutler
(2009).
Targeting of DC-SIGN on human dendritic cells by minor fimbriated Porphyromonas gingivalis strains elicits a distinct effector T cell response.
|
| |
J Immunol,
183,
5694-5704.
|
 |
|
|
|
|
 |
A.Pashov,
S.Garimalla,
B.Monzavi-Karbassi,
and
T.Kieber-Emmons
(2009).
Carbohydrate targets in HIV vaccine research: lessons from failures.
|
| |
Immunotherapy,
1,
777-794.
|
 |
|
|
|
|
 |
B.Ernst,
and
J.L.Magnani
(2009).
From carbohydrate leads to glycomimetic drugs.
|
| |
Nat Rev Drug Discov,
8,
661-677.
|
 |
|
|
|
|
 |
E.P.Go,
Q.Chang,
H.X.Liao,
L.L.Sutherland,
S.M.Alam,
B.F.Haynes,
and
H.Desaire
(2009).
Glycosylation site-specific analysis of clade C HIV-1 envelope proteins.
|
| |
J Proteome Res,
8,
4231-4242.
|
 |
|
|
|
|
 |
G.Tabarani,
M.Thépaut,
D.Stroebel,
C.Ebel,
C.Vivès,
P.Vachette,
D.Durand,
and
F.Fieschi
(2009).
DC-SIGN neck domain is a pH-sensor controlling oligomerization: SAXS and hydrodynamic studies of extracellular domain.
|
| |
J Biol Chem,
284,
21229-21240.
|
 |
|
|
|
|
 |
J.Vidal-Dupiol,
M.Adjeroud,
E.Roger,
L.Foure,
D.Duval,
Y.Mone,
C.Ferrier-Pages,
E.Tambutte,
S.Tambutte,
D.Zoccola,
D.Allemand,
and
G.Mitta
(2009).
Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms.
|
| |
BMC Physiol,
9,
14.
|
 |
|
|
|
|
 |
K.Hacker,
L.White,
and
A.M.de Silva
(2009).
N-Linked glycans on dengue viruses grown in mammalian and insect cells.
|
| |
J Gen Virol,
90,
2097-2106.
|
 |
|
|
|
|
 |
M.E.Taylor,
and
K.Drickamer
(2009).
Structural insights into what glycan arrays tell us about how glycan-binding proteins interact with their ligands.
|
| |
Glycobiology,
19,
1155-1162.
|
 |
|
|
|
|
 |
O.Martínez-Avila,
K.Hijazi,
M.Marradi,
C.Clavel,
C.Campion,
C.Kelly,
and
S.Penadés
(2009).
Gold manno-glyconanoparticles: multivalent systems to block HIV-1 gp120 binding to the lectin DC-SIGN.
|
| |
Chemistry,
15,
9874-9888.
|
 |
|
|
|
|
 |
O.Martínez-Avila,
L.M.Bedoya,
M.Marradi,
C.Clavel,
J.Alcamí,
and
S.Penadés
(2009).
Multivalent manno-glyconanoparticles inhibit DC-SIGN-mediated HIV-1 trans-infection of human T cells.
|
| |
Chembiochem,
10,
1806-1809.
|
 |
|
|
|
|
 |
R.D.Cummings
(2009).
The repertoire of glycan determinants in the human glycome.
|
| |
Mol Biosyst,
5,
1087-1104.
|
 |
|
|
|
|
 |
S.A.Graham,
S.A.Jégouzo,
S.Yan,
A.S.Powlesland,
J.P.Brady,
M.E.Taylor,
and
K.Drickamer
(2009).
Prolectin, a Glycan-binding Receptor on Dividing B Cells in Germinal Centers.
|
| |
J Biol Chem,
284,
18537-18544.
|
 |
|
|
|
|
 |
S.I.Gringhuis,
J.den Dunnen,
M.Litjens,
M.van der Vlist,
and
T.B.Geijtenbeek
(2009).
Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori.
|
| |
Nat Immunol,
10,
1081-1088.
|
 |
|
|
|
|
 |
S.J.Park,
and
B.Mehrad
(2009).
Innate immunity to Aspergillus species.
|
| |
Clin Microbiol Rev,
22,
535-551.
|
 |
|
|
|
|
 |
S.Menon,
K.Rosenberg,
S.A.Graham,
E.M.Ward,
M.E.Taylor,
K.Drickamer,
and
D.E.Leckband
(2009).
Binding-site geometry and flexibility in DC-SIGN demonstrated with surface force measurements.
|
| |
Proc Natl Acad Sci U S A,
106,
11524-11529.
|
 |
|
|
|
|
 |
A.Bugarcic,
K.Hitchens,
A.G.Beckhouse,
C.A.Wells,
R.B.Ashman,
and
H.Blanchard
(2008).
Human and mouse macrophage-inducible C-type lectin (Mincle) bind Candida albicans.
|
| |
Glycobiology,
18,
679-685.
|
 |
|
|
|
|
 |
A.Cambi,
M.G.Netea,
H.M.Mora-Montes,
N.A.Gow,
S.V.Hato,
D.W.Lowman,
B.J.Kullberg,
R.Torensma,
D.L.Williams,
and
C.G.Figdor
(2008).
Dendritic cell interaction with Candida albicans critically depends on N-linked mannan.
|
| |
J Biol Chem,
283,
20590-20599.
|
 |
|
|
|
|
 |
A.D.Regan,
and
G.R.Whittaker
(2008).
Utilization of DC-SIGN for entry of feline coronaviruses into host cells.
|
| |
J Virol,
82,
11992-11996.
|
 |
|
|
|
|
 |
A.K.Azad,
J.B.Torrelles,
and
L.S.Schlesinger
(2008).
Mutation in the DC-SIGN cytoplasmic triacidic cluster motif markedly attenuates receptor activity for phagocytosis and endocytosis of mannose-containing ligands by human myeloid cells.
|
| |
J Leukoc Biol,
84,
1594-1603.
|
 |
|
|
|
|
 |
A.Rathore,
A.Chatterjee,
P.Sivarama,
N.Yamamoto,
and
T.N.Dhole
(2008).
Role of Homozygous DC-SIGNR 5/5 Tandem Repeat Polymorphism in HIV-1 Exposed Seronegative North Indian Individuals.
|
| |
J Clin Immunol,
28,
50-57.
|
 |
|
|
|
|
 |
C.A.Aarnoudse,
M.Bax,
M.Sánchez-Hernández,
J.J.García-Vallejo,
and
Y.van Kooyk
(2008).
Glycan modification of the tumor antigen gp100 targets DC-SIGN to enhance dendritic cell induced antigen presentation to T cells.
|
| |
Int J Cancer,
122,
839-846.
|
 |
|
|
|
|
 |
C.K.Tang,
K.C.Sheng,
V.Apostolopoulos,
and
G.A.Pietersz
(2008).
Protein/peptide and DNA vaccine delivery by targeting C-type lectin receptors.
|
| |
Expert Rev Vaccines,
7,
1005-1018.
|
 |
|
|
|
|
 |
E.W.Adams,
D.M.Ratner,
P.H.Seeberger,
and
N.Hacohen
(2008).
Carbohydrate-mediated targeting of antigen to dendritic cells leads to enhanced presentation of antigen to T cells.
|
| |
Chembiochem,
9,
294-303.
|
 |
|
|
|
|
 |
G.Cannon,
Y.Yi,
H.Ni,
E.Stoddard,
D.A.Scales,
D.I.Van Ryk,
I.Chaiken,
D.Malamud,
and
D.Weissman
(2008).
HIV envelope binding by macrophage-expressed gp340 promotes HIV-1 infection.
|
| |
J Immunol,
181,
2065-2070.
|
 |
|
|
|
|
 |
J.Angulo,
I.Díaz,
J.J.Reina,
G.Tabarani,
F.Fieschi,
J.Rojo,
and
P.M.Nieto
(2008).
Saturation transfer difference (STD) NMR spectroscopy characterization of dual binding mode of a mannose disaccharide to DC-SIGN.
|
| |
Chembiochem,
9,
2225-2227.
|
 |
|
|
|
|
 |
J.J.Reina,
I.Díaz,
P.M.Nieto,
N.E.Campillo,
J.A.Páez,
G.Tabarani,
F.Fieschi,
and
J.Rojo
(2008).
Docking, synthesis, and NMR studies of mannosyl trisaccharide ligands for DC-SIGN lectin.
|
| |
Org Biomol Chem,
6,
2743-2754.
|
 |
|
|
|
|
 |
J.L.Miller,
B.J.deWet,
L.Martinez-Pomares,
C.M.Radcliffe,
R.A.Dwek,
P.M.Rudd,
and
S.Gordon
(2008).
The mannose receptor mediates dengue virus infection of macrophages.
|
| |
PLoS Pathog,
4,
e17.
|
 |
|
|
|
|
 |
J.P.Gourdine,
G.Cioci,
L.Miguet,
C.Unverzagt,
D.V.Silva,
A.Varrot,
C.Gautier,
E.J.Smith-Ravin,
and
A.Imberty
(2008).
High affinity interaction between a bivalve C-type lectin and a biantennary complex-type N-glycan revealed by crystallography and microcalorimetry.
|
| |
J Biol Chem,
283,
30112-30120.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Borggren,
J.Repits,
C.Kuylenstierna,
J.Sterjovski,
M.J.Churchill,
D.F.Purcell,
A.Karlsson,
J.Albert,
P.R.Gorry,
and
M.Jansson
(2008).
Evolution of DC-SIGN use revealed by fitness studies of R5 HIV-1 variants emerging during AIDS progression.
|
| |
Retrovirology,
5,
28.
|
 |
|
|
|
|
 |
S.Józefowski,
A.Sobota,
and
K.Kwiatkowska
(2008).
How Mycobacterium tuberculosis subverts host immune responses.
|
| |
Bioessays,
30,
943-954.
|
 |
|
|
|
|
 |
S.K.Wang,
P.H.Liang,
R.D.Astronomo,
T.L.Hsu,
S.L.Hsieh,
D.R.Burton,
and
C.H.Wong
(2008).
Targeting the carbohydrates on HIV-1: Interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN.
|
| |
Proc Natl Acad Sci U S A,
105,
3690-3695.
|
 |
|
|
|
|
 |
U.S.Khoo,
K.Y.Chan,
V.S.Chan,
and
C.L.Lin
(2008).
DC-SIGN and L-SIGN: the SIGNs for infection.
|
| |
J Mol Med,
86,
861-874.
|
 |
|
|
|
|
 |
B.I.de Bakker,
F.de Lange,
A.Cambi,
J.P.Korterik,
E.M.van Dijk,
N.F.van Hulst,
C.G.Figdor,
and
M.F.Garcia-Parajo
(2007).
Nanoscale organization of the pathogen receptor DC-SIGN mapped by single-molecule high-resolution fluorescence microscopy.
|
| |
Chemphyschem,
8,
1473-1480.
|
 |
|
|
|
|
 |
C.N.Scanlan,
J.Offer,
N.Zitzmann,
and
R.A.Dwek
(2007).
Exploiting the defensive sugars of HIV-1 for drug and vaccine design.
|
| |
Nature,
446,
1038-1045.
|
 |
|
|
|
|
 |
D.P.Han,
M.Lohani,
and
M.W.Cho
(2007).
Specific asparagine-linked glycosylation sites are critical for DC-SIGN- and L-SIGN-mediated severe acute respiratory syndrome coronavirus entry.
|
| |
J Virol,
81,
12029-12039.
|
 |
|
|
|
|
 |
D.Serrano-Gómez,
R.T.Martínez-Nuñez,
E.Sierra-Filardi,
N.Izquierdo,
M.Colmenares,
J.Pla,
L.Rivas,
J.Martinez-Picado,
J.Jimenez-Barbero,
J.L.Alonso-Lebrero,
S.González,
and
A.L.Corbí
(2007).
AM3 modulates dendritic cell pathogen recognition capabilities by targeting DC-SIGN.
|
| |
Antimicrob Agents Chemother,
51,
2313-2323.
|
 |
|
|
|
|
 |
E.Mizoguchi,
and
A.Mizoguchi
(2007).
Is the sugar always sweet in intestinal inflammation?
|
| |
Immunol Res,
37,
47-60.
|
 |
|
|
|
|
 |
H.Feinberg,
M.E.Taylor,
and
W.I.Weis
(2007).
Scavenger receptor C-type lectin binds to the leukocyte cell surface glycan Lewis(x) by a novel mechanism.
|
| |
J Biol Chem,
282,
17250-17258.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Feinberg,
R.Castelli,
K.Drickamer,
P.H.Seeberger,
and
W.I.Weis
(2007).
Multiple modes of binding enhance the affinity of DC-SIGN for high mannose N-linked glycans found on viral glycoproteins.
|
| |
J Biol Chem,
282,
4202-4209.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Balzarini
(2007).
Targeting the glycans of glycoproteins: a novel paradigm for antiviral therapy.
|
| |
Nat Rev Microbiol,
5,
583-597.
|
 |
|
|
|
|
 |
J.J.Reina,
S.Sattin,
D.Invernizzi,
S.Mari,
L.Martínez-Prats,
G.Tabarani,
F.Fieschi,
R.Delgado,
P.M.Nieto,
J.Rojo,
and
A.Bernardi
(2007).
1,2-Mannobioside Mimic: Synthesis, DC-SIGN Interaction by NMR and Docking, and Antiviral Activity.
|
| |
ChemMedChem,
2,
1030-1036.
|
 |
|
|
|
|
 |
M.J.Borrok,
and
L.L.Kiessling
(2007).
Non-carbohydrate inhibitors of the lectin DC-SIGN.
|
| |
J Am Chem Soc,
129,
12780-12785.
|
 |
|
|
|
|
 |
N.Wichukchinda,
Y.Kitamura,
A.Rojanawiwat,
E.E.Nakayama,
H.Song,
P.Pathipvanich,
W.Auwanit,
P.Sawanpanyalert,
A.Iwamoto,
T.Shioda,
and
K.Ariyoshi
(2007).
The polymorphisms in DC-SIGNR affect susceptibility to HIV type 1 infection.
|
| |
AIDS Res Hum Retroviruses,
23,
686-692.
|
 |
|
|
|
|
 |
P.W.Hong,
S.Nguyen,
S.Young,
S.V.Su,
and
B.Lee
(2007).
Identification of the optimal DC-SIGN binding site on human immunodeficiency virus type 1 gp120.
|
| |
J Virol,
81,
8325-8336.
|
 |
|
|
|
|
 |
R.Furmonaviciene,
A.M.Ghaemmaghami,
S.E.Boyd,
N.S.Jones,
K.Bailey,
A.C.Willis,
H.F.Sewell,
D.A.Mitchell,
and
F.Shakib
(2007).
The protease allergen Der p 1 cleaves cell surface DC-SIGN and DC-SIGNR: experimental analysis of in silico substrate identification and implications in allergic responses.
|
| |
Clin Exp Allergy,
37,
231-242.
|
 |
|
|
|
|
 |
A.A.Nabatov,
T.van Montfort,
T.B.Geijtenbeek,
G.Pollakis,
and
W.A.Paxton
(2006).
Interaction of HIV-1 with dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin-expressing cells is influenced by gp120 envelope modifications associated with disease progression.
|
| |
FEBS J,
273,
4944-4958.
|
 |
|
|
|
|
 |
B.A.Wurzburg,
S.S.Tarchevskaya,
and
T.S.Jardetzky
(2006).
Structural changes in the lectin domain of CD23, the low-affinity IgE receptor, upon calcium binding.
|
| |
Structure,
14,
1049-1058.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.W.Davis,
H.Y.Nguyen,
S.L.Hanna,
M.D.Sánchez,
R.W.Doms,
and
T.C.Pierson
(2006).
West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection.
|
| |
J Virol,
80,
1290-1301.
|
 |
|
|
|
|
 |
E.Pokidysheva,
Y.Zhang,
A.J.Battisti,
C.M.Bator-Kelly,
P.R.Chipman,
C.Xiao,
G.G.Gregorio,
W.A.Hendrickson,
R.J.Kuhn,
and
M.G.Rossmann
(2006).
Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN.
|
| |
Cell,
124,
485-493.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Hofmann,
G.Simmons,
A.J.Rennekamp,
C.Chaipan,
T.Gramberg,
E.Heck,
M.Geier,
A.Wegele,
A.Marzi,
P.Bates,
and
S.Pöhlmann
(2006).
Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors.
|
| |
J Virol,
80,
8639-8652.
|
 |
|
|
|
|
 |
J.H.Martens,
J.Kzhyshkowska,
M.Falkowski-Hansen,
K.Schledzewski,
A.Gratchev,
U.Mansmann,
C.Schmuttermaier,
E.Dippel,
W.Koenen,
F.Riedel,
M.Sankala,
K.Tryggvason,
L.Kobzik,
G.Moldenhauer,
B.Arnold,
and
S.Goerdt
(2006).
Differential expression of a gene signature for scavenger/lectin receptors by endothelial cells and macrophages in human lymph node sinuses, the primary sites of regional metastasis.
|
| |
J Pathol,
208,
574-589.
|
 |
|
|
|
|
 |
J.M.Binley,
S.Ngo-Abdalla,
P.Moore,
M.Bobardt,
U.Chatterji,
P.Gallay,
D.R.Burton,
I.A.Wilson,
J.H.Elder,
and
A.de Parseval
(2006).
Inhibition of HIV Env binding to cellular receptors by monoclonal antibody 2G12 as probed by Fc-tagged gp120.
|
| |
Retrovirology,
3,
39.
|
 |
|
|
|
|
 |
J.Nattermann,
G.Ahlenstiel,
T.Berg,
G.Feldmann,
H.D.Nischalke,
T.Müller,
J.Rockstroh,
R.Woitas,
T.Sauerbruch,
and
U.Spengler
(2006).
The tandem-repeat polymorphism of the DC-SIGNR gene in HCV infection.
|
| |
J Viral Hepat,
13,
42-46.
|
 |
|
|
|
|
 |
K.L.White,
T.Rades,
R.H.Furneaux,
P.C.Tyler,
and
S.Hook
(2006).
Mannosylated liposomes as antigen delivery vehicles for targeting to dendritic cells.
|
| |
J Pharm Pharmacol,
58,
729-737.
|
 |
|
|
|
|
 |
L.Steeghs,
S.J.van Vliet,
H.Uronen-Hansson,
A.van Mourik,
A.Engering,
M.Sanchez-Hernandez,
N.Klein,
R.Callard,
J.P.van Putten,
P.van der Ley,
Y.van Kooyk,
and
J.G.van de Winkel
(2006).
Neisseria meningitidis expressing lgtB lipopolysaccharide targets DC-SIGN and modulates dendritic cell function.
|
| |
Cell Microbiol,
8,
316-325.
|
 |
|
|
|
|
 |
L.Wu,
and
V.N.KewalRamani
(2006).
Dendritic-cell interactions with HIV: infection and viral dissemination.
|
| |
Nat Rev Immunol,
6,
859-868.
|
 |
|
|
|
|
 |
P.D.Sun
(2006).
Human CD23: is it a lectin in disguise?
|
| |
Structure,
14,
950-951.
|
 |
|
|
|
|
 |
S.Boukour,
J.M.Massé,
L.Bénit,
A.Dubart-Kupperschmitt,
and
E.M.Cramer
(2006).
Lentivirus degradation and DC-SIGN expression by human platelets and megakaryocytes.
|
| |
J Thromb Haemost,
4,
426-435.
|
 |
|
|
|
|
 |
S.Bulgheresi,
I.Schabussova,
T.Chen,
N.P.Mullin,
R.M.Maizels,
and
J.A.Ott
(2006).
A new C-type lectin similar to the human immunoreceptor DC-SIGN mediates symbiont acquisition by a marine nematode.
|
| |
Appl Environ Microbiol,
72,
2950-2956.
|
 |
|
|
|
|
 |
S.J.Lee,
R.Arora,
L.M.Bull,
R.C.Arduino,
L.Garza,
J.Allan,
J.T.Kimata,
and
P.Zhou
(2006).
A nonneutralizing anti-HIV Type 1 antibody turns into a broad neutralizing antibody when expressed on the surface of HIV type 1-susceptible cells. II. Inhibition of HIV type 1 captured and transferred by DC-SIGN.
|
| |
AIDS Res Hum Retroviruses,
22,
874-883.
|
 |
|
|
|
|
 |
V.S.Chan,
K.Y.Chan,
Y.Chen,
L.L.Poon,
A.N.Cheung,
B.Zheng,
K.H.Chan,
W.Mak,
H.Y.Ngan,
X.Xu,
G.Screaton,
P.K.Tam,
J.M.Austyn,
L.C.Chan,
S.P.Yip,
M.Peiris,
U.S.Khoo,
and
C.L.Lin
(2006).
Homozygous L-SIGN (CLEC4M) plays a protective role in SARS coronavirus infection.
|
| |
Nat Genet,
38,
38-46.
|
 |
|
|
|
|
 |
A.N.Zelensky,
and
J.E.Gready
(2005).
The C-type lectin-like domain superfamily.
|
| |
FEBS J,
272,
6179-6217.
|
 |
|
|
|
|
 |
C.Nobile,
C.Petit,
A.Moris,
K.Skrabal,
J.P.Abastado,
F.Mammano,
and
O.Schwartz
(2005).
Covert human immunodeficiency virus replication in dendritic cells and in DC-SIGN-expressing cells promotes long-term transmission to lymphocytes.
|
| |
J Virol,
79,
5386-5399.
|
 |
|
|
|
|
 |
D.G.Reed,
L.H.Nopo-Olazabal,
V.Funk,
B.J.Woffenden,
M.J.Reidy,
M.C.Dolan,
C.L.Cramer,
and
F.Medina-Bolivar
(2005).
Expression of functional hexahistidine-tagged ricin B in tobacco.
|
| |
Plant Cell Rep,
24,
15-24.
|
 |
|
|
|
|
 |
D.Revie,
R.S.Braich,
D.Bayles,
N.Chelyapov,
R.Khan,
C.Geer,
R.Reisman,
A.S.Kelley,
J.G.Prichard,
and
S.Z.Salahuddin
(2005).
Transmission of human hepatitis C virus from patients in secondary cells for long term culture.
|
| |
Virol J,
2,
37.
|
 |
|
|
|
|
 |
G.A.Snyder,
J.Ford,
P.Torabi-Parizi,
J.A.Arthos,
P.Schuck,
M.Colonna,
and
P.D.Sun
(2005).
Characterization of DC-SIGN/R interaction with human immunodeficiency virus type 1 gp120 and ICAM molecules favors the receptor's role as an antigen-capturing rather than an adhesion receptor.
|
| |
J Virol,
79,
4589-4598.
|
 |
|
|
|
|
 |
H.Liu,
F.Hladik,
T.Andrus,
P.Sakchalathorn,
G.M.Lentz,
M.F.Fialkow,
L.Corey,
M.J.McElrath,
and
T.Zhu
(2005).
Most DC-SIGNR transcripts at mucosal HIV transmission sites are alternatively spliced isoforms.
|
| |
Eur J Hum Genet,
13,
707-715.
|
 |
|
|
|
|
 |
K.P.van Gisbergen,
M.Sanchez-Hernandez,
T.B.Geijtenbeek,
and
Y.van Kooyk
(2005).
Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN.
|
| |
J Exp Med,
201,
1281-1292.
|
 |
|
|
|
|
 |
K.P.van Gisbergen,
T.B.Geijtenbeek,
and
Y.van Kooyk
(2005).
Close encounters of neutrophils and DCs.
|
| |
Trends Immunol,
26,
626-631.
|
 |
|
|
|
|
 |
N.K.Viebig,
K.T.Andrews,
Y.Kooyk,
M.Lanzer,
and
P.A.Knolle
(2005).
Evaluation of the role of the endocytic receptor L-SIGN for cytoadhesion of Plasmodium falciparum-infected erythrocytes.
|
| |
Parasitol Res,
96,
247-252.
|
 |
|
|
|
|
 |
R.R.Dinglasan,
and
M.Jacobs-Lorena
(2005).
Insight into a conserved lifestyle: protein-carbohydrate adhesion strategies of vector-borne pathogens.
|
| |
Infect Immun,
73,
7797-7807.
|
 |
|
|
|
|
 |
Y.Modis,
S.Ogata,
D.Clements,
and
S.C.Harrison
(2005).
Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein.
|
| |
J Virol,
79,
1223-1231.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Hokama,
E.Mizoguchi,
K.Sugimoto,
Y.Shimomura,
Y.Tanaka,
M.Yoshida,
S.T.Rietdijk,
Y.P.de Jong,
S.B.Snapper,
C.Terhorst,
R.S.Blumberg,
and
A.Mizoguchi
(2004).
Induced reactivity of intestinal CD4(+) T cells with an epithelial cell lectin, galectin-4, contributes to exacerbation of intestinal inflammation.
|
| |
Immunity,
20,
681-693.
|
 |
|
|
|
|
 |
A.Marzi,
T.Gramberg,
G.Simmons,
P.Möller,
A.J.Rennekamp,
M.Krumbiegel,
M.Geier,
J.Eisemann,
N.Turza,
B.Saunier,
A.Steinkasserer,
S.Becker,
P.Bates,
H.Hofmann,
and
S.Pöhlmann
(2004).
DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus.
|
| |
J Virol,
78,
12090-12095.
|
 |
|
|
|
|
 |
A.Takada,
K.Fujioka,
M.Tsuiji,
A.Morikawa,
N.Higashi,
H.Ebihara,
D.Kobasa,
H.Feldmann,
T.Irimura,
and
Y.Kawaoka
(2004).
Human macrophage C-type lectin specific for galactose and N-acetylgalactosamine promotes filovirus entry.
|
| |
J Virol,
78,
2943-2947.
|
 |
|
|
|
|
 |
B.Tomkowicz,
and
R.G.Collman
(2004).
HIV-1 entry inhibitors: closing the front door.
|
| |
Expert Opin Ther Targets,
8,
65-78.
|
 |
|
|
|
|
 |
I.S.Ludwig,
A.N.Lekkerkerker,
E.Depla,
F.Bosman,
R.J.Musters,
S.Depraetere,
Y.van Kooyk,
and
T.B.Geijtenbeek
(2004).
Hepatitis C virus targets DC-SIGN and L-SIGN to escape lysosomal degradation.
|
| |
J Virol,
78,
8322-8332.
|
 |
|
|
|
|
 |
K.H.Soanes,
K.Figuereido,
R.C.Richards,
N.R.Mattatall,
and
K.V.Ewart
(2004).
Sequence and expression of C-type lectin receptors in Atlantic salmon (Salmo salar).
|
| |
Immunogenetics,
56,
572-584.
|
 |
|
|
|
|
 |
L.Malinina,
M.L.Malakhova,
A.Teplov,
R.E.Brown,
and
D.J.Patel
(2004).
Structural basis for glycosphingolipid transfer specificity.
|
| |
Nature,
430,
1048-1053.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Lara,
L.Servín-González,
M.Singh,
C.Moreno,
I.Cohen,
M.Nimtz,
and
C.Espitia
(2004).
Expression, secretion, and glycosylation of the 45- and 47-kDa glycoprotein of Mycobacterium tuberculosis in Streptomyces lividans.
|
| |
Appl Environ Microbiol,
70,
679-685.
|
 |
|
|
|
|
 |
T.B.Geijtenbeek,
S.J.van Vliet,
A.Engering,
B.A.'t Hart,
and
Y.van Kooyk
(2004).
Self- and nonself-recognition by C-type lectins on dendritic cells.
|
| |
Annu Rev Immunol,
22,
33-54.
|
 |
|
|
|
|
 |
Y.Adachi,
T.Ishii,
Y.Ikeda,
A.Hoshino,
H.Tamura,
J.Aketagawa,
S.Tanaka,
and
N.Ohno
(2004).
Characterization of beta-glucan recognition site on C-type lectin, dectin 1.
|
| |
Infect Immun,
72,
4159-4171.
|
 |
|
|
|
|
 |
Y.Guo,
H.Feinberg,
E.Conroy,
D.A.Mitchell,
R.Alvarez,
O.Blixt,
M.E.Taylor,
W.I.Weis,
and
K.Drickamer
(2004).
Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR.
|
| |
Nat Struct Mol Biol,
11,
591-598.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.van Kooyk,
A.Engering,
A.N.Lekkerkerker,
I.S.Ludwig,
and
T.B.Geijtenbeek
(2004).
Pathogens use carbohydrates to escape immunity induced by dendritic cells.
|
| |
Curr Opin Immunol,
16,
488-493.
|
 |
|
|
|
|
 |
A.Cambi,
and
C.G.Figdor
(2003).
Dual function of C-type lectin-like receptors in the immune system.
|
| |
Curr Opin Cell Biol,
15,
539-546.
|
 |
|
|
|
|
 |
E.J.Soilleux,
B.Rous,
K.Love,
S.Vowler,
L.S.Morris,
C.Fisher,
and
N.Coleman
(2003).
Myxofibrosarcomas contain large numbers of infiltrating immature dendritic cells.
|
| |
Am J Clin Pathol,
119,
540-545.
|
 |
|
|
|
|
 |
E.Navarro-Sanchez,
R.Altmeyer,
A.Amara,
O.Schwartz,
F.Fieschi,
J.L.Virelizier,
F.Arenzana-Seisdedos,
and
P.Desprès
(2003).
Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses.
|
| |
EMBO Rep,
4,
723-728.
|
 |
|
|
|
|
 |
G.Lin,
G.Simmons,
S.Pöhlmann,
F.Baribaud,
H.Ni,
G.J.Leslie,
B.S.Haggarty,
P.Bates,
D.Weissman,
J.A.Hoxie,
and
R.W.Doms
(2003).
Differential N-linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR.
|
| |
J Virol,
77,
1337-1346.
|
 |
|
|
|
|
 |
G.T.Spear,
M.R.Zariffard,
J.Xin,
and
M.Saifuddin
(2003).
Inhibition of DC-SIGN-mediated trans infection of T cells by mannose-binding lectin.
|
| |
Immunology,
110,
80-85.
|
 |
|
|
|
|
 |
J.P.Gardner,
R.J.Durso,
R.R.Arrigale,
G.P.Donovan,
P.J.Maddon,
T.Dragic,
and
W.C.Olson
(2003).
L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus.
|
| |
Proc Natl Acad Sci U S A,
100,
4498-4503.
|
 |
|
|
|
|
 |
L.Tailleux,
O.Schwartz,
J.L.Herrmann,
E.Pivert,
M.Jackson,
A.Amara,
L.Legres,
D.Dreher,
L.P.Nicod,
J.C.Gluckman,
P.H.Lagrange,
B.Gicquel,
and
O.Neyrolles
(2003).
DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells.
|
| |
J Exp Med,
197,
121-127.
|
 |
|
|
|
|
 |
Q.Vicens,
and
E.Westhof
(2003).
Molecular recognition of aminoglycoside antibiotics by ribosomal RNA and resistance enzymes: an analysis of x-ray crystal structures.
|
| |
Biopolymers,
70,
42-57.
|
 |
|
|
|
|
 |
S.Pöhlmann,
J.Zhang,
F.Baribaud,
Z.Chen,
G.J.Leslie,
G.Lin,
A.Granelli-Piperno,
R.W.Doms,
C.M.Rice,
and
J.A.McKeating
(2003).
Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR.
|
| |
J Virol,
77,
4070-4080.
|
 |
|
|
|
|
 |
T.B.Geijtenbeek,
S.J.Van Vliet,
E.A.Koppel,
M.Sanchez-Hernandez,
C.M.Vandenbroucke-Grauls,
B.Appelmelk,
and
Y.Van Kooyk
(2003).
Mycobacteria target DC-SIGN to suppress dendritic cell function.
|
| |
J Exp Med,
197,
7.
|
 |
|
|
|
|
 |
T.B.Geijtenbeek,
and
Y.van Kooyk
(2003).
Pathogens target DC-SIGN to influence their fate DC-SIGN functions as a pathogen receptor with broad specificity.
|
| |
APMIS,
111,
698-714.
|
 |
|
|
|
|
 |
W.B.Klimstra,
E.M.Nangle,
M.S.Smith,
A.D.Yurochko,
and
K.D.Ryman
(2003).
DC-SIGN and L-SIGN can act as attachment receptors for alphaviruses and distinguish between mosquito cell- and mammalian cell-derived viruses.
|
| |
J Virol,
77,
12022-12032.
|
 |
|
|
|
|
 |
Y.van Kooyk,
B.Appelmelk,
and
T.B.Geijtenbeek
(2003).
A fatal attraction: Mycobacterium tuberculosis and HIV-1 target DC-SIGN to escape immune surveillance.
|
| |
Trends Mol Med,
9,
153-159.
|
 |
|
|
|
|
 |
Y.van Kooyk,
and
T.B.Geijtenbeek
(2003).
DC-SIGN: escape mechanism for pathogens.
|
| |
Nat Rev Immunol,
3,
697-709.
|
 |
|
|
|
|
 |
C.G.Figdor,
Y.van Kooyk,
and
G.J.Adema
(2002).
C-type lectin receptors on dendritic cells and Langerhans cells.
|
| |
Nat Rev Immunol,
2,
77-84.
|
 |
|
|
|
|
 |
C.L.Fuller,
Y.K.Choi,
B.A.Fallert,
S.Capuano,
P.Rajakumar,
M.Murphey-Corb,
and
T.A.Reinhart
(2002).
Restricted SIV replication in rhesus macaque lung tissues during the acute phase of infection.
|
| |
Am J Pathol,
161,
969-978.
|
 |
|
|
|
|
 |
C.N.Scanlan,
R.Pantophlet,
M.R.Wormald,
E.Ollmann Saphire,
R.Stanfield,
I.A.Wilson,
H.Katinger,
R.A.Dwek,
P.M.Rudd,
and
D.R.Burton
(2002).
The broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2G12 recognizes a cluster of alpha1-->2 mannose residues on the outer face of gp120.
|
| |
J Virol,
76,
7306-7321.
|
 |
|
|
|
|
 |
F.Baribaud,
R.W.Doms,
and
S.Pöhlmann
(2002).
The role of DC-SIGN and DC-SIGNR in HIV and Ebola virus infection: can potential therapeutics block virus transmission and dissemination?
|
| |
Expert Opin Ther Targets,
6,
423-431.
|
 |
|
|
|
|
 |
F.Baribaud,
S.Pöhlmann,
G.Leslie,
F.Mortari,
and
R.W.Doms
(2002).
Quantitative expression and virus transmission analysis of DC-SIGN on monocyte-derived dendritic cells.
|
| |
J Virol,
76,
9135-9142.
|
 |
|
|
|
|
 |
L.Wu,
T.D.Martin,
R.Vazeux,
D.Unutmaz,
and
V.N.KewalRamani
(2002).
Functional evaluation of DC-SIGN monoclonal antibodies reveals DC-SIGN interactions with ICAM-3 do not promote human immunodeficiency virus type 1 transmission.
|
| |
J Virol,
76,
5905-5914.
|
 |
|
|
|
|
 |
P.W.Hong,
K.B.Flummerfelt,
A.de Parseval,
K.Gurney,
J.H.Elder,
and
B.Lee
(2002).
Human immunodeficiency virus envelope (gp120) binding to DC-SIGN and primary dendritic cells is carbohydrate dependent but does not involve 2G12 or cyanovirin binding sites: implications for structural analyses of gp120-DC-SIGN binding.
|
| |
J Virol,
76,
12855-12865.
|
 |
|
|
|
|
 |
R.W.Sanders,
M.Venturi,
L.Schiffner,
R.Kalyanaraman,
H.Katinger,
K.O.Lloyd,
P.D.Kwong,
and
J.P.Moore
(2002).
The mannose-dependent epitope for neutralizing antibody 2G12 on human immunodeficiency virus type 1 glycoprotein gp120.
|
| |
J Virol,
76,
7293-7305.
|
 |
|
|
|
|
 |
Y.van Kooyk,
and
T.B.Geijtenbeek
(2002).
A novel adhesion pathway that regulates dendritic cell trafficking and T cell interactions.
|
| |
Immunol Rev,
186,
47-56.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |