 |
PDBsum entry 1iep
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.2.7.10.2
- non-specific protein-tyrosine kinase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
L-tyrosyl-[protein] + ATP = O-phospho-L-tyrosyl-[protein] + ADP + H+
|
 |
 |
 |
 |
 |
L-tyrosyl-[protein]
|
+
|
ATP
|
=
|
O-phospho-L-tyrosyl-[protein]
|
+
|
ADP
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
|
Cancer Res
62:4236-4243
(2002)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571).
|
|
B.Nagar,
W.G.Bornmann,
P.Pellicena,
T.Schindler,
D.R.Veach,
W.T.Miller,
B.Clarkson,
J.Kuriyan.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The inadvertent fusion of the bcr gene with the abl gene results in a
constitutively active tyrosine kinase (Bcr-Abl) that transforms cells and causes
chronic myelogenous leukemia. Small molecule inhibitors of Bcr-Abl that bind to
the kinase domain can be used to treat chronic myelogenous leukemia. We report
crystal structures of the kinase domain of Abl in complex with two such
inhibitors, imatinib (also known as STI-571 and Gleevec) and PD173955
(Parke-Davis). Both compounds bind to the canonical ATP-binding site of the
kinase domain, but they do so in different ways. As shown previously in a
crystal structure of Abl bound to a smaller variant of STI-571, STI-571 captures
a specific inactive conformation of the activation loop of Abl in which the loop
mimics bound peptide substrate. In contrast, PD173955 binds to a conformation of
Abl in which the activation loop resembles that of an active kinase. The
structure suggests that PD173955 would be insensitive to whether the
conformation of the activation loop corresponds to active kinases or to that
seen in the STI-571 complex. In vitro kinase assays confirm that this is the
case and indicate that PD173955 is at least 10-fold more inhibitory than
STI-571. The structures suggest that PD173955 achieves its greater potency over
STI-571 by being able to target multiple forms of Abl (active or inactive),
whereas STI-571 requires a specific inactive conformation of Abl.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
T.O'Hare,
M.S.Zabriskie,
A.M.Eiring,
and
M.W.Deininger
(2012).
Pushing the limits of targeted therapy in chronic myeloid leukaemia.
|
| |
Nat Rev Cancer,
12,
513-526.
|
 |
|
|
|
|
 |
J.M.Diamond,
and
J.V.Melo
(2011).
Mechanisms of resistance to BCR-ABL kinase inhibitors.
|
| |
Leuk Lymphoma,
52,
12-22.
|
 |
|
|
|
|
 |
J.Y.Blay,
and
M.von Mehren
(2011).
Nilotinib: a novel, selective tyrosine kinase inhibitor.
|
| |
Semin Oncol,
38,
S3-S9.
|
 |
|
|
|
|
 |
M.Preyer,
P.Vigneri,
and
J.Y.Wang
(2011).
Interplay between Kinase Domain Autophosphorylation and F-Actin Binding Domain in Regulating Imatinib Sensitivity and Nuclear Import of BCR-ABL.
|
| |
PLoS One,
6,
e17020.
|
 |
|
|
|
|
 |
N.Jura,
X.Zhang,
N.F.Endres,
M.A.Seeliger,
T.Schindler,
and
J.Kuriyan
(2011).
Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms.
|
| |
Mol Cell,
42,
9.
|
 |
|
|
|
|
 |
S.Schenone,
O.Bruno,
M.Radi,
and
M.Botta
(2011).
New insights into small-molecule inhibitors of Bcr-Abl.
|
| |
Med Res Rev,
31,
1.
|
 |
|
|
|
|
 |
T.Zhou,
L.Commodore,
W.S.Huang,
Y.Wang,
M.Thomas,
J.Keats,
Q.Xu,
V.M.Rivera,
W.C.Shakespeare,
T.Clackson,
D.C.Dalgarno,
and
X.Zhu
(2011).
Structural mechanism of the Pan-BCR-ABL inhibitor ponatinib (AP24534): lessons for overcoming kinase inhibitor resistance.
|
| |
Chem Biol Drug Des,
77,
1.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Arslanova,
T.Yang,
X.Xu,
S.T.Wong,
C.E.Augelli-Szafran,
and
W.Xia
(2010).
Phenotypic analysis of images of zebrafish treated with Alzheimer's gamma-secretase inhibitors.
|
| |
BMC Biotechnol,
10,
24.
|
 |
|
|
|
|
 |
D.J.DeAngelo,
and
E.C.Attar
(2010).
Use of dasatinib and nilotinib in imatinib-resistant chronic myeloid leukemia: translating preclinical findings to clinical practice.
|
| |
Leuk Lymphoma,
51,
363-375.
|
 |
|
|
|
|
 |
D.X.Hou,
and
T.Kumamoto
(2010).
Flavonoids as protein kinase inhibitors for cancer chemoprevention: direct binding and molecular modeling.
|
| |
Antioxid Redox Signal,
13,
691-719.
|
 |
|
|
|
|
 |
J.Zhang,
F.J.Adrián,
W.Jahnke,
S.W.Cowan-Jacob,
A.G.Li,
R.E.Iacob,
T.Sim,
J.Powers,
C.Dierks,
F.Sun,
G.R.Guo,
Q.Ding,
B.Okram,
Y.Choi,
A.Wojciechowski,
X.Deng,
G.Liu,
G.Fendrich,
A.Strauss,
N.Vajpai,
S.Grzesiek,
T.Tuntland,
Y.Liu,
B.Bursulaya,
M.Azam,
P.W.Manley,
J.R.Engen,
G.Q.Daley,
M.Warmuth,
and
N.S.Gray
(2010).
Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors.
|
| |
Nature,
463,
501-506.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Skobridis,
M.Kinigopoulou,
V.Theodorou,
E.Giannousi,
A.Russell,
R.Chauhan,
R.Sala,
N.Brownlow,
S.Kiriakidis,
J.Domin,
A.G.Tzakos,
and
N.J.Dibb
(2010).
Novel imatinib derivatives with altered specificity between Bcr-Abl and FMS, KIT, and PDGF receptors.
|
| |
ChemMedChem,
5,
130-139.
|
 |
|
|
|
|
 |
K.W.Pratz,
and
M.J.Levis
(2010).
Bench to bedside targeting of FLT3 in acute leukemia.
|
| |
Curr Drug Targets,
11,
781-789.
|
 |
|
|
|
|
 |
L.M.Wodicka,
P.Ciceri,
M.I.Davis,
J.P.Hunt,
M.Floyd,
S.Salerno,
X.H.Hua,
J.M.Ford,
R.C.Armstrong,
P.P.Zarrinkar,
and
D.K.Treiber
(2010).
