spacer
spacer

PDBsum entry 1hh8

Go to PDB code: 
protein ligands links
Cell cycle PDB id
1hh8

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
192 a.a. *
Ligands
FLC
Waters ×160
* Residue conservation analysis
PDB id:
1hh8
Name: Cell cycle
Title: The active n-terminal region of p67phox: structure at 1.8 angstrom resolution and biochemical characterizations of the a128v mutant implicated in chronic granulomatous disease
Structure: Neutrophil cytosol factor 2. Chain: a. Fragment: n-terminal domain, residues 1-213. Synonym: p67phox, ncf-2. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Cell: neutrophil. Cellular_location: cytoplasm. Expressed in: escherichia coli. Expression_system_taxid: 469008.
Resolution:
1.80Å     R-factor:   0.182     R-free:   0.204
Authors: S.Grizot,F.Fieschi,M.-C.Dagher,E.Pebay-Peyroula
Key ref:
S.Grizot et al. (2001). The active N-terminal region of p67phox. Structure at 1.8 A resolution and biochemical characterizations of the A128V mutant implicated in chronic granulomatous disease. J Biol Chem, 276, 21627-21631. PubMed id: 11262407 DOI: 10.1074/jbc.M100893200
Date:
21-Dec-00     Release date:   13-Jun-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P19878  (NCF2_HUMAN) -  Neutrophil cytosol factor 2 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
526 a.a.
192 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 

 
DOI no: 10.1074/jbc.M100893200 J Biol Chem 276:21627-21631 (2001)
PubMed id: 11262407  
 
 
The active N-terminal region of p67phox. Structure at 1.8 A resolution and biochemical characterizations of the A128V mutant implicated in chronic granulomatous disease.
S.Grizot, F.Fieschi, M.C.Dagher, E.Pebay-Peyroula.
 
  ABSTRACT  
 
Upon activation, the NADPH oxidase from neutrophils produces superoxide anions in response to microbial infection. This enzymatic complex is activated by association of its cytosolic factors p67(phox), p47(phox), and the small G protein Rac with a membrane-associated flavocytochrome b(558). Here we report the crystal structure of the active N-terminal fragment of p67(phox) at 1.8 A resolution, as well as functional studies of p67(phox) mutants. This N-terminal region (residues 1-213) consists mainly of four TPR (tetratricopeptide repeat) motifs in which the C terminus folds back into a hydrophobic groove formed by the TPR domain. The structure is very similar to that of the inactive truncated form of p67(phox) bound to the small G protein Rac previously reported, but differs by the presence of a short C-terminal helix (residues 187-193) that might be part of the activation domain. All p67(phox) mutants responsible for Chronic Granulomatous Disease (CGD), a severe defect of NADPH oxidase function, are localized in the N-terminal region. We investigated two CGD mutations, G78E and A128V. Surprisingly, the A128V CGD mutant is able to fully activate the NADPH oxidase in vitro at 25 degrees C. However, this point mutation represents a temperature-sensitive defect in p67(phox) that explains its phenotype at physiological temperature.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. Experimental electron density. The experimental map at 1.8 Å resolution (contoured at 1 ) is clearly interpretable and side chains are easily identified.
Figure 6.
Fig. 6. Environment of Ala-128. The figure shows the interactions of the extended C terminus (red) with TPR4 (green). Ala-128 is tightly packed in this environment. Valine at position 128 (light gray) is superimposed on alanine.
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (2001, 276, 21627-21631) copyright 2001.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20176027 J.L.Hartley, N.C.Zachos, B.Dawood, M.Donowitz, J.Forman, R.J.Pollitt, N.V.Morgan, L.Tee, P.Gissen, W.H.Kahr, A.S.Knisely, S.Watson, D.Chitayat, I.W.Booth, S.Protheroe, S.Murphy, E.de Vries, D.A.Kelly, and E.R.Maher (2010).
Mutations in TTC37 cause trichohepatoenteric syndrome (phenotypic diarrhea of infancy).
  Gastroenterology, 138, 2388.  
20184891 J.Tao, K.Petrova, D.Ron, and B.Sha (2010).
Crystal structure of P58(IPK) TPR fragment reveals the mechanism for its molecular chaperone activity in UPR.
  J Mol Biol, 397, 1307-1315.
PDB code: 3ieg
19953534 M.Gentsch, A.Kaczmarczyk, K.van Leeuwen, M.de Boer, M.Kaus-Drobek, M.C.Dagher, P.Kaiser, P.D.Arkwright, M.Gahr, A.Rösen-Wolff, M.Bochtler, E.Secord, P.Britto-Williams, G.M.Saifi, A.Maddalena, G.Dbaibo, J.Bustamante, J.L.Casanova, D.Roos, and J.Roesler (2010).
Alu-repeat-induced deletions within the NCF2 gene causing p67-phox-deficient chronic granulomatous disease (CGD).
  Hum Mutat, 31, 151-158.  
18513324 H.Sumimoto (2008).
Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species.
  FEBS J, 275, 3249-3277.  
18509647 M.J.Stasia, and X.J.Li (2008).
Genetics and immunopathology of chronic granulomatous disease.
  Semin Immunopathol, 30, 209-235.  
17998541 N.Declerck, L.Bouillaut, D.Chaix, N.Rugani, L.Slamti, F.Hoh, D.Lereclus, and S.T.Arold (2007).
Structure of PlcR: Insights into virulence regulation and evolution of quorum sensing in Gram-positive bacteria.
  Proc Natl Acad Sci U S A, 104, 18490-18495.
PDB code: 2qfc
16987009 G.M.Bokoch, and T.Zhao (2006).
Regulation of the phagocyte NADPH oxidase by Rac GTPase.
  Antioxid Redox Signal, 8, 1533-1548.  
16359316 P.J.Edqvist, J.E.Bröms, H.J.Betts, A.Forsberg, M.J.Pallen, and M.S.Francis (2006).
Tetratricopeptide repeats in the type III secretion chaperone, LcrH: their role in substrate binding and secretion.
  Mol Microbiol, 59, 31-44.  
14734109 B.M.Babior (2004).
NADPH oxidase.
  Curr Opin Immunol, 16, 42-47.  
15365846 J.M.Robinson, T.Ohira, and J.A.Badwey (2004).
Regulation of the NADPH-oxidase complex of phagocytic leukocytes. Recent insights from structural biology, molecular genetics, and microscopy.
  Histochem Cell Biol, 122, 293-304.  
15293055 W.M.Nauseef (2004).
Assembly of the phagocyte NADPH oxidase.
  Histochem Cell Biol, 122, 277-291.  
12748287 C.Marty, D.D.Browning, and R.D.Ye (2003).
Identification of tetratricopeptide repeat 1 as an adaptor protein that interacts with heterotrimeric G proteins and the small GTPase Ras.
  Mol Cell Biol, 23, 3847-3858.  
12754316 D.Morgan, V.V.Cherny, R.Murphy, W.Xu, L.L.Thomas, and T.E.DeCoursey (2003).
Temperature dependence of NADPH oxidase in human eosinophils.
  J Physiol, 550, 447-458.  
13678962 G.M.Bokoch, and U.G.Knaus (2003).
NADPH oxidases: not just for leukocytes anymore!
  Trends Biochem Sci, 28, 502-508.  
12887891 M.I.Wilson, D.J.Gill, O.Perisic, M.T.Quinn, and R.L.Williams (2003).
PB1 domain-mediated heterodimerization in NADPH oxidase and signaling complexes of atypical protein kinase C with Par6 and p62.
  Mol Cell, 12, 39-50.
PDB code: 1oey
11976489 A.Royant, S.Grizot, R.Kahn, H.Belrhali, F.Fieschi, E.M.Landau, and E.Pebay-Peyroula (2002).
Detection and characterization of merohedral twinning in two protein crystals: bacteriorhodopsin and p67(phox).
  Acta Crystallogr D Biol Crystallogr, 58, 784-791.  
  11973290 W.Zhu, I.R.Rainville, M.Ding, M.Bolus, N.H.Heintz, and D.S.Pederson (2002).
Evidence that the pre-mRNA splicing factor Clf1p plays a role in DNA replication in Saccharomyces cerevisiae.
  Genetics, 160, 1319-1333.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer