PDBsum entry 1i5s

Go to PDB code: 
protein ligands metals links
Transport protein PDB id
Jmol PyMol
Protein chain
330 a.a. *
Waters ×235
* Residue conservation analysis
PDB id:
Name: Transport protein
Title: Crystal structure of the kif1a motor domain complexed with mg-adp
Structure: Kinesin-like protein kif1a. Chain: a. Fragment: motor domain. Synonym: kif1a. Engineered: yes. Mutation: yes
Source: Mus musculus. House mouse. Organism_taxid: 10090. Gene: kifa. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
2.20Å     R-factor:   0.210     R-free:   0.225
Authors: M.Kikkawa,E.P.Sablin,Y.Okada,H.Yajima,R.J.Fletterick, N.Hirokawa
Key ref:
M.Kikkawa et al. (2001). Switch-based mechanism of kinesin motors. Nature, 411, 439-445. PubMed id: 11373668 DOI: 10.1038/35078000
28-Feb-01     Release date:   30-May-01    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P33173  (KIF1A_MOUSE) -  Kinesin-like protein KIF1A
1695 a.a.
330 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     microtubule-based movement   1 term 
  Biochemical function     microtubule binding     3 terms  


DOI no: 10.1038/35078000 Nature 411:439-445 (2001)
PubMed id: 11373668  
Switch-based mechanism of kinesin motors.
M.Kikkawa, E.P.Sablin, Y.Okada, H.Yajima, R.J.Fletterick, N.Hirokawa.
Kinesin motors are specialized enzymes that use hydrolysis of ATP to generate force and movement along their cellular tracks, the microtubules. Although numerous biochemical and biophysical studies have accumulated much data that link microtubule-assisted ATP hydrolysis to kinesin motion, the structural view of kinesin movement remains unclear. This study of the monomeric kinesin motor KIF1A combines X-ray crystallography and cryo-electron microscopy, and allows analysis of force-generating conformational changes at atomic resolution. The motor is revealed in its two functionally critical states-complexed with ADP and with a non-hydrolysable analogue of ATP. The conformational change observed between the ADP-bound and the ATP-like structures of the KIF1A catalytic core is modular, extends to all kinesins and is similar to the conformational change used by myosin motors and G proteins. Docking of the ADP-bound and ATP-like crystallographic models of KIF1A into the corresponding cryo-electron microscopy maps suggests a rationale for the plus-end directional bias associated with the kinesin catalytic core.
  Selected figure(s)  
Figure 2.
Figure 2: Nucleotide-dependent movements of the mechanical elements of kinesin motors. a, Reorientation of the neck linker between the ADP (yellow) and ATP-like (red) states of KIF1A. b, Superposition of the switch II clusters of the plus-end-directed kinesins. Conformation of the switch II cluster (ADP or ATP-like, yellow and red, respectively) controls position of the kinesin neck linker in all structures. Helix 6 is shown in blue. c, Hypothetical model for the nucleotide-dependent dynamics at the core/neck interface of the minus-end-directed motor ncd^9. The colours are the same as in a and b. The switch II cluster and the neck in ATP state are dashed. Conserved residues essential for stabilization of the neck/core interface in the ADP state of the ncd^9 are labelled.
Figure 3.
Figure 3: Cryo-EM maps of the microtubules decorated by the KIF1A. a, A 22 resolution map of the KIF1A -AMPPNP -microtubule complex15. The motor core (yellow) and its long axis (red line) are shown. The microtubules are shown with their plus end up in this and following figures. b, Docking of the ATP-like KIF1A crystal structure into 15 resolution cryo-EM map of the microtubule (grey) complexed with the KIF1A (yellow) in the presence of AMPPNP15. The C-terminal region of tubulin (E-hook) is shown in yellow. c, A 22 resolution map of the KIF1A -ADP -microtubule complex. The long axis of the motor is indicated by a red line. For comparison, its orientation in the ATP-like state is indicated by the orange grid and pink line. d, Docking of the ADP-bound KIF1A crystal structure into electron-microscopy-derived 22 resolution map. The colours are the same as in b.
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2001, 411, 439-445) copyright 2001.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21277856 N.Naber, A.Larson, S.Rice, R.Cooke, and E.Pate (2011).
Multiple conformations of the nucleotide site of Kinesin family motors in the triphosphate state.
  J Mol Biol, 408, 628-642.  
20818331 C.Peters, K.Brejc, L.Belmont, A.J.Bodey, Y.Lee, M.Yu, J.Guo, R.Sakowicz, J.Hartman, and C.A.Moores (2010).
Insight into the molecular mechanism of the multitasking kinesin-8 motor.
  EMBO J, 29, 3437-3447.
PDB code: 3lre
20160108 C.V.Sindelar, and K.H.Downing (2010).
An atomic-level mechanism for activation of the kinesin molecular motors.
  Proc Natl Acad Sci U S A, 107, 4111-4116.  
20602775 E.Heuston, C.E.Bronner, F.J.Kull, and S.A.Endow (2010).
A kinesin motor in a force-producing conformation.
  BMC Struct Biol, 10, 19.
PDB code: 3l1c
20164408 F.Fourniol, and C.A.Moores (2010).
Kinesin motor activation: microtubules pull the switches.
  Proc Natl Acad Sci U S A, 107, 3949-3950.  
  21060728 P.Xie (2010).
Mechanism of processive movement of monomeric and dimeric kinesin molecules.
  Int J Biol Sci, 6, 665-674.  
20224548 S.Uchimura, Y.Oguchi, Y.Hachikubo, S.Ishiwata, and E.Muto (2010).
Key residues on microtubule responsible for activation of kinesin ATPase.
  EMBO J, 29, 1167-1175.  
20585540 Y.Togashi, T.Yanagida, and A.S.Mikhailov (2010).
Nonlinearity of mechanochemical motions in motor proteins.
  PLoS Comput Biol, 6, e1000814.  
19530174 A.Marx, A.Hoenger, and E.Mandelkow (2009).
Structures of kinesin motor proteins.
  Cell Motil Cytoskeleton, 66, 958-966.  
19503091 D.A.Lyons, S.G.Naylor, A.Scholze, and W.S.Talbot (2009).
Kif1b is essential for mRNA localization in oligodendrocytes and development of myelinated axons.
  Nat Genet, 41, 854-858.  
19135893 J.C.Cochran, C.V.Sindelar, N.K.Mulko, K.A.Collins, S.E.Kong, R.S.Hawley, and F.J.Kull (2009).
ATPase cycle of the nonmotile kinesin NOD allows microtubule end tracking and drives chromosome movement.
  Cell, 136, 110-122.
PDB codes: 3dc4 3dcb 3dco
19186149 M.Nishiyama, Y.Kimura, Y.Nishiyama, and M.Terazima (2009).
Pressure-induced changes in the structure and function of the kinesin-microtubule complex.
  Biophys J, 96, 1142-1150.  
19416847 M.V.Vinogradova, G.G.Malanina, A.S.Reddy, and R.J.Fletterick (2009).
Structure of the complex of a mitotic kinesin with its calcium binding regulator.
  Proc Natl Acad Sci U S A, 106, 8175-8179.
PDB code: 3h4s
19935670 N.Hirokawa, R.Nitta, and Y.Okada (2009).
The mechanisms of kinesin motor motility: lessons from the monomeric motor KIF1A.
  Nat Rev Mol Cell Biol, 10, 877-884.  
21544223 V.Hariharan, and W.O.Hancock (2009).
Insights into the Mechanical Properties of the Kinesin Neck Linker Domain from Sequence Analysis and Molecular Dynamics Simulations.
  Cell Mol Bioeng, 2, 177-189.  
19452133 W.Hwang, and M.J.Lang (2009).
Mechanical design of translocating motor proteins.
  Cell Biochem Biophys, 54, 11-22.  
19591676 W.Zheng, and M.Tekpinar (2009).
Large-scale evaluation of dynamically important residues in proteins predicted by the perturbation analysis of a coarse-grained elastic model.
  BMC Struct Biol, 9, 45.  
19377471 Y.Konishi, and M.Setou (2009).
Tubulin tyrosination navigates the kinesin-1 motor domain to axons.
  Nat Neurosci, 12, 559-567.  
19047639 A.S.Khalil, D.C.Appleyard, A.K.Labno, A.Georges, M.Karplus, A.M.Belcher, W.Hwang, and M.J.Lang (2008).
Kinesin's cover-neck bundle folds forward to generate force.
  Proc Natl Acad Sci U S A, 105, 19247-19252.  
18066053 L.Guillaud, R.Wong, and N.Hirokawa (2008).
Disruption of KIF17-Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin-cargo release.
  Nat Cell Biol, 10, 19-29.  
18280159 M.Kikkawa (2008).
The role of microtubules in processive kinesin movement.
  Trends Cell Biol, 18, 128-135.  
19001124 M.Wagenbach, S.Domnitz, L.Wordeman, and J.Cooper (2008).
A kinesin-13 mutant catalytically depolymerizes microtubules in ADP.
  J Cell Biol, 183, 617-623.  
18806800 R.Nitta, Y.Okada, and N.Hirokawa (2008).
Structural model for strain-dependent microtubule activation of Mg-ADP release from kinesin.
  Nat Struct Mol Biol, 15, 1067-1075.
PDB codes: 2zfi 2zfj 2zfk 2zfl 2zfm
17993481 T.Luchko, J.T.Huzil, M.Stepanova, and J.Tuszynski (2008).
Conformational analysis of the carboxy-terminal tails of human beta-tubulin isotypes.
  Biophys J, 94, 1971-1982.  
18184584 W.Hwang, M.J.Lang, and M.Karplus (2008).
Force generation in kinesin hinges on cover-neck bundle formation.
  Structure, 16, 62-71.  
17470637 C.V.Sindelar, and K.H.Downing (2007).
The beginning of kinesin's force-generating cycle visualized at 9-A resolution.
  J Cell Biol, 177, 377-385.
PDB code: 2p4n
17326138 J.Al-Bassam, B.Roger, S.Halpain, and R.A.Milligan (2007).
Analysis of the weak interactions of ADP-Unc104 and ADP-kinesin with microtubules and their inhibition by MAP2c.
  Cell Motil Cytoskeleton, 64, 377-389.  
17382884 J.S.Allingham, L.R.Sproul, I.Rayment, and S.P.Gilbert (2007).
Vik1 modulates microtubule-Kar3 interactions through a motor domain that lacks an active site.
  Cell, 128, 1161-1172.
PDB code: 2o0a
17584854 K.Poirier, D.A.Keays, F.Francis, Y.Saillour, N.Bahi, S.Manouvrier, C.Fallet-Bianco, L.Pasquier, A.Toutain, F.P.Tuy, T.Bienvenu, S.Joriot, S.Odent, D.Ville, I.Desguerre, A.Goldenberg, M.L.Moutard, J.P.Fryns, H.van Esch, R.J.Harvey, C.Siebold, J.Flint, C.Beldjord, and J.Chelly (2007).
Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin alpha 1A (TUBA1A).
  Hum Mutat, 28, 1055-1064.  
17989090 L.A.Amos, and K.Hirose (2007).
A cool look at the structural changes in kinesin motor domains.
  J Cell Sci, 120, 3919-3927.  
17500919 P.Greulich, A.Garai, K.Nishinari, A.Schadschneider, and D.Chowdhury (2007).
Intracellular transport by single-headed kinesin KIF1A: effects of single-motor mechanochemistry and steric interactions.
  Phys Rev E Stat Nonlin Soft Matter Phys, 75, 041905.  
17596847 W.Zheng, B.R.Brooks, and G.Hummer (2007).
Protein conformational transitions explored by mixed elastic network models.
  Proteins, 69, 43-57.  
16783374 A.B.Asenjo, Y.Weinberg, and H.Sosa (2006).
Nucleotide binding and hydrolysis induces a disorder-order transition in the kinesin neck-linker region.
  Nat Struct Mol Biol, 13, 648-654.  
16362723 A.Marx, J.Müller, E.M.Mandelkow, A.Hoenger, and E.Mandelkow (2006).
Interaction of kinesin motors, microtubules, and MAPs.
  J Muscle Res Cell Motil, 27, 125-137.  
17015621 D.Tan, A.B.Asenjo, V.Mennella, D.J.Sharp, and H.Sosa (2006).
Kinesin-13s form rings around microtubules.
  J Cell Biol, 175, 25-31.  
16941085 E.J.Carpenter, J.T.Huzil, R.F.Ludueña, and J.A.Tuszynski (2006).
Homology modeling of tubulin: influence predictions for microtubule's biophysical properties.
  Eur Biophys J, 36, 35-43.  
17014086 J.C.Cochran, T.C.Krzysiak, and S.P.Gilbert (2006).
Pathway of ATP hydrolysis by monomeric kinesin Eg5.
  Biochemistry, 45, 12334-12344.  
16973442 K.Hirose, E.Akimaru, T.Akiba, S.A.Endow, and L.A.Amos (2006).
Large conformational changes in a kinesin motor catalyzed by interaction with microtubules.
  Mol Cell, 23, 913-923.  
16946706 M.Kikkawa, and N.Hirokawa (2006).
High-resolution cryo-EM maps show the nucleotide binding pocket of KIF1A in open and closed conformations.
  EMBO J, 25, 4187-4194.
PDB codes: 2hxf 2hxh
17173688 M.T.Valentine, P.M.Fordyce, and S.M.Block (2006).
Eg5 steps it up!
  Cell Div, 1, 31.  
17013387 M.Tomishige, N.Stuurman, and R.D.Vale (2006).
Single-molecule observations of neck linker conformational changes in the kinesin motor protein.
  Nat Struct Mol Biol, 13, 887-894.  
16794924 P.J.Atzberger, and C.S.Peskin (2006).
A Brownian Dynamics model of kinesin in three dimensions incorporating the force-extension profile of the coiled-coil cargo tether.
  Bull Math Biol, 68, 131-160.  
16642039 T.C.Krzysiak, T.Wendt, L.R.Sproul, P.Tittmann, H.Gross, S.P.Gilbert, and A.Hoenger (2006).
A structural model for monastrol inhibition of dimeric kinesin Eg5.
  EMBO J, 25, 2263-2273.  
16844749 W.H.Mather, and R.F.Fox (2006).
Kinesin's biased stepping mechanism: amplification of neck linker zippering.
  Biophys J, 91, 2416-2426.  
16434397 Z.Maliga, J.Xing, H.Cheung, L.J.Juszczak, J.M.Friedman, and S.S.Rosenfeld (2006).
A pathway of structural changes produced by monastrol binding to Eg5.
  J Biol Chem, 281, 7977-7982.  
15665380 J.C.Cochran, J.E.Gatial, T.M.Kapoor, and S.P.Gilbert (2005).
Monastrol inhibition of the mitotic kinesin Eg5.
  J Biol Chem, 280, 12658-12667.  
16342954 J.C.Cochran, and S.P.Gilbert (2005).
ATPase mechanism of Eg5 in the absence of microtubules: insight into microtubule activation and allosteric inhibition by monastrol.
  Biochemistry, 44, 16633-16648.  
16408073 J.Yajima, and R.A.Cross (2005).
A torque component in the kinesin-1 power stroke.
  Nat Chem Biol, 1, 338-341.  
16118217 S.D.Auerbach, and K.A.Johnson (2005).
Kinetic effects of kinesin switch I and switch II mutations.
  J Biol Chem, 280, 37061-37068.  
16115880 S.S.Rosenfeld, J.Xing, G.M.Jefferson, and P.H.King (2005).
Docking and rolling, a model of how the mitotic motor Eg5 works.
  J Biol Chem, 280, 35684-35695.  
15626711 T.Kamei, S.Kakuta, and H.Higuchi (2005).
Biased binding of single molecules and continuous movement of multiple molecules of truncated single-headed kinesin.
  Biophys J, 88, 2068-2077.  
15879477 W.Zheng, and B.R.Brooks (2005).
Probing the local dynamics of nucleotide-binding pocket coupled to the global dynamics: myosin versus kinesin.
  Biophys J, 89, 167-178.  
14973135 E.P.Sablin, and R.J.Fletterick (2004).
Coordination between motor domains in processive kinesins.
  J Biol Chem, 279, 15707-15710.  
14976555 G.Skiniotis, J.C.Cochran, J.Müller, E.Mandelkow, S.P.Gilbert, and A.Hoenger (2004).
Modulation of kinesin binding by the C-termini of tubulin.
  EMBO J, 23, 989-999.  
15182685 I.M.Crevel, M.C.Alonso, and R.A.Cross (2004).
Monastrol stabilises an attached low-friction mode of Eg5.
  Curr Biol, 14, R411-R412.  
15247293 J.C.Cochran, C.A.Sontag, Z.Maliga, T.M.Kapoor, J.J.Correia, and S.P.Gilbert (2004).
Mechanistic analysis of the mitotic kinesin Eg5.
  J Biol Chem, 279, 38861-38870.  
15029249 K.Shipley, M.Hekmat-Nejad, J.Turner, C.Moores, R.Anderson, R.Milligan, R.Sakowicz, and R.Fletterick (2004).
Structure of a kinesin microtubule depolymerization machine.
  EMBO J, 23, 1422-1432.
PDB code: 1ry6
15005614 L.M.Klumpp, K.M.Brendza, J.E.Gatial, A.Hoenger, W.M.Saxton, and S.P.Gilbert (2004).
Microtubule-kinesin interface mutants reveal a site critical for communication.
  Biochemistry, 43, 2792-2803.  
15282614 M.Mishima, V.Pavicic, U.Grüneberg, E.A.Nigg, and M.Glotzer (2004).
Cell cycle regulation of central spindle assembly.
  Nature, 430, 908-913.  
14704952 M.Setou, T.Hayasaka, and I.Yao (2004).
Axonal transport versus dendritic transport.
  J Neurobiol, 58, 201-206.  
14988396 M.V.Vinogradova, V.S.Reddy, A.S.Reddy, E.P.Sablin, and R.J.Fletterick (2004).
Crystal structure of kinesin regulated by Ca(2+)-calmodulin.
  J Biol Chem, 279, 23504-23509.
PDB code: 1sdm
15175652 N.Mizuno, S.Toba, M.Edamatsu, J.Watai-Nishii, N.Hirokawa, Y.Y.Toyoshima, and M.Kikkawa (2004).
Dynein and kinesin share an overlapping microtubule-binding site.
  EMBO J, 23, 2459-2467.  
  15173218 R.Cooke (2004).
The sliding filament model: 1972-2004.
  J Gen Physiol, 123, 643-656.  
15286375 R.Nitta, M.Kikkawa, Y.Okada, and N.Hirokawa (2004).
KIF1A alternately uses two loops to bind microtubules.
  Science, 305, 678-683.
PDB codes: 1vfv 1vfw 1vfx 1vfz
15093827 S.A.Burgess, and P.J.Knight (2004).
Is the dynein motor a winch?
  Curr Opin Struct Biol, 14, 138-146.  
14980215 S.C.Ems-McClung, and C.E.Walczak (2004).
Catastrophic kinesins: piecing together their mechanism by 3D reconstruction.
  Cell, 116, 485-486.  
15302934 T.Ishikawa, N.Cheng, X.Liu, E.D.Korn, and A.C.Steven (2004).
Subdomain organization of the Acanthamoeba myosin IC tail from cryo-electron microscopy.
  Proc Natl Acad Sci U S A, 101, 12189-12194.  
14980225 T.Ogawa, R.Nitta, Y.Okada, and N.Hirokawa (2004).
A common mechanism for microtubule destabilizers-M type kinesins stabilize curling of the protofilament using the class-specific neck and loops.
  Cell, 116, 591-602.
PDB codes: 1v8j 1v8k
14743912 T.Watanabe, Y.Honda, Y.Fujii, M.Koyama, and R.Tanaka (2004).
Serial evaluation of axonal function in patients with brain death by using anisotropic diffusion-weighted magnetic resonance imaging.
  J Neurosurg, 100, 56-60.  
12970755 A.B.Asenjo, N.Krohn, and H.Sosa (2003).
Configuration of the two kinesin motor domains during ATP hydrolysis.
  Nat Struct Biol, 10, 836-842.  
12594206 B.Bhullar, Y.Zhang, A.Junco, R.Oko, and F.A.van der Hoorn (2003).
Association of kinesin light chain with outer dense fibers in a microtubule-independent fashion.
  J Biol Chem, 278, 16159-16168.  
14662742 C.A.Moores, M.Hekmat-Nejad, R.Sakowicz, and R.A.Milligan (2003).
Regulation of KinI kinesin ATPase activity by binding to the microtubule lattice.
  J Cell Biol, 163, 963-971.  
12660159 G.Skiniotis, T.Surrey, S.Altmann, H.Gross, Y.H.Song, E.Mandelkow, and A.Hoenger (2003).
Nucleotide-induced conformations in the neck region of dimeric kinesin.
  EMBO J, 22, 1518-1528.  
12819144 H.Miki, M.Setou, and N.Hirokawa (2003).
Kinesin superfamily proteins (KIFs) in the mouse transcriptome.
  Genome Res, 13, 1455-1465.  
14638858 J.Al-Bassam, Y.Cui, D.Klopfenstein, B.O.Carragher, R.D.Vale, and R.A.Milligan (2003).
Distinct conformations of the kinesin Unc104 neck regulate a monomer to dimer motor transition.
  J Cell Biol, 163, 743-753.  
12860992 L.M.Klumpp, A.T.Mackey, C.M.Farrell, J.M.Rosenberg, and S.P.Gilbert (2003).
A kinesin switch I arginine to lysine mutation rescues microtubule function.
  J Biol Chem, 278, 39059-39067.  
14507690 M.Dittrich, S.Hayashi, and K.Schulten (2003).
On the mechanism of ATP hydrolysis in F1-ATPase.
  Biophys J, 85, 2253-2266.  
14532111 M.Yun, C.E.Bronner, C.G.Park, S.S.Cha, H.W.Park, and S.A.Endow (2003).
Rotation of the stalk/neck and one head in a new crystal structure of the kinesin motor protein, Ncd.
  EMBO J, 22, 5382-5389.
PDB code: 1n6m
12730601 N.Naber, T.J.Minehardt, S.Rice, X.Chen, J.Grammer, M.Matuska, R.D.Vale, P.A.Kollman, R.Car, R.G.Yount, R.Cooke, and E.Pate (2003).
Closing of the nucleotide pocket of kinesin-family motors upon binding to microtubules.
  Science, 300, 798-801.
PDB codes: 1ozx 1syj 1syp 1sz4 1sz5
12783580 P.Chène (2003).
The ATPases: a new family for a family-based drug design approach.
  Expert Opin Ther Targets, 7, 453-461.  
12208993 S.A.Endow, and D.S.Barker (2003).
Processive and nonprocessive models of kinesin movement.
  Annu Rev Physiol, 65, 161-175.  
14635256 S.A.Endow (2003).
Kinesin motors as molecular machines.
  Bioessays, 25, 1212-1219.  
12609885 S.Lakämper, A.Kallipolitou, G.Woehlke, M.Schliwa, and E.Meyhöfer (2003).
Single fungal kinesin motor molecules move processively along microtubules.
  Biophys J, 84, 1833-1843.  
12609886 S.Rice, Y.Cui, C.Sindelar, N.Naber, M.Matuska, R.Vale, and R.Cooke (2003).
Thermodynamic properties of the kinesin neck-region docking to the catalytic core.
  Biophys J, 84, 1844-1854.  
14502270 T.F.Reubold, S.Eschenburg, A.Becker, F.J.Kull, and D.J.Manstein (2003).
A structural model for actin-induced nucleotide release in myosin.
  Nat Struct Biol, 10, 826-830.
PDB code: 1q5g
12891363 Y.Okada, H.Higuchi, and N.Hirokawa (2003).
Processivity of the single-headed kinesin KIF1A through biased binding to tubulin.
  Nature, 424, 574-577.  
11901422 A.Inoue, J.Saito, R.Ikebe, and M.Ikebe (2002).
Myosin IXb is a single-headed minus-end-directed processive motor.
  Nat Cell Biol, 4, 302-306.  
12234929 A.Seitz, H.Kojima, K.Oiwa, E.M.Mandelkow, Y.H.Song, and E.Mandelkow (2002).
Single-molecule investigation of the interference between kinesin, tau and MAP2c.
  EMBO J, 21, 4896-4905.  
11983180 C.A.Moores, M.Yu, J.Guo, C.Beraud, R.Sakowicz, and R.A.Milligan (2002).
A mechanism for microtubule depolymerization by KinI kinesins.
  Mol Cell, 9, 903-909.  
12368902 C.V.Sindelar, M.J.Budny, S.Rice, N.Naber, R.Fletterick, and R.Cooke (2002).
Two conformations in the human kinesin power stroke defined by X-ray crystallography and EPR spectroscopy.
  Nat Struct Biol, 9, 844-848.
PDB code: 1mkj
12015984 D.R.Klopfenstein, M.Tomishige, N.Stuurman, and R.D.Vale (2002).
Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor.
  Cell, 109, 347-358.  
11792544 H.Higuchi, and S.A.Endow (2002).
Directionality and processivity of molecular motors.
  Curr Opin Cell Biol, 14, 50-57.  
12360289 M.Nishiyama, H.Higuchi, and T.Yanagida (2002).
Chemomechanical coupling of the forward and backward steps of single kinesin molecules.
  Nat Cell Biol, 4, 790-797.  
12351789 M.Tomishige, D.R.Klopfenstein, and R.D.Vale (2002).
Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization.
  Science, 297, 2263-2267.  
12209147 P.Chène (2002).
ATPases as drug targets: learning from their structure.
  Nat Rev Drug Discov, 1, 665-673.  
11959922 S.Uemura, K.Kawaguchi, J.Yajima, M.Edamatsu, Y.Y.Toyoshima, and S.Ishiwata (2002).
Kinesin-microtubule binding depends on both nucleotide state and loading direction.
  Proc Natl Acad Sci U S A, 99, 5977-5981.  
12426369 T.G.Wendt, N.Volkmann, G.Skiniotis, K.N.Goldie, J.Müller, E.Mandelkow, and A.Hoenger (2002).
Microscopic evidence for a minus-end-directed power stroke in the kinesin motor ncd.
  EMBO J, 21, 5969-5978.  
11880367 T.Masaike, E.Muneyuki, H.Noji, K.Kinosita, and M.Yoshida (2002).
F1-ATPase changes its conformations upon phosphate release.
  J Biol Chem, 277, 21643-21649.  
12379658 V.S.Reddy, and A.S.Reddy (2002).
The calmodulin-binding domain from a plant kinesin functions as a modular domain in conferring Ca2+-calmodulin regulation to animal plus- and minus-end kinesins.
  J Biol Chem, 277, 48058-48065.  
12186847 W.A.Wells (2002).
The youth revolution: cell biology in Japan.
  J Cell Biol, 158, 609-614.  
11606296 E.J.Peterman, H.Sosa, L.S.Goldstein, and W.E.Moerner (2001).
Polarized fluorescence microscopy of individual and many kinesin motors bound to axonemal microtubules.
  Biophys J, 81, 2851-2863.  
  11739796 H.J.Matthies, R.J.Baskin, and R.S.Hawley (2001).
Orphan kinesin NOD lacks motile properties but does possess a microtubule-stimulated ATPase activity.
  Mol Biol Cell, 12, 4000-4012.  
11707393 Y.H.Song, A.Marx, J.Müller, G.Woehlke, M.Schliwa, A.Krebs, A.Hoenger, and E.Mandelkow (2001).
Structure of a fast kinesin: implications for ATPase mechanism and interactions with microtubules.
  EMBO J, 20, 6213-6225.
PDB code: 1goj
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.