Activation state-dependent binding of small molecule kinase inhibitors: structural insights from biochemistry.
|
| |
Chem Biol,
17,
1241-1249.
|
 |
|
|
|
|
 |
M.Azam,
J.T.Powers,
W.Einhorn,
W.S.Huang,
W.C.Shakespeare,
X.Zhu,
D.Dalgarno,
T.Clackson,
T.K.Sawyer,
and
G.Q.Daley
(2010).
AP24163 inhibits the gatekeeper mutant of BCR-ABL and suppresses in vitro resistance.
|
| |
Chem Biol Drug Des,
75,
223-227.
|
 |
|
|
|
|
 |
M.Rabiller,
M.Getlik,
S.Klüter,
A.Richters,
S.Tückmantel,
J.R.Simard,
and
D.Rauh
(2010).
Proteus in the world of proteins: conformational changes in protein kinases.
|
| |
Arch Pharm (Weinheim),
343,
193-206.
|
 |
|
|
|
|
 |
P.La Rosée,
and
A.Hochhaus
(2010).
Molecular pathogenesis of tyrosine kinase resistance in chronic myeloid leukemia.
|
| |
Curr Opin Hematol,
17,
91-96.
|
 |
|
|
|
|
 |
P.Ranjitkar,
A.M.Brock,
and
D.J.Maly
(2010).
Affinity reagents that target a specific inactive form of protein kinases.
|
| |
Chem Biol,
17,
195-206.
|
 |
|
|
|
|
 |
R.Krishnamurty,
and
D.J.Maly
(2010).
Biochemical mechanisms of resistance to small-molecule protein kinase inhibitors.
|
| |
ACS Chem Biol,
5,
121-138.
|
 |
|
|
|
|
 |
T.Zhou,
L.Commodore,
W.S.Huang,
Y.Wang,
T.K.Sawyer,
W.C.Shakespeare,
T.Clackson,
X.Zhu,
and
D.C.Dalgarno
(2010).
Structural analysis of DFG-in and DFG-out dual Src-Abl inhibitors sharing a common vinyl purine template.
|
| |
Chem Biol Drug Des,
75,
18-28.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
X.Jiang,
D.Forrest,
F.Nicolini,
A.Turhan,
J.Guilhot,
C.Yip,
T.Holyoake,
H.Jorgensen,
K.Lambie,
K.M.Saw,
E.Pang,
R.Vukovic,
P.Lehn,
A.Ringrose,
M.Yu,
R.R.Brinkman,
C.Smith,
A.Eaves,
and
C.Eaves
(2010).
Properties of CD34+ CML stem/progenitor cells that correlate with different clinical responses to imatinib mesylate.
|
| |
Blood,
116,
2112-2121.
|
 |
|
|
|
|
 |
X.Yang,
T.Kinoshita,
M.Gouda,
K.Yokota,
and
T.Tada
(2010).
A silent mutation made possible efficient production of active human Frk tyrosine kinase in Escherichia coli.
|
| |
Biosci Biotechnol Biochem,
74,
125-128.
|
 |
|
|
|
|
 |
A.Dixit,
and
G.M.Verkhivker
(2009).
Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations.
|
| |
PLoS Comput Biol,
5,
e1000487.
|
 |
|
|
|
|
 |
A.Quintás-Cardama,
H.Kantarjian,
and
J.Cortes
(2009).
Homoharringtonine, omacetaxine mepesuccinate, and chronic myeloid leukemia circa 2009.
|
| |
Cancer,
115,
5382-5393.
|
 |
|
|
|
|
 |
A.Quintás-Cardama,
and
J.Cortes
(2009).
Molecular biology of bcr-abl1-positive chronic myeloid leukemia.
|
| |
Blood,
113,
1619-1630.
|
 |
|
|
|
|
 |
C.Fava,
H.Kantarjian,
J.Cortes,
and
E.Jabbour
(2009).
Development and targeted use of nilotinib in chronic myeloid leukemia.
|
| |
Drug Des Devel Ther,
2,
233-243.
|
 |
|
|
|
|
 |
C.García-Echeverría
(2009).
Protein and lipid kinase inhibitors as targeted anticancer agents of the Ras/Raf/MEK and PI3K/PKB pathways.
|
| |
Purinergic Signal,
5,
117-125.
|
 |
|
|
|
|
 |
D.B.Jackson
(2009).
Molecular perspectives on the non-responder phenomenon.
|
| |
Drug Discov Today,
14,
373-379.
|
 |
|
|
|
|
 |
F.Falchi,
F.Manetti,
F.Carraro,
A.Naldini,
G.Maga,
E.Crespan,
S.Schenone,
O.Bruno,
C.Brullo,
and
M.Botta
(2009).
3D QSAR models built on structure-based alignments of Abl tyrosine kinase inhibitors.
|
| |
ChemMedChem,
4,
976-987.
|
 |
|
|
|
|
 |
F.P.Santos,
and
F.Ravandi
(2009).
Advances in treatment of chronic myelogenous leukemia--new treatment options with tyrosine kinase inhibitors.
|
| |
Leuk Lymphoma,
50,
16-26.
|
 |
|
|
|
|
 |
J.A.Winger,
O.Hantschel,
G.Superti-Furga,
and
J.Kuriyan
(2009).
The structure of the leukemia drug imatinib bound to human quinone reductase 2 (NQO2).
|
| |
BMC Struct Biol,
9,
7.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Zhang,
P.L.Yang,
and
N.S.Gray
(2009).
Targeting cancer with small molecule kinase inhibitors.
|
| |
Nat Rev Cancer,
9,
28-39.
|
 |
|
|
|
|
 |
L.N.Johnson
(2009).
Protein kinase inhibitors: contributions from structure to clinical compounds.
|
| |
Q Rev Biophys,
42,
1.
|
 |
|
|
|
|
 |
M.A.Seeliger,
P.Ranjitkar,
C.Kasap,
Y.Shan,
D.E.Shaw,
N.P.Shah,
J.Kuriyan,
and
D.J.Maly
(2009).
Equally potent inhibition of c-Src and Abl by compounds that recognize inactive kinase conformations.
|
| |
Cancer Res,
69,
2384-2392.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Bantscheff,
A.Scholten,
and
A.J.Heck
(2009).
Revealing promiscuous drug-target interactions by chemical proteomics.
|
| |
Drug Discov Today,
14,
1021-1029.
|
 |
|
|
|
|
 |
P.Dubreuil,
S.Letard,
M.Ciufolini,
L.Gros,
M.Humbert,
N.Castéran,
L.Borge,
B.Hajem,
A.Lermet,
W.Sippl,
E.Voisset,
M.Arock,
C.Auclair,
P.S.Leventhal,
C.D.Mansfield,
A.Moussy,
and
O.Hermine
(2009).
Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT.
|
| |
PLoS One,
4,
e7258.
|
 |
|
|
|
|
 |
R.Barouch-Bentov,
J.Che,
C.C.Lee,
Y.Yang,
A.Herman,
Y.Jia,
A.Velentza,
J.Watson,
L.Sternberg,
S.Kim,
N.Ziaee,
A.Miller,
C.Jackson,
M.Fujimoto,
M.Young,
S.Batalov,
Y.Liu,
M.Warmuth,
T.Wiltshire,
M.P.Cooke,
and
K.Sauer
(2009).
A conserved salt bridge in the G loop of multiple protein kinases is important for catalysis and for in vivo Lyn function.
|
| |
Mol Cell,
33,
43-52.
|
 |
|
|
|
|
 |
R.L.van Montfort,
and
P.Workman
(2009).
Structure-based design of molecular cancer therapeutics.
|
| |
Trends Biotechnol,
27,
315-328.
|
 |
|
|
|
|
 |
R.M.Eglen,
and
T.Reisine
(2009).
The current status of drug discovery against the human kinome.
|
| |
Assay Drug Dev Technol,
7,
22-43.
|
 |
|
|
|
|
 |
S.Branford,
J.V.Melo,
and
T.P.Hughes
(2009).
Selecting optimal second-line tyrosine kinase inhibitor therapy for chronic myeloid leukemia patients after imatinib failure: does the BCR-ABL mutation status really matter?
|
| |
Blood,
114,
5426-5435.
|
 |
|
|
|
|
 |
S.H.Kim,
D.Kim,
D.W.Kim,
H.G.Goh,
S.E.Jang,
J.Lee,
W.S.Kim,
I.Y.Kweon,
and
S.H.Park
(2009).
Analysis of Bcr-Abl kinase domain mutations in Korean chronic myeloid leukaemia patients: poor clinical outcome of P-loop and T315I mutation is disease phase dependent.
|
| |
Hematol Oncol,
27,
190-197.
|
 |
|
|
|
|
 |
S.Salemi,
S.Yousefi,
D.Simon,
I.Schmid,
L.Moretti,
L.Scapozza,
and
H.U.Simon
(2009).
A novel FIP1L1-PDGFRA mutant destabilizing the inactive conformation of the kinase domain in chronic eosinophilic leukemia/hypereosinophilic syndrome.
|
| |
Allergy,
64,
913-918.
|
 |
|
|
|
|
 |
A.C.Dar,
M.S.Lopez,
and
K.M.Shokat
(2008).
Small molecule recognition of c-Src via the Imatinib-binding conformation.
|
| |
Chem Biol,
15,
1015-1022.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Degterev,
J.Hitomi,
M.Germscheid,
I.L.Ch'en,
O.Korkina,
X.Teng,
D.Abbott,
G.D.Cuny,
C.Yuan,
G.Wagner,
S.M.Hedrick,
S.A.Gerber,
A.Lugovskoy,
and
J.Yuan
(2008).
Identification of RIP1 kinase as a specific cellular target of necrostatins.
|
| |
Nat Chem Biol,
4,
313-321.
|
 |
|
|
|
|
 |
A.Quintás-Cardama
(2008).
Experimental non-ATP-competitive therapies for chronic myelogenous leukemia.
|
| |
Leukemia,
22,
932-940.
|
 |
|
|
|
|
 |
A.Quintás-Cardama,
and
J.Cortes
(2008).
Nilotinib: a phenylamino-pyrimidine derivative with activity against BCR-ABL, KIT and PDGFR kinases.
|
| |
Future Oncol,
4,
611-621.
|
 |
|
|
|
|
 |
B.J.Druker
(2008).
Translation of the Philadelphia chromosome into therapy for CML.
|
| |
Blood,
112,
4808-4817.
|
 |
|
|
|
|
 |
B.Rochat,
V.Zoete,
A.Grosdidier,
S.von Grünigen,
M.Marull,
and
O.Michielin
(2008).
In vitro biotransformation of imatinib by the tumor expressed CYP1A1 and CYP1B1.
|
| |
Biopharm Drug Dispos,
29,
103-118.
|
 |
|
|
|
|
 |
B.Zhao,
A.Smallwood,
J.Yang,
K.Koretke,
K.Nurse,
A.Calamari,
R.B.Kirkpatrick,
and
Z.Lai
(2008).
Modulation of kinase-inhibitor interactions by auxiliary protein binding: crystallography studies on Aurora A interactions with VX-680 and with TPX2.
|
| |
Protein Sci,
17,
1791-1797.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.E.Johnson
(2008).
Src family kinases and the MEK/ERK pathway in the regulation of myeloid differentiation and myeloid leukemogenesis.
|
| |
Adv Enzyme Regul,
48,
98.
|
 |
|
|
|
|
 |
D.Lietha,
and
M.J.Eck
(2008).
Crystal structures of the FAK kinase in complex with TAE226 and related bis-anilino pyrimidine inhibitors reveal a helical DFG conformation.
|
| |
PLoS ONE,
3,
e3800.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Wu,
M.R.Mand,
D.R.Veach,
L.L.Parker,
B.Clarkson,
and
S.J.Kron
(2008).
A solid-phase Bcr-Abl kinase assay in 96-well hydrogel plates.
|
| |
Anal Biochem,
375,
18-26.
|
 |
|
|
|
|
 |
F.Lee,
A.Fandi,
and
M.Voi
(2008).
Overcoming kinase resistance in chronic myeloid leukemia.
|
| |
Int J Biochem Cell Biol,
40,
334-343.
|
 |
|
|
|
|
 |
I.G.Muñoz,
F.J.Blanco,
and
G.Montoya
(2008).
On the relevance of defining protein structures in cancer research.
|
| |
Clin Transl Oncol,
10,
204-212.
|
 |
|
|
|
|
 |
I.J.Enyedy,
and
W.J.Egan
(2008).
Can we use docking and scoring for hit-to-lead optimization?
|
| |
J Comput Aided Mol Des,
22,
161-168.
|
 |
|
|
|
|
 |
I.Kufareva,
and
R.Abagyan
(2008).
Type-II kinase inhibitor docking, screening, and profiling using modified structures of active kinase states.
|
| |
J Med Chem,
51,
7921-7932.
|
 |
|
|
|
|
 |
J.Wu,
W.Li,
B.P.Craddock,
K.W.Foreman,
M.J.Mulvihill,
Q.S.Ji,
W.T.Miller,
and
S.R.Hubbard
(2008).
Small-molecule inhibition and activation-loop trans-phosphorylation of the IGF1 receptor.
|
| |
EMBO J,
27,
1985-1994.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Pratz,
and
M.Levis
(2008).
Incorporating FLT3 inhibitors into acute myeloid leukemia treatment regimens.
|
| |
Leuk Lymphoma,
49,
852-863.
|
 |
|
|
|
|
 |
M.Arkin,
and
M.M.Moasser
(2008).
HER-2-directed, small-molecule antagonists.
|
| |
Curr Opin Investig Drugs,
9,
1264-1276.
|
 |
|
|
|
|
 |
M.D.Jacobs,
P.R.Caron,
and
B.J.Hare
(2008).
Classifying protein kinase structures guides use of ligand-selectivity profiles to predict inactive conformations: structure of lck/imatinib complex.
|
| |
Proteins,
70,
1451-1460.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Henkes,
H.van der Kuip,
and
W.E.Aulitzky
(2008).
Therapeutic options for chronic myeloid leukemia: focus on imatinib (Glivec, Gleevectrade mark).
|
| |
Ther Clin Risk Manag,
4,
163-187.
|
 |
|
|
|
|
 |
M.Savona,
and
M.Talpaz
(2008).
Getting to the stem of chronic myeloid leukaemia.
|
| |
Nat Rev Cancer,
8,
341-350.
|
 |
|
|
|
|
 |
P.Håkansson,
B.Nilsson,
A.Andersson,
C.Lassen,
U.Gullberg,
and
T.Fioretos
(2008).
Gene expression analysis of BCR/ABL1-dependent transcriptional response reveals enrichment for genes involved in negative feedback regulation.
|
| |
Genes Chromosomes Cancer,
47,
267-275.
|
 |
|
|
|
|
 |
R.Akella,
T.M.Moon,
and
E.J.Goldsmith
(2008).
Unique MAP Kinase binding sites.
|
| |
Biochim Biophys Acta,
1784,
48-55.
|
 |
|
|
|
|
 |
S.Li
(2008).
Src-family kinases in the development and therapy of Philadelphia chromosome-positive chronic myeloid leukemia and acute lymphoblastic leukemia.
|
| |
Leuk Lymphoma,
49,
19-26.
|
 |
|
|
|
|
 |
S.Soverini,
G.Martinelli,
I.Iacobucci,
and
M.Baccarani
(2008).
Imatinib mesylate for the treatment of chronic myeloid leukemia.
|
| |
Expert Rev Anticancer Ther,
8,
853-864.
|
 |
|
|
|
|
 |
T.A.Binkowski,
and
A.Joachimiak
(2008).
Protein functional surfaces: global shape matching and local spatial alignments of ligand binding sites.
|
| |
BMC Struct Biol,
8,
45.
|
 |
|
|
|
|
 |
T.O'Hare,
C.A.Eide,
J.W.Tyner,
A.S.Corbin,
M.J.Wong,
S.Buchanan,
K.Holme,
K.A.Jessen,
C.Tang,
H.A.Lewis,
R.D.Romero,
S.K.Burley,
and
M.W.Deininger
(2008).
SGX393 inhibits the CML mutant Bcr-AblT315I and preempts in vitro resistance when combined with nilotinib or dasatinib.
|
| |
Proc Natl Acad Sci U S A,
105,
5507-5512.
|
 |
|
|
|
|
 |
T.O'Hare,
C.A.Eide,
and
M.W.Deininger
(2008).
New Bcr-Abl inhibitors in chronic myeloid leukemia: keeping resistance in check.
|
| |
Expert Opin Investig Drugs,
17,
865-878.
|
 |
|
|
|
|
 |
T.S.Lee,
S.J.Potts,
H.Kantarjian,
J.Cortes,
F.Giles,
and
M.Albitar
(2008).
Molecular basis explanation for imatinib resistance of BCR-ABL due to T315I and P-loop mutations from molecular dynamics simulations.
|
| |
Cancer,
112,
1744-1753.
|
 |
|
|
|
|
 |
Z.Jagani,
A.Singh,
and
R.Khosravi-Far
(2008).
FoxO tumor suppressors and BCR-ABL-induced leukemia: a matter of evasion of apoptosis.
|
| |
Biochim Biophys Acta,
1785,
63-84.
|
 |
|
|
|
|
 |
A.Quintás-Cardama,
H.Kantarjian,
and
J.Cortes
(2007).
Flying under the radar: the new wave of BCR-ABL inhibitors.
|
| |
Nat Rev Drug Discov,
6,
834-848.
|
 |
|
|
|
|
 |
A.Ray,
S.W.Cowan-Jacob,
P.W.Manley,
J.Mestan,
and
J.D.Griffin
(2007).
Identification of BCR-ABL point mutations conferring resistance to the Abl kinase inhibitor AMN107 (nilotinib) by a random mutagenesis study.
|
| |
Blood,
109,
5011-5015.
|
 |
|
|
|
|
 |
D.Kuhn,
N.Weskamp,
E.Hüllermeier,
and
G.Klebe
(2007).
Functional Classification of Protein Kinase Binding Sites Using Cavbase.
|
| |
ChemMedChem,
2,
1432-1447.
|
 |
|
|
|
|
 |
D.W.Sherbenou,
and
B.J.Druker
(2007).
Applying the discovery of the Philadelphia chromosome.
|
| |
J Clin Invest,
117,
2067-2074.
|
 |
|
|
|
|
 |
E.Weisberg,
P.W.Manley,
S.W.Cowan-Jacob,
A.Hochhaus,
and
J.D.Griffin
(2007).
Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia.
|
| |
Nat Rev Cancer,
7,
345-356.
|
 |
|
|
|
|
 |
F.Manetti,
A.Pucci,
M.Magnani,
G.A.Locatelli,
C.Brullo,
A.Naldini,
S.Schenone,
G.Maga,
F.Carraro,
and
M.Botta
(2007).
Inhibition of Bcr-Abl Phosphorylation and Induction of Apoptosis by Pyrazolo[3,4-d]pyrimidines in Human Leukemia Cells.
|
| |
ChemMedChem,
2,
343-353.
|
 |
|
|
|
|
 |
G.C.Terstappen,
C.Schlüpen,
R.Raggiaschi,
and
G.Gaviraghi
(2007).
Target deconvolution strategies in drug discovery.
|
| |
Nat Rev Drug Discov,
6,
891-903.
|
 |
|
|
|
|
 |
G.M.Verkhivker
(2007).
In silico profiling of tyrosine kinases binding specificity and drug resistance using Monte Carlo simulations with the ensembles of protein kinase crystal structures.
|
| |
Biopolymers,
85,
333-348.
|
 |
|
|
|
|
 |
G.M.Verkhivker
(2007).
Computational proteomics of biomolecular interactions in the sequence and structure space of the tyrosine kinome: deciphering the molecular basis of the kinase inhibitors selectivity.
|
| |
Proteins,
66,
912-929.
|
 |
|
|
|
|
 |
G.M.Verkhivker
(2007).
Exploring sequence-structure relationships in the tyrosine kinome space: functional classification of the binding specificity mechanisms for cancer therapeutics.
|
| |
Bioinformatics,
23,
1919-1926.
|
 |
|
|
|
|
 |
J.A.Fagin
(2007).
The Jeremiah Metzger Lecture: intelligent design of cancer therapy: trials and tribulations.
|
| |
Trans Am Clin Climatol Assoc,
118,
253-261.
|
 |
|
|
|
|
 |
J.S.Salafsky
(2007).
Second-harmonic generation for studying structural motion of biological molecules in real time and space.
|
| |
Phys Chem Chem Phys,
9,
5704-5711.
|
 |
|
|
|
|
 |
K.E.Kil,
Y.S.Ding,
K.S.Lin,
D.Alexoff,
S.W.Kim,
C.Shea,
Y.Xu,
L.Muench,
and
J.S.Fowler
(2007).
Synthesis and positron emission tomography studies of carbon-11-labeled imatinib (Gleevec).
|
| |
Nucl Med Biol,
34,
153-163.
|
 |
|
|
|
|
 |
M.A.Seeliger,
B.Nagar,
F.Frank,
X.Cao,
M.N.Henderson,
and
J.Kuriyan
(2007).
c-Src binds to the cancer drug imatinib with an inactive Abl/c-Kit conformation and a distributed thermodynamic penalty.
|
| |
Structure,
15,
299-311.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.K.Banavali,
and
B.Roux
(2007).
Anatomy of a structural pathway for activation of the catalytic domain of Src kinase Hck.
|
| |
Proteins,
67,
1096-1112.
|
 |
|
|
|
|
 |
O.Gileadi,
S.Knapp,
W.H.Lee,
B.D.Marsden,
S.Müller,
F.H.Niesen,
K.L.Kavanagh,
L.J.Ball,
F.von Delft,
D.A.Doyle,
U.C.Oppermann,
and
M.Sundström
(2007).
The scientific impact of the Structural Genomics Consortium: a protein family and ligand-centered approach to medically-relevant human proteins.
|
| |
J Struct Funct Genomics,
8,
107-119.
|
 |
|
|
|
|
 |
O.Hantschel,
U.Rix,
U.Schmidt,
T.Bürckstümmer,
M.Kneidinger,
G.Schütze,
J.Colinge,
K.L.Bennett,
W.Ellmeier,
P.Valent,
and
G.Superti-Furga
(2007).
The Btk tyrosine kinase is a major target of the Bcr-Abl inhibitor dasatinib.
|
| |
Proc Natl Acad Sci U S A,
104,
13283-13288.
|
 |
|
|
|
|
 |
P.Buffa,
L.Manzella,
M.L.Consoli,
A.Messina,
and
P.Vigneri
(2007).
Modelling of the ABL and ARG proteins predicts two functionally critical regions that are natively unfolded.
|
| |
Proteins,
67,
1.
|
 |
|
|
|
|
 |
S.Margutti,
and
S.A.Laufer
(2007).
Are MAP Kinases Drug Targets? Yes, but Difficult Ones.
|
| |
ChemMedChem,
2,
1116-1140.
|
 |
|
|
|
|
 |
S.W.Cowan-Jacob,
G.Fendrich,
A.Floersheimer,
P.Furet,
J.Liebetanz,
G.Rummel,
P.Rheinberger,
M.Centeleghe,
D.Fabbro,
and
P.W.Manley
(2007).
Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia.
|
| |
Acta Crystallogr D Biol Crystallogr,
63,
80-93.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Maekawa,
E.Ashihara,
and
S.Kimura
(2007).
The Bcr-Abl tyrosine kinase inhibitor imatinib and promising new agents against Philadelphia chromosome-positive leukemias.
|
| |
Int J Clin Oncol,
12,
327-340.
|
 |
|
|
|
|
 |
T.Niwa,
T.Asaki,
and
S.Kimura
(2007).
NS-187 (INNO-406), a Bcr-Abl/Lyn Dual Tyrosine Kinase Inhibitor.
|
| |
Anal Chem Insights,
2,
93.
|
 |
|
|
|
|
 |
T.Zhou,
L.Parillon,
F.Li,
Y.Wang,
J.Keats,
S.Lamore,
Q.Xu,
W.Shakespeare,
D.Dalgarno,
and
X.Zhu
(2007).
Crystal structure of the T315I mutant of AbI kinase.
|
| |
Chem Biol Drug Des,
70,
171-181.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
U.Rix,
O.Hantschel,
G.Dürnberger,
L.L.Remsing Rix,
M.Planyavsky,
N.V.Fernbach,
I.Kaupe,
K.L.Bennett,
P.Valent,
J.Colinge,
T.Köcher,
and
G.Superti-Furga
(2007).
Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets.
|
| |
Blood,
110,
4055-4063.
|
 |
|
|
|
|
 |
Y.Alvarado,
E.Apostolidou,
R.Swords,
and
F.J.Giles
(2007).
Emerging therapeutic options for Philadelphia-positive acute lymphocytic leukemia.
|
| |
Expert Opin Emerg Drugs,
12,
165-179.
|
 |
|
|
|
|
 |
A.Levitzki,
and
E.Mishani
(2006).
Tyrphostins and other tyrosine kinase inhibitors.
|
| |
Annu Rev Biochem,
75,
93.
|
 |
|
|
|
|
 |
A.Quintás-Cardama,
H.Kantarjian,
and
J.Cortes
(2006).
Targeting ABL and SRC kinases in chronic myeloid leukemia: experience with dasatinib.
|
| |
Future Oncol,
2,
655-665.
|
 |
|
|
|
|
 |
B.J.Skaggs,
M.E.Gorre,
A.Ryvkin,
M.R.Burgess,
Y.Xie,
Y.Han,
E.Komisopoulou,
L.M.Brown,
J.A.Loo,
E.M.Landaw,
C.L.Sawyers,
and
T.G.Graeber
(2006).
Phosphorylation of the ATP-binding loop directs oncogenicity of drug-resistant BCR-ABL mutants.
|
| |
Proc Natl Acad Sci U S A,
103,
19466-19471.
|
 |
|
|
|
|
 |
B.Liu,
B.Bernard,
and
J.H.Wu
(2006).
Impact of EGFR point mutations on the sensitivity to gefitinib: insights from comparative structural analyses and molecular dynamics simulations.
|
| |
Proteins,
65,
331-346.
|
 |
|
|
|
|
 |
B.Nagar,
O.Hantschel,
M.Seeliger,
J.M.Davies,
W.I.Weis,
G.Superti-Furga,
and
J.Kuriyan
(2006).
Organization of the SH3-SH2 unit in active and inactive forms of the c-Abl tyrosine kinase.
|
| |
Mol Cell,
21,
787-798.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Miething,
S.Feihl,
C.Mugler,
R.Grundler,
N.von Bubnoff,
F.Lordick,
C.Peschel,
and
J.Duyster
(2006).
The Bcr-Abl mutations T315I and Y253H do not confer a growth advantage in the absence of imatinib.
|
| |
Leukemia,
20,
650-657.
|
 |
|
|
|
|
 |
C.Walz,
and
M.Sattler
(2006).
Novel targeted therapies to overcome imatinib mesylate resistance in chronic myeloid leukemia (CML).
|
| |
Crit Rev Oncol Hematol,
57,
145-164.
|
 |
|
|
|
|
 |
D.E.Danley
(2006).
Crystallization to obtain protein-ligand complexes for structure-aided drug design.
|
| |
Acta Crystallogr D Biol Crystallogr,
62,
569-575.
|
 |
|
|
|
|
 |
E.Weisberg,
P.Manley,
J.Mestan,
S.Cowan-Jacob,
A.Ray,
and
J.D.Griffin
(2006).
AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL.
|
| |
Br J Cancer,
94,
1765-1769.
|
 |
|
|
|
|
 |
G.M.Verkhivker
(2006).
Imprint of evolutionary conservation and protein structure variation on the binding function of protein tyrosine kinases.
|
| |
Bioinformatics,
22,
1846-1854.
|
 |
|
|
|
|
 |
I.J.Griswold,
M.MacPartlin,
T.Bumm,
V.L.Goss,
T.O'Hare,
K.A.Lee,
A.S.Corbin,
E.P.Stoffregen,
C.Smith,
K.Johnson,
E.M.Moseson,
L.J.Wood,
R.D.Polakiewicz,
B.J.Druker,
and
M.W.Deininger
(2006).
Kinase domain mutants of Bcr-Abl exhibit altered transformation potency, kinase activity, and substrate utilization, irrespective of sensitivity to imatinib.
|
| |
Mol Cell Biol,
26,
6082-6093.
|
 |
|
|
|
|
 |
J.Cortes
(2006).
Overcoming drug resistance in chronic myeloid leukemia.
|
| |
Curr Opin Hematol,
13,
79-86.
|
 |
|
|
|
|
 |
M.Azam,
V.Nardi,
W.C.Shakespeare,
C.A.Metcalf,
R.S.Bohacek,
Y.Wang,
R.Sundaramoorthi,
P.Sliz,
D.R.Veach,
W.G.Bornmann,
B.Clarkson,
D.C.Dalgarno,
T.K.Sawyer,
and
G.Q.Daley
(2006).
Activity of dual SRC-ABL inhibitors highlights the role of BCR/ABL kinase dynamics in drug resistance.
|
| |
Proc Natl Acad Sci U S A,
103,
9244-9249.
|
 |
|
|
|
|
 |
M.Bocchia,
F.Forconi,
and
F.Lauria
(2006).
Emerging drugs in chronic myelogenous leukaemia.
|
| |
Expert Opin Emerg Drugs,
11,
651-664.
|
 |
|
|
|
|
 |
M.Vogtherr,
K.Saxena,
S.Hoelder,
S.Grimme,
M.Betz,
U.Schieborr,
B.Pescatore,
M.Robin,
L.Delarbre,
T.Langer,
K.U.Wendt,
and
H.Schwalbe
(2006).
NMR characterization of kinase p38 dynamics in free and ligand-bound forms.
|
| |
Angew Chem Int Ed Engl,
45,
993-997.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.M.Levinson,
O.Kuchment,
K.Shen,
M.A.Young,
M.Koldobskiy,
M.Karplus,
P.A.Cole,
and
J.Kuriyan
(2006).
A Src-like inactive conformation in the abl tyrosine kinase domain.
|
| |
PLoS Biol,
4,
e144.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.H.Alvarez,
H.M.Kantarjian,
and
J.E.Cortes
(2006).
The role of Src in solid and hematologic malignancies: development of new-generation Src inhibitors.
|
| |
Cancer,
107,
1918-1929.
|
 |
|
|
|
|
 |
R.Jauch,
M.K.Cho,
S.Jäkel,
C.Netter,
K.Schreiter,
B.Aicher,
M.Zweckstetter,
H.Jäckle,
and
M.C.Wahl
(2006).
Mitogen-activated protein kinases interacting kinases are autoinhibited by a reprogrammed activation segment.
|
| |
EMBO J,
25,
4020-4032.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.O.Yesylevskyy,
V.N.Kharkyanen,
and
A.P.Demchenko
(2006).
Dynamic protein domains: identification, interdependence, and stability.
|
| |
Biophys J,
91,
670-685.
|
 |
|
|
|
|
 |
S.Wilhelm,
C.Carter,
M.Lynch,
T.Lowinger,
J.Dumas,
R.A.Smith,
B.Schwartz,
R.Simantov,
and
S.Kelley
(2006).
Discovery and development of sorafenib: a multikinase inhibitor for treating cancer.
|
| |
Nat Rev Drug Discov,
5,
835-844.
|
 |
|
|
|
|
 |
T.Hughes,
and
S.Branford
(2006).
Molecular monitoring of BCR-ABL as a guide to clinical management in chronic myeloid leukaemia.
|
| |
Blood Rev,
20,
29-41.
|
 |
|
|
|
|
 |
T.K.Sawyer
(2006).
Smart drug discovery leveraging innovative technologies and predictive knowledge.
|
| |
Nat Chem Biol,
2,
646-648.
|
 |
|
|
|
|
 |
T.L.Sorensen,
K.E.McAuley,
R.Flaig,
and
E.M.Duke
(2006).
New light for science: synchrotron radiation in structural medicine.
|
| |
Trends Biotechnol,
24,
500-508.
|
 |
|
|
|
|
 |
T.O'Hare,
A.S.Corbin,
and
B.J.Druker
(2006).
Targeted CML therapy: controlling drug resistance, seeking cure.
|
| |
Curr Opin Genet Dev,
16,
92-99.
|
 |
|
|
|
|
 |
V.L.Grandage,
T.Everington,
D.C.Linch,
and
A.Khwaja
(2006).
Gö6976 is a potent inhibitor of the JAK 2 and FLT3 tyrosine kinases with significant activity in primary acute myeloid leukaemia cells.
|
| |
Br J Haematol,
135,
303-316.
|
 |
|
|
|
|
 |
W.Wang,
A.Marimuthu,
J.Tsai,
A.Kumar,
H.I.Krupka,
C.Zhang,
B.Powell,
Y.Suzuki,
H.Nguyen,
M.Tabrizizad,
C.Luu,
and
B.L.West
(2006).
Structural characterization of autoinhibited c-Met kinase produced by coexpression in bacteria with phosphatase.
|
| |
Proc Natl Acad Sci U S A,
103,
3563-3568.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Liu,
and
N.S.Gray
(2006).
Rational design of inhibitors that bind to inactive kinase conformations.
|
| |
Nat Chem Biol,
2,
358-364.
|
 |
|
|
|
|
 |
A.Strauss,
F.Bitsch,
G.Fendrich,
P.Graff,
R.Knecht,
B.Meyhack,
and
W.Jahnke
(2005).
Efficient uniform isotope labeling of Abl kinase expressed in Baculovirus-infected insect cells.
|
| |
J Biomol NMR,
31,
343-349.
|
 |
|
|
|
|
 |
C.Gambacorti-Passerini,
M.Gasser,
S.Ahmed,
S.Assouline,
and
L.Scapozza
(2005).
Abl inhibitor BMS354825 binding mode in Abelson kinase revealed by molecular docking studies.
|
| |
Leukemia,
19,
1267-1269.
|
 |
|
|
|
|
 |
G.Martinelli,
S.Soverini,
G.Rosti,
and
M.Baccarani
(2005).
Dual tyrosine kinase inhibitors in chronic myeloid leukemia.
|
| |
Leukemia,
19,
1872-1879.
|
 |
|
|
|
|
 |
H.Briem,
and
J.Günther
(2005).
Classifying "kinase inhibitor-likeness" by using machine-learning methods.
|
| |
Chembiochem,
6,
558-566.
|
 |
|
|
|
|
 |
K.Barnes,
E.McIntosh,
A.D.Whetton,
G.Q.Daley,
J.Bentley,
and
S.A.Baldwin
(2005).
Chronic myeloid leukaemia: an investigation into the role of Bcr-Abl-induced abnormalities in glucose transport regulation.
|
| |
Oncogene,
24,
3257-3267.
|
 |
|
|
|
|
 |
K.Paz,
and
Z.Zhu
(2005).
Recent advances in targeted therapy of human myelogenous leukaemia.
|
| |
Expert Opin Ther Targets,
9,
1147-1163.
|
 |
|
|
|
|
 |
M.A.Fabian,
W.H.Biggs,
D.K.Treiber,
C.E.Atteridge,
M.D.Azimioara,
M.G.Benedetti,
T.A.Carter,
P.Ciceri,
P.T.Edeen,
M.Floyd,
J.M.Ford,
M.Galvin,
J.L.Gerlach,
R.M.Grotzfeld,
S.Herrgard,
D.E.Insko,
M.A.Insko,
A.G.Lai,
J.M.Lélias,
S.A.Mehta,
Z.V.Milanov,
A.M.Velasco,
L.M.Wodicka,
H.K.Patel,
P.P.Zarrinkar,
and
D.J.Lockhart
(2005).
A small molecule-kinase interaction map for clinical kinase inhibitors.
|
| |
Nat Biotechnol,
23,
329-336.
|
 |
|
|
|
|
 |
M.Karplus,
and
J.Kuriyan
(2005).
Molecular dynamics and protein function.
|
| |
Proc Natl Acad Sci U S A,
102,
6679-6685.
|
 |
|
|
|
|
 |
M.R.Burgess,
B.J.Skaggs,
N.P.Shah,
F.Y.Lee,
and
C.L.Sawyers
(2005).
Comparative analysis of two clinically active BCR-ABL kinase inhibitors reveals the role of conformation-specific binding in resistance.
|
| |
Proc Natl Acad Sci U S A,
102,
3395-3400.
|
 |
|
|
|
|
 |
N.C.Wolff,
D.R.Veach,
W.P.Tong,
W.G.Bornmann,
B.Clarkson,
and
R.L.Ilaria
(2005).
PD166326, a novel tyrosine kinase inhibitor, has greater antileukemic activity than imatinib mesylate in a murine model of chronic myeloid leukemia.
|
| |
Blood,
105,
3995-4003.
|
 |
|
|
|
|
 |
P.C.Fraering,
W.Ye,
M.J.LaVoie,
B.L.Ostaszewski,
D.J.Selkoe,
and
M.S.Wolfe
(2005).
gamma-Secretase substrate selectivity can be modulated directly via interaction with a nucleotide-binding site.
|
| |
J Biol Chem,
280,
41987-41996.
|
 |
|
|
|
|
 |
R.Jauch,
S.Jäkel,
C.Netter,
K.Schreiter,
B.Aicher,
H.Jäckle,
and
M.C.Wahl
(2005).
Crystal structures of the Mnk2 kinase domain reveal an inhibitory conformation and a zinc binding site.
|
| |
Structure,
13,
1559-1568.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.W.Cowan-Jacob,
G.Fendrich,
P.W.Manley,
W.Jahnke,
D.Fabbro,
J.Liebetanz,
and
T.Meyer
(2005).
The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation.
|
| |
Structure,
13,
861-871.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.J.Boggon,
Y.Li,
P.W.Manley,
and
M.J.Eck
(2005).
Crystal structure of the Jak3 kinase domain in complex with a staurosporine analog.
|
| |
Blood,
106,
996.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.O'Hare,
and
B.J.Druker
(2005).
BIRB-796 is not an effective ABL(T315I) inhibitor.
|
| |
Nat Biotechnol,
23,
1209.
|
 |
|
|
|
|
 |
W.Jahnke,
M.J.Blommers,
C.Fernández,
C.Zwingelstein,
and
R.Amstutz
(2005).
Strategies for the NMR-based identification and optimization of allosteric protein kinase inhibitors.
|
| |
Chembiochem,
6,
1607-1610.
|
 |
|
|
|
|
 |
X.Thomas
(2005).
Emerging drugs for adult acute lymphoblastic leukaemia.
|
| |
Expert Opin Emerg Drugs,
10,
591-617.
|
 |
|
|
|
|
 |
A.Swimm,
B.Bommarius,
Y.Li,
D.Cheng,
P.Reeves,
M.Sherman,
D.Veach,
W.Bornmann,
and
D.Kalman
(2004).
Enteropathogenic Escherichia coli use redundant tyrosine kinases to form actin pedestals.
|
| |
Mol Biol Cell,
15,
3520-3529.
|
 |
|
|
|
|
 |
C.L.Arteaga
(2004).
Selecting the right patient for tumor therapy.
|
| |
Nat Med,
10,
577-578.
|
 |
|
|
|
|
 |
C.L.Arteaga,
and
J.Baselga
(2004).
Tyrosine kinase inhibitors: why does the current process of clinical development not apply to them?
|
| |
Cancer Cell,
5,
525-531.
|
 |
|
|
|
|
 |
H.Daub,
K.Specht,
and
A.Ullrich
(2004).
Strategies to overcome resistance to targeted protein kinase inhibitors.
|
| |
Nat Rev Drug Discov,
3,
1001-1010.
|
 |
|
|
|
|
 |
J.Chen,
N.R.Wall,
K.Kocher,
N.Duclos,
D.Fabbro,
D.Neuberg,
J.D.Griffin,
Y.Shi,
and
D.G.Gilliland
(2004).
Stable expression of small interfering RNA sensitizes TEL-PDGFbetaR to inhibition with imatinib or rapamycin.
|
| |
J Clin Invest,
113,
1784-1791.
|
 |
|
|
|
|
 |
J.R.Peterson,
and
E.A.Golemis
(2004).
Autoinhibited proteins as promising drug targets.
|
| |
J Cell Biochem,
93,
68-73.
|
 |
|
|
|
|
 |
J.Y.Wang
(2004).
Controlling Abl: auto-inhibition and co-inhibition?
|
| |
Nat Cell Biol,
6,
3-7.
|
 |
|
|
|
|
 |
K.Nakaya
(2004).
[Basic studies for the development of anticancer, antidementia, and taste modifier drugs]
|
| |
Yakugaku Zasshi,
124,
371-396.
|
 |
|
|
|
|
 |
M.Mohindru,
and
A.Verma
(2004).
Kinase inhibitors translate lab discoveries into exciting new cures for cancers.
|
| |
Indian J Pediatr,
71,
713-718.
|
 |
|
|
|
|
 |
M.W.Deininger,
and
B.J.Druker
(2004).
SRCircumventing imatinib resistance.
|
| |
Cancer Cell,
6,
108-110.
|
 |
|
|
|
|
 |
O.Hantschel,
and
G.Superti-Furga
(2004).
Regulation of the c-Abl and Bcr-Abl tyrosine kinases.
|
| |
Nat Rev Mol Cell Biol,
5,
33-44.
|
 |
|
|
|
|
 |
P.T.Wan,
M.J.Garnett,
S.M.Roe,
S.Lee,
D.Niculescu-Duvaz,
V.M.Good,
C.M.Jones,
C.J.Marshall,
C.J.Springer,
D.Barford,
and
R.Marais
(2004).
Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF.
|
| |
Cell,
116,
855-867.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Kundu,
D.C.Sorensen,
and
G.N.Phillips
(2004).
Automatic domain decomposition of proteins by a Gaussian Network Model.
|
| |
Proteins,
57,
725-733.
|
 |
|
|
|
|
 |
S.Wong,
and
O.N.Witte
(2004).
The BCR-ABL story: bench to bedside and back.
|
| |
Annu Rev Immunol,
22,
247-306.
|
 |
|
|
|
|
 |
V.Nardi,
M.Azam,
and
G.Q.Daley
(2004).
Mechanisms and implications of imatinib resistance mutations in BCR-ABL.
|
| |
Curr Opin Hematol,
11,
35-43.
|
 |
|
|
|
|
 |
X.Deng,
E.R.Hofmann,
A.Villanueva,
O.Hobert,
P.Capodieci,
D.R.Veach,
X.Yin,
L.Campodonico,
A.Glekas,
C.Cordon-Cardo,
B.Clarkson,
W.G.Bornmann,
Z.Fuks,
M.O.Hengartner,
and
R.Kolesnick
(2004).
Caenorhabditis elegans ABL-1 antagonizes p53-mediated germline apoptosis after ionizing irradiation.
|
| |
Nat Genet,
36,
906-912.
|
 |
|
|
|
|
 |
B.Nagar,
O.Hantschel,
M.A.Young,
K.Scheffzek,
D.Veach,
W.Bornmann,
B.Clarkson,
G.Superti-Furga,
and
J.Kuriyan
(2003).
Structural basis for the autoinhibition of c-Abl tyrosine kinase.
|
| |
Cell,
112,
859-871.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.B.Gambacorti-Passerini,
R.H.Gunby,
R.Piazza,
A.Galietta,
R.Rostagno,
and
L.Scapozza
(2003).
Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias.
|
| |
Lancet Oncol,
4,
75-85.
|
 |
|
|
|
|
 |
J.Dancey,
and
E.A.Sausville
(2003).
Issues and progress with protein kinase inhibitors for cancer treatment.
|
| |
Nat Rev Drug Discov,
2,
296-313.
|
 |
|
|
|
|
 |
K.Q.Tanis,
D.Veach,
H.S.Duewel,
W.G.Bornmann,
and
A.J.Koleske
(2003).
Two distinct phosphorylation pathways have additive effects on Abl family kinase activation.
|
| |
Mol Cell Biol,
23,
3884-3896.
|
 |
|
|
|
|
 |
M.Azam,
R.R.Latek,
and
G.Q.Daley
(2003).
Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL.
|
| |
Cell,
112,
831-843.
|
 |
|
|
|
|
 |
M.Levis,
and
D.Small
(2003).
Novel FLT3 tyrosine kinase inhibitors.
|
| |
Expert Opin Investig Drugs,
12,
1951-1962.
|
 |
|
|
|
|
 |
N.von Bubnoff,
D.R.Veach,
W.T.Miller,
W.Li,
J.Sänger,
C.Peschel,
W.G.Bornmann,
B.Clarkson,
and
J.Duyster
(2003).
Inhibition of wild-type and mutant Bcr-Abl by pyrido-pyrimidine-type small molecule kinase inhibitors.
|
| |
Cancer Res,
63,
6395-6404.
|
 |
|
|
|
|
 |
O.Hantschel,
B.Nagar,
S.Guettler,
J.Kretzschmar,
K.Dorey,
J.Kuriyan,
and
G.Superti-Furga
(2003).
A myristoyl/phosphotyrosine switch regulates c-Abl.
|
| |
Cell,
112,
845-857.
|
 |
|
|
|
|
 |
S.C.Harrison
(2003).
Variation on an Src-like theme.
|
| |
Cell,
112,
737-740.
|
 |
|
|
|
|
 |
W.J.Netzer,
F.Dou,
D.Cai,
D.Veach,
S.Jean,
Y.Li,
W.G.Bornmann,
B.Clarkson,
H.Xu,
and
P.Greengard
(2003).
Gleevec inhibits beta-amyloid production but not Notch cleavage.
|
| |
Proc Natl Acad Sci U S A,
100,
12444-12449.
|
 |
|
|
|
|
 |
Y.Maru
(2003).
Tyrosine kinase as molecular target of anti-tumor drug.
|
| |
Nippon Yakurigaku Zasshi,
122,
473-481.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |