 |
PDBsum entry 1jpa
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.2.7.10.1
- receptor protein-tyrosine kinase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
L-tyrosyl-[protein] + ATP = O-phospho-L-tyrosyl-[protein] + ADP + H+
|
 |
 |
 |
 |
 |
L-tyrosyl-[protein]
|
+
|
ATP
|
=
|
O-phospho-L-tyrosyl-[protein]
|
+
|
ADP
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Cell
106:745-757
(2001)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region.
|
|
L.E.Wybenga-Groot,
B.Baskin,
S.H.Ong,
J.Tong,
T.Pawson,
F.Sicheri.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The Eph receptor tyrosine kinase family is regulated by autophosphorylation
within the juxtamembrane region and the kinase activation segment. We have
solved the X-ray crystal structure to 1.9 A resolution of an autoinhibited,
unphosphorylated form of EphB2 comprised of the juxtamembrane region and the
kinase domain. The structure, supported by mutagenesis data, reveals that the
juxtamembrane segment adopts a helical conformation that distorts the small lobe
of the kinase domain, and blocks the activation segment from attaining an
activated conformation. Phosphorylation of conserved juxtamembrane tyrosines
would relieve this autoinhibition by disturbing the association of the
juxtamembrane segment with the kinase domain, while liberating phosphotyrosine
sites for binding SH2 domains of target proteins. We propose that the
autoinhibitory mechanism employed by EphB2 is a more general device through
which receptor tyrosine kinases are controlled.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 4.
Figure 4. Electrostatic Surface Representation of EphB2Blue
and red regions indicate positive and negative potential,
respectively (10 to −10 k[B]T). Phosphoregulatory residues
Tyr/Phe604 and Tyr/Phe610 are colored light blue. The molecular
surface of EphB2 is oriented as in Figure 2a and was generated
using GRASP (Nicholls et al., 1991)
|
 |
Figure 6.
Figure 6. Schematic Diagram Highlighting Difference between
the Autoinhibited and Active States of the Eph Receptor Family
of Tyrosine KinasesThe active configuration is based on the
crystal structure of active IRK (Protein Data Bank ID 1ir3).
Dashed lines indicate regions of activation segment disorder.
The numbering scheme corresponds to murine EphB2
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Cell
(2001,
106,
745-757)
copyright 2001.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
L.Truitt,
and
A.Freywald
(2011).
Dancing with the dead: Eph receptors and their kinase-null partners.
|
| |
Biochem Cell Biol,
89,
115-129.
|
 |
|
|
|
|
 |
N.Singla,
H.Erdjument-Bromage,
J.P.Himanen,
T.W.Muir,
and
D.B.Nikolov
(2011).
A semisynthetic Eph receptor tyrosine kinase provides insight into ligand-induced kinase activation.
|
| |
Chem Biol,
18,
361-371.
|
 |
|
|
|
|
 |
E.Nievergall,
P.W.Janes,
C.Stegmayer,
M.E.Vail,
F.G.Haj,
S.W.Teng,
B.G.Neel,
P.I.Bastiaens,
and
M.Lackmann
(2010).
PTP1B regulates Eph receptor function and trafficking.
|
| |
J Cell Biol,
191,
1189-1203.
|
 |
|
|
|
|
 |
G.Shi,
G.Yue,
and
R.Zhou
(2010).
EphA3 functions are regulated by collaborating phosphotyrosine residues.
|
| |
Cell Res,
20,
1263-1275.
|
 |
|
|
|
|
 |
M.Rabiller,
M.Getlik,
S.Klüter,
A.Richters,
S.Tückmantel,
J.R.Simard,
and
D.Rauh
(2010).
Proteus in the world of proteins: conformational changes in protein kinases.
|
| |
Arch Pharm (Weinheim),
343,
193-206.
|
 |
|
|
|
|
 |
A.Chase,
B.Schultheis,
S.Kreil,
J.Baxter,
C.Hidalgo-Curtis,
A.Jones,
L.Zhang,
F.H.Grand,
J.V.Melo,
and
N.C.Cross
(2009).
Imatinib sensitivity as a consequence of a CSF1R-Y571D mutation and CSF1/CSF1R signaling abnormalities in the cell line GDM1.
|
| |
Leukemia,
23,
358-364.
|
 |
|
|
|
|
 |
C.Furne,
J.Ricard,
J.R.Cabrera,
L.Pays,
J.R.Bethea,
P.Mehlen,
and
D.J.Liebl
(2009).
EphrinB3 is an anti-apoptotic ligand that inhibits the dependence receptor functions of EphA4 receptors during adult neurogenesis.
|
| |
Biochim Biophys Acta,
1793,
231-238.
|
 |
|
|
|
|
 |
E.Stuttfeld,
and
K.Ballmer-Hofer
(2009).
Structure and function of VEGF receptors.
|
| |
IUBMB Life,
61,
915-922.
|
 |
|
|
|
|
 |
M.Red Brewer,
S.H.Choi,
D.Alvarado,
K.Moravcevic,
A.Pozzi,
M.A.Lemmon,
and
G.Carpenter
(2009).
The juxtamembrane region of the EGF receptor functions as an activation domain.
|
| |
Mol Cell,
34,
641-651.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.K.Noren,
N.Y.Yang,
M.Silldorff,
R.Mutyala,
and
E.B.Pasquale
(2009).
Ephrin-independent regulation of cell substrate adhesion by the EphB4 receptor.
|
| |
Biochem J,
422,
433-442.
|
 |
|
|
|
|
 |
P.W.Janes,
S.H.Wimmer-Kleikamp,
A.S.Frangakis,
K.Treble,
B.Griesshaber,
O.Sabet,
M.Grabenbauer,
A.Y.Ting,
P.Saftig,
P.I.Bastiaens,
and
M.Lackmann
(2009).
Cytoplasmic relaxation of active Eph controls ephrin shedding by ADAM10.
|
| |
PLoS Biol,
7,
e1000215.
|
 |
|
|
|
|
 |
T.J.Petros,
B.R.Shrestha,
and
C.Mason
(2009).
Specificity and sufficiency of EphB1 in driving the ipsilateral retinal projection.
|
| |
J Neurosci,
29,
3463-3474.
|
 |
|
|
|
|
 |
X.Huang,
P.Finerty,
J.R.Walker,
C.Butler-Cole,
M.Vedadi,
M.Schapira,
S.A.Parker,
B.E.Turk,
D.A.Thompson,
and
S.Dhe-Paganon
(2009).
Structural insights into the inhibited states of the Mer receptor tyrosine kinase.
|
| |
J Struct Biol,
165,
88-96.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.J.Park,
Y.Peng,
X.Chen,
C.Dardick,
D.Ruan,
R.Bart,
P.E.Canlas,
and
P.C.Ronald
(2008).
Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity.
|
| |
PLoS Biol,
6,
e231.
|
 |
|
|
|
|
 |
D.N.Finegold,
V.Schacht,
M.A.Kimak,
E.C.Lawrence,
E.Foeldi,
J.M.Karlsson,
C.J.Baty,
and
R.E.Ferrell
(2008).
HGF and MET mutations in primary and secondary lymphedema.
|
| |
Lymphat Res Biol,
6,
65-68.
|
 |
|
|
|
|
 |
G.Zogopoulos,
C.Jorgensen,
J.Bacani,
A.Montpetit,
P.Lepage,
V.Ferretti,
L.Chad,
S.Selvarajah,
B.Zanke,
T.J.Hudson,
T.Pawson,
and
S.Gallinger
(2008).
Germline EPHB2 receptor variants in familial colorectal cancer.
|
| |
PLoS ONE,
3,
e2885.
|
 |
|
|
|
|
 |
N.Warner,
L.E.Wybenga-Groot,
and
T.Pawson
(2008).
Analysis of EphA4 receptor tyrosine kinase substrate specificity using peptide-based arrays.
|
| |
FEBS J,
275,
2561-2573.
|
 |
|
|
|
|
 |
P.Kolb,
C.B.Kipouros,
D.Huang,
and
A.Caflisch
(2008).
Structure-based tailoring of compound libraries for high-throughput screening: discovery of novel EphB4 kinase inhibitors.
|
| |
Proteins,
73,
11-18.
|
 |
|
|
|
|
 |
S.H.Wimmer-Kleikamp,
E.Nievergall,
K.Gegenbauer,
S.Adikari,
M.Mansour,
T.Yeadon,
A.W.Boyd,
N.R.Patani,
and
M.Lackmann
(2008).
Elevated protein tyrosine phosphatase activity provokes Eph/ephrin-facilitated adhesion of pre-B leukemia cells.
|
| |
Blood,
112,
721-732.
|
 |
|
|
|
|
 |
T.L.Davis,
J.R.Walker,
P.Loppnau,
C.Butler-Cole,
A.Allali-Hassani,
and
S.Dhe-Paganon
(2008).
Autoregulation by the juxtamembrane region of the human ephrin receptor tyrosine kinase A3 (EphA3).
|
| |
Structure,
16,
873-884.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
W.B.Fang,
D.M.Brantley-Sieders,
Y.Hwang,
A.J.Ham,
and
J.Chen
(2008).
Identification and functional analysis of phosphorylated tyrosine residues within EphA2 receptor tyrosine kinase.
|
| |
J Biol Chem,
283,
16017-16026.
|
 |
|
|
|
|
 |
Y.Mori,
T.Hirokawa,
K.Aoki,
H.Satomi,
S.Takeda,
M.Aburada,
and
K.Miyamoto
(2008).
Structure activity relationships of quinoxalin-2-one derivatives as platelet-derived growth factor-beta receptor (PDGFbeta R) inhibitors, derived from molecular modeling.
|
| |
Chem Pharm Bull (Tokyo),
56,
682-687.
|
 |
|
|
|
|
 |
A.Schmandke,
A.Schmandke,
and
S.M.Strittmatter
(2007).
ROCK and Rho: biochemistry and neuronal functions of Rho-associated protein kinases.
|
| |
Neuroscientist,
13,
454-469.
|
 |
|
|
|
|
 |
B.P.Craddock,
C.Cotter,
and
W.T.Miller
(2007).
Autoinhibition of the insulin-like growth factor I receptor by the juxtamembrane region.
|
| |
FEBS Lett,
581,
3235-3240.
|
 |
|
|
|
|
 |
C.Schalk-Hihi,
H.C.Ma,
G.T.Struble,
S.Bayoumy,
R.Williams,
E.Devine,
I.P.Petrounia,
T.Mezzasalma,
L.Zeng,
C.Schubert,
B.Grasberger,
B.A.Springer,
and
I.C.Deckman
(2007).
Protein engineering of the colony-stimulating factor-1 receptor kinase domain for structural studies.
|
| |
J Biol Chem,
282,
4085-4093.
|
 |
|
|
|
|
 |
C.Schubert,
C.Schalk-Hihi,
G.T.Struble,
H.C.Ma,
I.P.Petrounia,
B.Brandt,
I.C.Deckman,
R.J.Patch,
M.R.Player,
J.C.Spurlino,
and
B.A.Springer
(2007).
Crystal structure of the tyrosine kinase domain of colony-stimulating factor-1 receptor (cFMS) in complex with two inhibitors.
|
| |
J Biol Chem,
282,
4094-4101.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Egea,
and
R.Klein
(2007).
Bidirectional Eph-ephrin signaling during axon guidance.
|
| |
Trends Cell Biol,
17,
230-238.
|
 |
|
|
|
|
 |
J.P.Himanen,
N.Saha,
and
D.B.Nikolov
(2007).
Cell-cell signaling via Eph receptors and ephrins.
|
| |
Curr Opin Cell Biol,
19,
534-542.
|
 |
|
|
|
|
 |
S.Deindl,
T.A.Kadlecek,
T.Brdicka,
X.Cao,
A.Weiss,
and
J.Kuriyan
(2007).
Structural basis for the inhibition of tyrosine kinase activity of ZAP-70.
|
| |
Cell,
129,
735-746.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.A.Leonard,
and
J.H.Hurley
(2007).
Two kinase family dramas.
|
| |
Cell,
129,
1037-1038.
|
 |
|
|
|
|
 |
A.Tefferi,
M.M.Patnaik,
and
A.Pardanani
(2006).
Eosinophilia: secondary, clonal and idiopathic.
|
| |
Br J Haematol,
133,
468-492.
|
 |
|
|
|
|
 |
B.W.Parcells,
A.K.Ikeda,
T.Simms-Waldrip,
T.B.Moore,
and
K.M.Sakamoto
(2006).
FMS-like tyrosine kinase 3 in normal hematopoiesis and acute myeloid leukemia.
|
| |
Stem Cells,
24,
1174-1184.
|
 |
|
|
|
|
 |
J.Holmberg,
M.Genander,
M.M.Halford,
C.Annerén,
M.Sondell,
M.J.Chumley,
R.E.Silvany,
M.Henkemeyer,
and
J.Frisén
(2006).
EphB receptors coordinate migration and proliferation in the intestinal stem cell niche.
|
| |
Cell,
125,
1151-1163.
|
 |
|
|
|
|
 |
M.Funakoshi-Tago,
S.Pelletier,
T.Matsuda,
E.Parganas,
and
J.N.Ihle
(2006).
Receptor specific downregulation of cytokine signaling by autophosphorylation in the FERM domain of Jak2.
|
| |
EMBO J,
25,
4763-4772.
|
 |
|
|
|
|
 |
N.Rahimi
(2006).
VEGFR-1 and VEGFR-2: two non-identical twins with a unique physiognomy.
|
| |
Front Biosci,
11,
818-829.
|
 |
|
|
|
|
 |
N.Rahimi
(2006).
Vascular endothelial growth factor receptors: molecular mechanisms of activation and therapeutic potentials.
|
| |
Exp Eye Res,
83,
1005-1016.
|
 |
|
|
|
|
 |
Q.Su,
S.Wang,
D.Baltzis,
L.K.Qu,
A.H.Wong,
and
A.E.Koromilas
(2006).
Tyrosine phosphorylation acts as a molecular switch to full-scale activation of the eIF2alpha RNA-dependent protein kinase.
|
| |
Proc Natl Acad Sci U S A,
103,
63-68.
|
 |
|
|
|
|
 |
S.Wiesner,
L.E.Wybenga-Groot,
N.Warner,
H.Lin,
T.Pawson,
J.D.Forman-Kay,
and
F.Sicheri
(2006).
A change in conformational dynamics underlies the activation of Eph receptor tyrosine kinases.
|
| |
EMBO J,
25,
4686-4696.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Shintani,
M.Ihara,
H.Sakuta,
H.Takahashi,
I.Watakabe,
and
M.Noda
(2006).
Eph receptors are negatively controlled by protein tyrosine phosphatase receptor type O.
|
| |
Nat Neurosci,
9,
761-769.
|
 |
|
|
|
|
 |
B.Day,
C.To,
J.P.Himanen,
F.M.Smith,
D.B.Nikolov,
A.W.Boyd,
and
M.Lackmann
(2005).
Three distinct molecular surfaces in ephrin-A5 are essential for a functional interaction with EphA3.
|
| |
J Biol Chem,
280,
26526-26532.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.B.Pasquale
(2005).
Eph receptor signalling casts a wide net on cell behaviour.
|
| |
Nat Rev Mol Cell Biol,
6,
462-475.
|
 |
|
|
|
|
 |
J.Egea,
U.V.Nissen,
A.Dufour,
M.Sahin,
P.Greer,
K.Kullander,
T.D.Mrsic-Flogel,
M.E.Greenberg,
O.Kiehn,
P.Vanderhaeghen,
and
R.Klein
(2005).
Regulation of EphA 4 kinase activity is required for a subset of axon guidance decisions suggesting a key role for receptor clustering in Eph function.
|
| |
Neuron,
47,
515-528.
|
 |
|
|
|
|
 |
J.Lennartsson,
T.Jelacic,
D.Linnekin,
and
R.Shivakrupa
(2005).
Normal and oncogenic forms of the receptor tyrosine kinase kit.
|
| |
Stem Cells,
23,
16-43.
|
 |
|
|
|
|
 |
M.Lei,
M.A.Robinson,
and
S.C.Harrison
(2005).
The active conformation of the PAK1 kinase domain.
|
| |
Structure,
13,
769-778.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Parri,
F.Buricchi,
M.L.Taddei,
E.Giannoni,
G.Raugei,
G.Ramponi,
and
P.Chiarugi
(2005).
EphrinA1 repulsive response is regulated by an EphA2 tyrosine phosphatase.
|
| |
J Biol Chem,
280,
34008-34018.
|
 |
|
|
|
|
 |
N.Yokoyama,
I.Ischenko,
M.J.Hayman,
and
W.T.Miller
(2005).
The C terminus of RON tyrosine kinase plays an autoinhibitory role.
|
| |
J Biol Chem,
280,
8893-8900.
|
 |
|
|
|
|
 |
P.Aller,
L.Voiry,
N.Garnier,
and
M.Genest
(2005).
Molecular dynamics (MD) investigations of preformed structures of the transmembrane domain of the oncogenic Neu receptor dimer in a DMPC bilayer.
|
| |
Biopolymers,
77,
184-197.
|
 |
|
|
|
|
 |
T.Brdicka,
T.A.Kadlecek,
J.P.Roose,
A.W.Pastuszak,
and
A.Weiss
(2005).
Intramolecular regulatory switch in ZAP-70: analogy with receptor tyrosine kinases.
|
| |
Mol Cell Biol,
25,
4924-4933.
|
 |
|
|
|
|
 |
X.Wei,
S.Ni,
and
P.H.Correll
(2005).
Uncoupling ligand-dependent and -independent mechanisms for mitogen-activated protein kinase activation by the murine Ron receptor tyrosine kinase.
|
| |
J Biol Chem,
280,
35098-35107.
|
 |
|
|
|
|
 |
C.D.Mol,
D.R.Dougan,
T.R.Schneider,
R.J.Skene,
M.L.Kraus,
D.N.Scheibe,
G.P.Snell,
H.Zou,
B.C.Sang,
and
K.P.Wilson
(2004).
Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase.
|
| |
J Biol Chem,
279,
31655-31663.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.M.Rohde,
J.Schrum,
and
A.W.Lee
(2004).
A juxtamembrane tyrosine in the colony stimulating factor-1 receptor regulates ligand-induced Src association, receptor kinase function, and down-regulation.
|
| |
J Biol Chem,
279,
43448-43461.
|
 |
|
|
|
|
 |
D.Mattoon,
P.Klein,
M.A.Lemmon,
I.Lax,
and
J.Schlessinger
(2004).
The tethered configuration of the EGF receptor extracellular domain exerts only a limited control of receptor function.
|
| |
Proc Natl Acad Sci U S A,
101,
923-928.
|
 |
|
|
|
|
 |
E.K.Park,
N.Warner,
Y.S.Bong,
D.Stapleton,
R.Maeda,
T.Pawson,
and
I.O.Daar
(2004).
Ectopic EphA4 receptor induces posterior protrusions via FGF signaling in Xenopus embryos.
|
| |
Mol Biol Cell,
15,
1647-1655.
|
 |
|
|
|
|
 |
J.Cools,
E.H.Stover,
I.Wlodarska,
P.Marynen,
and
D.G.Gilliland
(2004).
The FIP1L1-PDGFRalpha kinase in hypereosinophilic syndrome and chronic eosinophilic leukemia.
|
| |
Curr Opin Hematol,
11,
51-57.
|
 |
|
|
|
|
 |
J.Griffith,
J.Black,
C.Faerman,
L.Swenson,
M.Wynn,
F.Lu,
J.Lippke,
and
K.Saxena
(2004).
The structural basis for autoinhibition of FLT3 by the juxtamembrane domain.
|
| |
Mol Cell,
13,
169-178.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.R.Dyson,
S.P.Shadbolt,
K.J.Vincent,
R.L.Perera,
and
J.McCafferty
(2004).
Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression.
|
| |
BMC Biotechnol,
4,
32.
|
 |
|
|
|
|
 |
N.J.Dibb,
S.M.Dilworth,
and
C.D.Mol
(2004).
Switching on kinases: oncogenic activation of BRAF and the PDGFR family.
|
| |
Nat Rev Cancer,
4,
718-727.
|
 |
|
|
|
|
 |
P.Peschard,
N.Ishiyama,
T.Lin,
S.Lipkowitz,
and
M.Park
(2004).
A conserved DpYR motif in the juxtamembrane domain of the Met receptor family forms an atypical c-Cbl/Cbl-b tyrosine kinase binding domain binding site required for suppression of oncogenic activation.
|
| |
J Biol Chem,
279,
29565-29571.
|
 |
|
|
|
|
 |
Q.Wu,
Z.Suo,
B.Risberg,
M.G.Karlsson,
K.Villman,
and
J.M.Nesland
(2004).
Expression of Ephb2 and Ephb4 in breast carcinoma.
|
| |
Pathol Oncol Res,
10,
26-33.
|
 |
|
|
|
|
 |
R.M.Melillo,
A.M.Cirafici,
V.De Falco,
M.Bellantoni,
G.Chiappetta,
A.Fusco,
F.Carlomagno,
A.Picascia,
D.Tramontano,
G.Tallini,
and
M.Santoro
(2004).
The oncogenic activity of RET point mutants for follicular thyroid cells may account for the occurrence of papillary thyroid carcinoma in patients affected by familial medullary thyroid carcinoma.
|
| |
Am J Pathol,
165,
511-521.
|
 |
|
|
|
|
 |
S.R.Hubbard
(2004).
Juxtamembrane autoinhibition in receptor tyrosine kinases.
|
| |
Nat Rev Mol Cell Biol,
5,
464-471.
|
 |
|
|
|
|
 |
Y.Kimura,
N.Jones,
M.Klüppel,
M.Hirashima,
K.Tachibana,
J.B.Cohn,
J.L.Wrana,
T.Pawson,
and
A.Bernstein
(2004).
Targeted mutations of the juxtamembrane tyrosines in the Kit receptor tyrosine kinase selectively affect multiple cell lineages.
|
| |
Proc Natl Acad Sci U S A,
101,
6015-6020.
|
 |
|
|
|
|
 |
B.Boitel,
M.Ortiz-Lombardía,
R.Durán,
F.Pompeo,
S.T.Cole,
C.Cerveñansky,
and
P.M.Alzari
(2003).
PknB kinase activity is regulated by phosphorylation in two Thr residues and dephosphorylation by PstP, the cognate phospho-Ser/Thr phosphatase, in Mycobacterium tuberculosis.
|
| |
Mol Microbiol,
49,
1493-1508.
|
 |
|
|
|
|
 |
J.P.Himanen,
and
D.B.Nikolov
(2003).
Eph signaling: a structural view.
|
| |
Trends Neurosci,
26,
46-51.
|
 |
|
|
|
|
 |
J.P.Himanen,
and
D.B.Nikolov
(2003).
Eph receptors and ephrins.
|
| |
Int J Biochem Cell Biol,
35,
130-134.
|
 |
|
|
|
|
 |
J.Schlessinger
(2003).
Signal transduction. Autoinhibition control.
|
| |
Science,
300,
750-752.
|
 |
|
|
|
|
 |
J.Tong,
S.Elowe,
P.Nash,
and
T.Pawson
(2003).
Manipulation of EphB2 regulatory motifs and SH2 binding sites switches MAPK signaling and biological activity.
|
| |
J Biol Chem,
278,
6111-6119.
|
 |
|
|
|
|
 |
L.S.Lock,
M.M.Frigault,
C.Saucier,
and
M.Park
(2003).
Grb2-independent recruitment of Gab1 requires the C-terminal lobe and structural integrity of the Met receptor kinase domain.
|
| |
J Biol Chem,
278,
30083-30090.
|
 |
|
|
|
|
 |
M.E.Bembenek,
S.Schmidt,
P.Li,
J.Morawiak,
A.Prack,
S.Jain,
R.Roy,
T.Parsons,
and
L.Chee
(2003).
Characterization of the kinase domain of the ephrin-B3 receptor tyrosine kinase using a scintillation proximity assay.
|
| |
Assay Drug Dev Technol,
1,
555-563.
|
 |
|
|
|
|
 |
M.Levis,
and
D.Small
(2003).
Novel FLT3 tyrosine kinase inhibitors.
|
| |
Expert Opin Investig Drugs,
12,
1951-1962.
|
 |
|
|
|
|
 |
P.M.Chan,
S.Ilangumaran,
J.La Rose,
A.Chakrabartty,
and
R.Rottapel
(2003).
Autoinhibition of the kit receptor tyrosine kinase by the cytosolic juxtamembrane region.
|
| |
Mol Cell Biol,
23,
3067-3078.
|
 |
|
|
|
|
 |
P.Saharinen,
M.Vihinen,
and
O.Silvennoinen
(2003).
Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain.
|
| |
Mol Biol Cell,
14,
1448-1459.
|
 |
|
|
|
|
 |
S.Bhattacharya,
E.Large,
C.W.Heizmann,
B.Hemmings,
and
W.J.Chazin
(2003).
Structure of the Ca2+/S100B/NDR kinase peptide complex: insights into S100 target specificity and activation of the kinase.
|
| |
Biochemistry,
42,
14416-14426.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Li,
N.D.Covino,
E.G.Stein,
J.H.Till,
and
S.R.Hubbard
(2003).
Structural and biochemical evidence for an autoinhibitory role for tyrosine 984 in the juxtamembrane region of the insulin receptor.
|
| |
J Biol Chem,
278,
26007-26014.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Pawson,
and
P.Nash
(2003).
Assembly of cell regulatory systems through protein interaction domains.
|
| |
Science,
300,
445-452.
|
 |
|
|
|
|
 |
A.C.Dar,
and
F.Sicheri
(2002).
X-ray crystal structure and functional analysis of vaccinia virus K3L reveals molecular determinants for PKR subversion and substrate recognition.
|
| |
Mol Cell,
10,
295-305.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Postigo,
A.M.Calella,
B.Fritzsch,
M.Knipper,
D.Katz,
A.Eilers,
T.Schimmang,
G.R.Lewin,
R.Klein,
L.Minichiello,
and
B.Fritzsch
(2002).
Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons.
|
| |
Genes Dev,
16,
633-645.
|
 |
|
|
|
|
 |
D.G.Gilliland,
and
J.D.Griffin
(2002).
Role of FLT3 in leukemia.
|
| |
Curr Opin Hematol,
9,
274-281.
|
 |
|
|
|
|
 |
G.Maulik,
P.Madhiwala,
S.Brooks,
P.C.Ma,
T.Kijima,
E.V.Tibaldi,
E.Schaefer,
K.Parmar,
and
R.Salgia
(2002).
Activated c-Met signals through PI3K with dramatic effects on cytoskeletal functions in small cell lung cancer.
|
| |
J Cell Mol Med,
6,
539-553.
|
 |
|
|
|
|
 |
J.H.Till,
M.Becerra,
A.Watty,
Y.Lu,
Y.Ma,
T.A.Neubert,
S.J.Burden,
and
S.R.Hubbard
(2002).
Crystal structure of the MuSK tyrosine kinase: insights into receptor autoregulation.
|
| |
Structure,
10,
1187-1196.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Kullander,
and
R.Klein
(2002).
Mechanisms and functions of Eph and ephrin signalling.
|
| |
Nat Rev Mol Cell Biol,
3,
475-486.
|
 |
|
|
|
|
 |
L.M.Kelly,
and
D.G.Gilliland
(2002).
Genetics of myeloid leukemias.
|
| |
Annu Rev Genomics Hum Genet,
3,
179-198.
|
 |
|
|
|
|
 |
M.A.Pufall,
and
B.J.Graves
(2002).
Autoinhibitory domains: modular effectors of cellular regulation.
|
| |
Annu Rev Cell Dev Biol,
18,
421-462.
|
 |
|
|
|
|
 |
M.Huse,
and
J.Kuriyan
(2002).
The conformational plasticity of protein kinases.
|
| |
Cell,
109,
275-282.
|
 |
|
|
|
|
 |
P.M.Irusta,
Y.Luo,
O.Bakht,
C.C.Lai,
S.O.Smith,
and
D.DiMaio
(2002).
Definition of an inhibitory juxtamembrane WW-like domain in the platelet-derived growth factor beta receptor.
|
| |
J Biol Chem,
277,
38627-38634.
|
 |
|
|
|
|
 |
S.Munshi,
M.Kornienko,
D.L.Hall,
J.C.Reid,
L.Waxman,
S.M.Stirdivant,
P.L.Darke,
and
L.C.Kuo
(2002).
Crystal structure of the Apo, unactivated insulin-like growth factor-1 receptor kinase. Implication for inhibitor specificity.
|
| |
J Biol Chem,
277,
38797-38802.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Cutforth,
and
C.J.Harrison
(2002).
Ephs and ephrins close ranks.
|
| |
Trends Neurosci,
25,
332-334.
|
 |
|
|
|
|
 |
X.L.Niu,
K.G.Peters,
and
C.D.Kontos
(2002).
Deletion of the carboxyl terminus of Tie2 enhances kinase activity, signaling, and function. Evidence for an autoinhibitory mechanism.
|
| |
J Biol Chem,
277,
31768-31773.
|
 |
|
|
|
|
 |
Z.G.Luo,
Q.Wang,
J.Z.Zhou,
J.Wang,
Z.Luo,
M.Liu,
X.He,
A.Wynshaw-Boris,
W.C.Xiong,
B.Lu,
and
L.Mei
(2002).
Regulation of AChR clustering by Dishevelled interacting with MuSK and PAK1.
|
| |
Neuron,
35,
489-505.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |